Aspartate-glutamate carrier 2 (citrin): a role in glucose and amino acid metabolism in the liver
Jazyk angličtina Země Jižní Korea Médium print
Typ dokumentu přehledy, časopisecké články
PubMed
37254569
PubMed Central
PMC10390287
DOI
10.5483/bmbrep.2023-0052
PII: 5907
Knihovny.cz E-zdroje
- MeSH
- glukosa * metabolismus MeSH
- játra metabolismus MeSH
- kyselina aspartová * metabolismus MeSH
- kyselina glutamová metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- aspartate-glutamate carrier MeSH Prohlížeč
- citrin MeSH Prohlížeč
- glukosa * MeSH
- kyselina aspartová * MeSH
- kyselina glutamová MeSH
Aspartate-glutamate carrier 2 (AGC2, citrin) is a mitochondrial carrier expressed in the liver that transports aspartate from mitochondria into the cytosol in exchange for glutamate. The AGC2 is the main component of the malate-aspartate shuttle (MAS) that ensures indirect transport of NADH produced in the cytosol during glycolysis, lactate oxidation to pyruvate, and ethanol oxidation to acetaldehyde into mitochondria. Through MAS, AGC2 is necessary to maintain intracellular redox balance, mitochondrial respiration, and ATP synthesis. Through elevated cytosolic Ca2+ level, the AGC2 is stimulated by catecholamines and glucagon during starvation, exercise, and muscle wasting disorders. In these conditions, AGC2 increases aspartate input to the urea cycle, where aspartate is a source of one of two nitrogen atoms in the urea molecule (the other is ammonia), and a substrate for the synthesis of fumarate that is gradually converted to oxaloacetate, the starting substrate for gluconeogenesis. Furthermore, aspartate is a substrate for the synthesis of asparagine, nucleotides, and proteins. It is concluded that AGC2 plays a fundamental role in the compartmentalization of aspartate and glutamate metabolism and linkage of the reactions of MAS, glycolysis, gluconeogenesis, amino acid catabolism, urea cycle, protein synthesis, and cell proliferation. Targeting of AGC genes may represent a new therapeutic strategy to fight cancer. [BMB Reports 2023; 56(7): 385-391].
Department of Physiology Faculty of Medicine Charles University Hradec Králové 500 03 Czech Republic
Zobrazit více v PubMed
Borst P. The malate-aspartate shuttle (Borst cycle): how it started and developed into a major metabolic pathway. IUBMB Life. 2020;72:2241–2259. doi: 10.1002/iub.2367. PubMed DOI PMC
Monné M, Vozza A, Lasorsa FM, et al. Mitochondrial carriers for aspartate, glutamate and other amino acids: a review. Int J Mol Sci. 2019;20:4456. doi: 10.3390/ijms20184456.e496bb971be14ea0aebc55f23f3a9465 PubMed DOI PMC
Palmieri L, Pardo B, Lasorsa FM, et al. Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria. EMBO J. 2001;20:5060–5069. doi: 10.1093/emboj/20.18.5060. PubMed DOI PMC
Contreras L, Gomez-Puertas P, Iijima M, Kobayashi K, Saheki T, Satrústegui J. Ca2+ activation kinetics of the two aspartate-glutamate mitochondrial carriers, aralar and citrin: role in the heart malate-aspartate NADH shuttle. J Biol Chem. 2007;282:7098–7106. doi: 10.1074/jbc.M610491200. PubMed DOI
