Serine Metabolism in Health and Disease and as a Conditionally Essential Amino Acid
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
the Cooperatio Program, research area METD
Charles University
PubMed
35565953
PubMed Central
PMC9105362
DOI
10.3390/nu14091987
PII: nu14091987
Knihovny.cz E-zdroje
- Klíčová slova
- deoxysphingolipids, diabetes, glycine, hyperhocysteinemia, neuropathy, serine supplementation,
- MeSH
- esenciální aminokyseliny MeSH
- fosfolipidy MeSH
- lidé MeSH
- serin * MeSH
- sfingolipidy metabolismus MeSH
- vrozené poruchy metabolismu aminokyselin * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- esenciální aminokyseliny MeSH
- fosfolipidy MeSH
- serin * MeSH
- sfingolipidy MeSH
L-serine plays an essential role in a broad range of cellular functions including protein synthesis, neurotransmission, and folate and methionine cycles and synthesis of sphingolipids, phospholipids, and sulphur containing amino acids. A hydroxyl side-chain of L-serine contributes to polarity of proteins, and serves as a primary site for binding a phosphate group to regulate protein function. D-serine, its D-isoform, has a unique role. Recent studies indicate increased requirements for L-serine and its potential therapeutic use in some diseases. L-serine deficiency is associated with impaired function of the nervous system, primarily due to abnormal metabolism of phospholipids and sphingolipids, particularly increased synthesis of deoxysphingolipids. Therapeutic benefits of L-serine have been reported in primary disorders of serine metabolism, diabetic neuropathy, hyperhomocysteinemia, and amyotrophic lateral sclerosis. Use of L-serine and its metabolic products, specifically D-serine and phosphatidylserine, has been investigated for the therapy of renal diseases, central nervous system injury, and in a wide range of neurological and psychiatric disorders. It is concluded that there are disorders in which humans cannot synthesize L-serine in sufficient quantities, that L-serine is effective in therapy of disorders associated with its deficiency, and that L-serine should be classified as a "conditionally essential" amino acid.
Zobrazit více v PubMed
Calianese D.C., Birge R.B. Biology of phosphatidylserine (PS): Basic physiology and implications in immunology, infectious disease, and cancer. Cell Commun. Signal. 2020;18:41. doi: 10.1186/s12964-020-00543-8. PubMed DOI PMC
Penno A., Reilly M.M., Houlden H., Laurá M., Rentsch K., Niederkofler V., Stoeckli E.T., Nicholson G., Eichler F., Brown R.H., Jr., et al. Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J. Biol. Chem. 2010;285:11178–11187. doi: 10.1074/jbc.M109.092973. PubMed DOI PMC
Othman A., Rütti M.F., Ernst D., Saely C.H., Rein P., Drexel H., Porretta-Serapiglia C., Lauria G., Bianchi R., Von Eckardstein A., et al. Plasma deoxysphingolipids: A novel class of biomarkers for the metabolic syndrome? Diabetologia. 2012;55:421–431. doi: 10.1007/s00125-011-2384-1. PubMed DOI
Othman A., Saely C.H., Muendlein A., Vonbank A., Drexel H., Von Eckardstein A., Hornemann T. Plasma 1-deoxysphingolipids are predictive biomarkers for type 2 diabetes mellitus. BMJ Open Diabetes Res. Care. 2015;3:e000073. doi: 10.1136/bmjdrc-2014-000073. PubMed DOI PMC