Thangaratnarajah C, Ruprecht JJ, Kunji ER. Calcium-induced conformational changes of the regulatory domain of human mitochondrial aspartate/glutamate carriers. Nat Commun. 2014;5:5491. doi: 10.1038/ncomms6491. PubMed DOI PMC
Bond M, Vadasz G, Somlyo AV, Somlyo AP. Subcellular calcium and magnesium mobilization in rat liver stimulated in vivo with vasopressin and glucagon. J Biol Chem. 1987;262:15630–15636. doi: 10.1016/S0021-9258(18)47773-3. PubMed DOI
Keppens S, Vandenheede JR, De Wulf H. On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase. Biochim Biophys Acta. 1977;496:448–457. doi: 10.1016/0304-4165(77)90327-0. PubMed DOI
Blackmore PF, Waynick LE, Blackman GE, Graham CW, Sherry RS. Alpha- and beta-adrenergic stimulation of parenchymal cell Ca2+ influx. Influence of extracellular pH. J Biol Chem. 1984;259:12322–12325. doi: 10.1016/S0021-9258(18)90746-5. PubMed DOI
del Arco A, Satrústegui J. Molecular cloning of Aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J Biol Chem. 1998;273:23327–23334. doi: 10.1074/jbc.273.36.23327. PubMed DOI
Sheid B, Morrris HP, Roth JS. Distribution and activity of aspartate aminotransferase in some rapidly proliferating tissues. J Biol Chem. 1965;240:3016–3022. doi: 10.1016/S0021-9258(18)97280-7. PubMed DOI
Holecek M, Sispera L. Effects of arginine supplementation on amino acid profiles in blood and tissues in fed and overnight-fasted rats. Nutrients. 2016;8:206. doi: 10.3390/nu8040206.0d7156538b874fe281ca29c252081678 PubMed DOI PMC
Stoll B, McNelly S, Buscher HP, Häussinger D. Functional hepatocyte heterogeneity in glutamate, aspartate and alpha-ketoglutarate uptake: a histoautoradiographical study. Hepatology. 1991;13:247–253. doi: 10.1002/hep.1840130208. PubMed DOI
Häussinger D, Stoll B, Stehle T, Gerok W. Hepatocyte heterogeneity in glutamate metabolism and bidirectional transport in perfused rat liver. Eur J Biochem. 1989;185:189–195. doi: 10.1111/j.1432-1033.1989.tb15101.x. PubMed DOI
Monné M, Miniero DV, Iacobazzi V, Bisaccia F, Fiermonte G. The mitochondrial oxoglutarate carrier: from identification to mechanism. J Bioenerg Biomembr. 2013;45:1–13. doi: 10.1007/s10863-012-9475-7. PubMed DOI
Jungas RL, Halperin ML, Brosnan JT. Quantitative analysis of amino acid oxidation and related GLUconeogenesis in humans. Physiol Rev. 1992;72:419–448. doi: 10.1152/physrev.1992.72.2.419. PubMed DOI
Schutz Y. Protein turnover, ureagenesis and gluconeogenesis. Int J Vitam Nutr Res. 2011;81:101–107. doi: 10.1024/0300-9831/a000064. PubMed DOI
Veldhorst MA, Westerterp-Plantenga MS, Westerterp KR. Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am J Clin Nutr. 2009;90:519–526. doi: 10.3945/ajcn.2009.27834. PubMed DOI
Kraus-Friedmann N, Feng L. The role of intracellular Ca2+ in the regulation of gluconeogenesis. Metabolism. 1996;45:389–403. doi: 10.1016/S0026-0495(96)90296-6. PubMed DOI
Reeds PJ, Garlick PJ. Protein and amino acid requirements and the composition of complementary foods. J Nutr. 2003;133:2953–2961. doi: 10.1093/jn/133.9.2953S. PubMed DOI
Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell. 2015;162:552–563. doi: 10.1016/j.cell.2015.07.017. PubMed DOI PMC