Zuellig R.A., Hornemann T., Othman A., Hehl A.B., Bode H., Güntert T., Ogunshola O.O., Saponara E., Grabliauskaite K., Jang J.H., et al. Deoxysphingolipids, novel biomarkers for type 2 diabetes, are cytotoxic for insulin-producing cells. Diabetes. 2014;63:1326–1339. doi: 10.2337/db13-1042. PubMed DOI
Brassier A., Valayannopoulos V., Bahi-Buisson N., Wiame E., Hubert L., Boddaert N., Kaminska A., Habarou F., Desguerre I., Van Schaftingen E., et al. Two new cases of serine deficiency disorders treated with l-serine. Eur. J. Paediatr. Neurol. 2016;20:53–60. doi: 10.1016/j.ejpn.2015.10.007. PubMed DOI
De Koning T.J., Duran M., Dorland L., Gooskens R., Van Schaftingen E., Jaeken J., Blau N., Berger R., Poll-The B.T. Beneficial effects of L-serine and glycine in the management of seizures in 3-phosphoglycerate dehydrogenase deficiency. Ann. Neurol. 1998;44:261–265. doi: 10.1002/ana.410440219. PubMed DOI
Levine T.D., Miller R.G., Bradley W.G., Moore D.H., Saperstein D.S., Flynn L.E., Katz J.S., Forshew D.A., Metcalf J.S., Banack S.A., et al. Phase I clinical trial of safety of L-serine for ALS patients. Amyotroph. Lateral Scler. Front. Degener. 2017;18:107–111. doi: 10.1080/21678421.2016.1221971. PubMed DOI
Holm L.J., Haupt-Jorgensen M., Larsen J., Giacobini J.D., Bilgin M., Buschard K. L-serine supplementation lowers diabetes incidence and improves blood glucose homeostasis in NOD mice. PLoS ONE. 2018;13:e0194414. doi: 10.1371/journal.pone.0194414. PubMed DOI PMC
Gorissen S.H.M., Crombag J.J.R., Senden J.M.G., Waterval W.A.H., Bierau J., Verdijk L.B., Van Loon L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids. 2018;50:1685–1695. doi: 10.1007/s00726-018-2640-5. PubMed DOI PMC
Cohn J.S., Kamili A., Wat E., Chung R.W., Tandy S. Dietary phospholipids and intestinal cholesterol absorption. Nutrients. 2010;2:116–127. doi: 10.3390/nu2020116. PubMed DOI PMC
Kalhan S.C., Hanson R.W. Resurgence of serine: An often neglected but indispensable amino acid. J. Biol. Chem. 2012;287:19786–19791. doi: 10.1074/jbc.R112.357194. PubMed DOI PMC
Knox W.E., Herzfeld A., Hudson J. Phosphoserine phosphatase distribution in normal and neoplastic rat tissues. Arch. Biochem. Biophys. 1969;132:397–403. doi: 10.1016/0003-9861(69)90381-6. PubMed DOI
Achouri Y., Robbi M., Van Schaftingen E. Role of cysteine in the dietary control of the expression of 3-phosphoglycerate dehydrogenase in rat liver. Biochem. J. 1999;344:15–21. doi: 10.1042/bj3440015. PubMed DOI PMC
Antflick J.E., Baker G.B., Hampson D.R. The effects of a low protein diet on amino acids and enzymes in the serine synthesis pathway in mice. Amino Acids. 2010;39:145–153. doi: 10.1007/s00726-009-0387-8. PubMed DOI
Lamers Y., Williamson J., Gilbert L.R., Stacpoole P.W., Gregory J.F., 3rd Glycine turnover and decarboxylation rate quantified in healthy men and women using primed, constant infusions of [1,2-(13)C2]glycine and [(2)H3]leucine. J. Nutr. 2007;137:2647–2652. doi: 10.1093/jn/137.12.2647. PubMed DOI PMC
Van de Poll M.C., Soeters P.B., Deutz N.E., Fearon K.C., Dejong C.H. Renal metabolism of amino acids: Its role in interorgan amino acid exchange. Am. J. Clin. Nutr. 2004;79:185–197. doi: 10.1093/ajcn/79.2.185. PubMed DOI
Lowry M., Hall D.E., Brosnan J.T. Serine synthesis in rat kidney: Studies with perfused kidney and cortical tubules. Am. J. Physiol. 1986;250:F649–F658. doi: 10.1152/ajprenal.1986.250.4.F649. PubMed DOI
Lowry M., Hall D.E., Hall M.S., Brosnan J.T. Renal metabolism of amino acids in vivo: Studies on serine and glycine fluxes. Am. J. Physiol. 1987;252:F304–F309. doi: 10.1152/ajprenal.1987.252.2.F304. PubMed DOI
Jois M., Hall D.E., Brosnan J.T. Serine synthesis by the rat kidney. Contrib. Nephrol. 1988;63:136–140. PubMed
Mauron J., Mottu F., Spohr G. Reciprocal induction and repression of serine dehydratase and phosphoglycerate dehydrogenase by proteins and dietary-essential amino acids in rat liver. Eur. J. Biochem. 1973;32:331–342. doi: 10.1111/j.1432-1033.1973.tb02614.x. PubMed DOI
Ling R., Bridges C.C., Sugawara M., Fujita T., Leibach F.H., Prasad P.D., Ganapathy V. Involvement of transporter recruitment as well as gene expression in the substrate-induced adaptive regulation of amino acid transport system A. Biochim. Biophys. Acta. 2001;1512:15–21. doi: 10.1016/S0005-2736(01)00310-8. PubMed DOI
Liao K., Lane M.D. Expression of a novel insulin-activated amino acid transporter gene during differentiation of 3T3-L1 preadipocytes into adipocytes. Biochem. Biophys. Res. Commun. 1995;208:1008–1015. doi: 10.1006/bbrc.1995.1434. PubMed DOI
Bröer S. Amino acid transporters as modulators of glucose homeostasis. Trends Endocrinol. Metab. 2022;33:120–135. doi: 10.1016/j.tem.2021.11.004. PubMed DOI
El-Hattab A.W. Serine biosynthesis and transport defects. Mol. Genet. Metab. 2016;118:153–159. doi: 10.1016/j.ymgme.2016.04.010. PubMed DOI
Heimer G., Marek-Yagel D., Eyal E., Barel O., Oz Levi D., Hoffmann C., Ruzzo E.K., Ganelin-Cohen E., Lancet D., Pras E., et al. SLC1A4 mutations cause a novel disorder of intellectual disability, progressive microcephaly, spasticity and thin corpus callosum. Clin. Genet. 2015;88:327–335. doi: 10.1111/cge.12637. PubMed DOI
Matsuo H., Kanai Y., Tokunaga M., Nakata T., Chairoungdua A., Ishimine H., Tsukada S., Ooigawa H., Nawashiro H., Kobayashi Y., et al. High affinity D- and L-serine transporter Asc-1: Cloning and dendritic localization in the rat cerebral and cerebellar cortices. Neurosci. Lett. 2004;358:123–126. doi: 10.1016/j.neulet.2004.01.014. PubMed DOI
Davis S.R., Stacpoole P.W., Williamson J., Kick L.S., Quinlivan E.P., Coats B.S., Shane B., Bailey L.B., Gregory J.F., 3rd Tracer-derived total and folate-dependent homocysteine remethylation and synthesis rates in humans indicate that serine is the main one-carbon donor. Am. J. Physiol. Endocrinol. Metab. 2004;286:E272–E279. doi: 10.1152/ajpendo.00351.2003. PubMed DOI
Holeček M., Vodeničarovová M. Effects of histidine supplementation on amino acid metabolism in rats. Physiol. Res. 2020;69:99–111. doi: 10.33549/physiolres.934296. PubMed DOI PMC
Holeček M., Vodeničarovová M. Effects of histidine load on ammonia, amino acid, and adenine nucleotide concentrations in rats. Amino Acids. 2019;51:1667–1680. doi: 10.1007/s00726-019-02803-5. PubMed DOI