Sullivan LB, Luengo A, Danai LV, et al. Aspartate is an endogenous metabolic limitation for tumour growth. Nat Cell Biol. 2018;20:782–788. doi: 10.1038/s41556-018-0125-0. PubMed DOI PMC
Ray RM, Viar MJ, Patel TB, Johnson LR. Interaction of asparagine and EGF in the regulation of ornithine decarboxylase in IEC-6 cells. Am J Physiol. 1999;276:G773–G780. doi: 10.1152/ajpgi.1999.276.3.G773. PubMed DOI
Cruise JL, Muga SJ, Lee YS, Michalopoulos GK. Regulation of hepatocyte growth: alpha-1 adrenergic receptor and ras p21 changes in liver regeneration. J Cell Physiol. 1989;140:195–201. doi: 10.1002/jcp.1041400202. PubMed DOI
Mine T, Kojima I, Ogata E, Nakamura T. Comparison of effects of HGF and EGF on cellular calcium in rat hepatocytes. Biochem Biophys Res Commun. 1991;181:1173–1180. doi: 10.1016/0006-291X(91)92062-O. PubMed DOI
Lagoudakis L, Garcin I, Julien B, et al. Cytosolic calcium regulates liver regeneration in the rat. Hepatology. 2010;52:602–611. doi: 10.1002/hep.23673. PubMed DOI PMC
Nicou A, Serrière V, Hilly M, et al. Remodelling of calcium signalling during liver regeneration in the rat. J Hepatol. 2007;46:247–256. doi: 10.1016/j.jhep.2006.08.014. PubMed DOI
Saheki T, Kobayashi K, Iijima M, et al. Metabolic derangements in deficiency of citrin, a liver-type mitochondrial aspartate-glutamate carrier. Hepatol Res. 2005;33:181–184. doi: 10.1016/j.hepres.2005.09.031. PubMed DOI
Saheki T, Moriyama M, Funahashi A, Kuroda E. AGC2 (citrin) deficiency-from recognition of the disease till construction of therapeutic procedures. Biomolecules. 2020;10:100. doi: 10.3390/biom10081100.9c01632737ec497694b63535af6fda9a PubMed DOI PMC
Arai-Ichinoi N, Kikuchi A, Wada Y, Sakamoto O, Kure S. Hypoglycemic attacks and growth failure are the most common manifestations of citrin deficiency after 1 year of age. J Inherit Metab Dis. 2021;44:838–846. doi: 10.1002/jimd.12390. PubMed DOI
Tsai CW, Yang CC, Chen HL, et al. Homozygous SLC25A13 mutation in a Taiwanese patient with adult-onset citrullinemia complicated with steatosis and hepatocellular carcinoma. J Formos Med Assoc. 2006;105:852–856. doi: 10.1016/S0929-6646(09)60274-6. PubMed DOI
Hagiwara N, Sekijima Y, Takei Y, et al. Hepatocellular carcinoma in a case of adult-onset type II citrullinemia. Intern Med. 2003;42:978–982. doi: 10.2169/internalmedicine.42.978. PubMed DOI
Ito T, Shiraki K, Sekoguchi K, et al. Hepatocellular carcinoma associated with adult-type citrullinemia. Dig Dis Sci. 2000;45:2203–2206. doi: 10.1023/A:1026439913915. PubMed DOI
Broeks MH, van Karnebeek CDM, Wanders RJA, Jans JJM, Verhoeven-Duif NM. Inborn disorders of the malate aspartate shuttle. J Inherit Metab Dis. 2021;44:792–808. doi: 10.1002/jimd.12402. PubMed DOI PMC
Tavoulari S, Lacabanne D, Thangaratnarajah C, Kunji ERS. Pathogenic variants of the mitochondrial aspartate/glutamate carrier causing citrin deficiency. Trends Endocrinol Metab. 2022;33:539–553. doi: 10.1016/j.tem.2022.05.002. PubMed DOI PMC
Hayasaka K, Numakura C, Toyota K, et al. Medium-chain triglyceride supplementation under a low-carbohydrate formula is a promising therapy for adult-onset type II citrullinemia. Mol Genet Metab Rep. 2014;1:42–50. doi: 10.1016/j.ymgmr.2013.12.002.770744e4e35944e69abc7f06ff045e47 PubMed DOI PMC
Komatsu M, Yazaki M, Tanaka N, et al. Citrin deficiency as a cause of chronic liver disorder mimicking non-alcoholic fatty liver disease. J Hepatol. 2008;49:810–820. doi: 10.1016/j.jhep.2008.05.016. PubMed DOI
Holeček M. Serine metabolism in health and disease and as a conditionally essential amino acid. Nutrients. 2022;14:1987. doi: 10.3390/nu14091987.fca9b0391b55424bba6b2e49289e8e05 PubMed DOI PMC
Zhang H, Wang Y, Li J, et al. Biosynthetic energy cost for amino acids decreases in cancer evolution. Nat Commun. 2018;9:4124. doi: 10.1038/s41467-018-06461-1.f232eaedd2524fefb4a1b83537cf1e3a PubMed DOI PMC
Miyo M, Konno M, Nishida N, et al. Metabolic adaptation to nutritional stress in human colorectal cancer. Sci Rep. 2016;6:38415. doi: 10.1038/srep38415. PubMed DOI PMC
Amoedo ND, Punzi G, Obre E, et al. AGC1/2, the mitochondrial aspartate-glutamate carriers. Biochim Biophys Acta. 2016;1863:2394–2412. doi: 10.1016/j.bbamcr.2016.04.011. PubMed DOI
Alkan HF, Walter KE, Luengo A, et al. Cytosolic aspartate availability determines cell survival when glutamine is limiting. Cell Metab. 2018;28:706–720. doi: 10.1016/j.cmet.2018.07.021. PubMed DOI PMC
Lv Y, Yuan CH, Han LY, et al. The overexpression of SLC25A13 predicts poor prognosis and is correlated with immune cell infiltration in patients with skin cutaneous melanoma. Dis Markers. 2022;2022:4091978. doi: 10.1155/2022/4091978. PubMed DOI PMC
Garcia-Bermudez J, Baudrier L, La K, et al. Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat Cell Biol. 2018;20:775–781. doi: 10.1038/s41556-018-0118-z. PubMed DOI PMC
Dong H, Zhang H, Liang J, et al. Digital karyotyping reveals probable target genes at 7q21.3 locus in hepatocellular carcinoma. BMC Med Genomics. 2011;4:60. doi: 10.1186/1755-8794-4-60.07e13bab3c5b480eab978f5007635d85 PubMed DOI PMC
Chang KW, Chen HL, Chien YH, Chen TC, Yeh CT. SLC25A13 gene mutations in Taiwanese patients with non-viral hepatocellular carcinoma. Mol Genet Metab. 2011;103:293–296. doi: 10.1016/j.ymgme.2011.03.013. PubMed DOI
Infantino V, Dituri F, Convertini P, et al. Epigenetic upregulation and functional role of the mitochondrial aspartate/glutamate carrier isoform 1 in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis. 2019;1865:38–47. doi: 10.1016/j.bbadis.2018.10.018. PubMed DOI
Mention K, Joncquel Chevalier Curt M, Dessein AF, Douillard C, Dobbelaere D, Vamecq J. Citrin deficiency: does the reactivation of liver aralar-1 come into play and promote HCC development? Biochimie. 2021;190:20–23. doi: 10.1016/j.biochi.2021.06.018. PubMed DOI
Gorgoglione R, Impedovo V, Riley CL, et al. Glutamine-derived aspartate biosynthesis in cancer cells: role of mitochondrial transporters and new therapeutic perspectives. Cancers (Basel) 2022;14:245. doi: 10.3390/cancers14010245.65954d1e64fd4330869e80336a49d249 PubMed DOI PMC
Zhang L, Wei Y, Yuan S, Sun L. Targeting mitochondrial metabolic reprogramming as a potential approach for cancer therapy. Int J Mol Sci. 2023;24:4954. doi: 10.3390/ijms24054954.205ab7b299bf44cb84162bb9c5661561 PubMed DOI PMC