Hirabayashi Y., Furuya S. Roles of l-serine and sphingolipid synthesis in brain development and neuronal survival. Prog. Lipid Res. 2008;47:188–203. doi: 10.1016/j.plipres.2008.01.003. PubMed DOI
Esaki K., Sayano T., Sonoda C., Akagi T., Suzuki T., Ogawa T., Okamoto M., Yoshikawa T., Hirabayashi Y., Furuya S. L-Serine deficiency elicits intracellular accumulation of cytotoxic deoxysphingolipids and lipid body formation. J. Biol. Chem. 2015;290:14595–14609. doi: 10.1074/jbc.M114.603860. PubMed DOI PMC
Gui T., Li Y., Zhang S., Alecu I., Chen Q., Zhao Y., Hornemann T., Kullak-Ublick G.A., Gai Z. Oxidative stress increases 1-deoxysphingolipid levels in chronic kidney disease. Free Radic. Biol. Med. 2021;164:139–148. doi: 10.1016/j.freeradbiomed.2021.01.011. PubMed DOI
Bertea M., Rütti M.F., Othman A., Marti-Jaun J., Hersberger M., Von Eckardstein A., Hornemann T. Deoxysphingoid bases as plasma markers in diabetes mellitus. Lipids Health Dis. 2010;9:84. doi: 10.1186/1476-511X-9-84. PubMed DOI PMC
Fridman V., Zarini S., Sillau S., Harrison K., Bergman B.C., Feldman E.L., Reusch J.E.B., Callaghan B.C. Altered plasma serine and 1-deoxydihydroceramide profiles are associated with diabetic neuropathy in type 2 diabetes and obesity. J. Diabetes Complicat. 2021;35:107852. doi: 10.1016/j.jdiacomp.2021.107852. PubMed DOI PMC
Birge R.B., Boeltz S., Kumar S., Carlson J., Wanderley J., Calianese D., Barcinski M., Brekken R.A., Huang X., Hutchins J.T., et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ. 2016;23:962–978. doi: 10.1038/cdd.2016.11. PubMed DOI PMC
Schuiki I., Daum G. Phosphatidylserine decarboxylases, key enzymes of lipid metabolism. IUBMB Life. 2009;61:151–162. doi: 10.1002/iub.159. PubMed DOI
Vance J.E., Tasseva G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim. Biophys. Acta. 2013;1831:543–554. doi: 10.1016/j.bbalip.2012.08.016. PubMed DOI
Pepping J. Phosphatidylserine. Am. J. Health Syst. Pharm. 1999;56:2043–2044. doi: 10.1093/ajhp/56.20.2038. PubMed DOI
Ye L., Sun Y., Jiang Z., Wang G. L-serine, an endogenous amino acid, is a potential neuroprotective agent for neurological disease and injury. Front. Mol. Neurosci. 2021;14:726665. doi: 10.3389/fnmol.2021.726665. PubMed DOI PMC
Maugard M., Vigneron P.A., Bolaños J.P., Bonvento G. l-Serine links metabolism with neurotransmission. Prog. Neurobiol. 2021;197:101896. doi: 10.1016/j.pneurobio.2020.101896. PubMed DOI
Sun L., Qiang R., Yang Y., Jiang Z.L., Wang G.H., Zhao G.W., Ren T.J., Jiang R., Xu L.H. L-serine treatment may improve neurorestoration of rats after permanent focal cerebral ischemia potentially through improvement of neurorepair. PLoS ONE. 2014;9:e93405. doi: 10.1371/journal.pone.0093405. PubMed DOI PMC
Hardingham G.E., Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat. Rev. Neurosci. 2010;11:682–696. doi: 10.1038/nrn2911. PubMed DOI PMC
Papouin T., Ladépêche L., Ruel J., Sacchi S., Labasque M., Hanini M., Groc L., Pollegioni L., Mothet J.P., Oliet S.H.R. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell. 2012;150:633–646. doi: 10.1016/j.cell.2012.06.029. PubMed DOI
Miller R.F. D-Serine as a glial modulator of nerve cells. Glia. 2004;47:275–283. doi: 10.1002/glia.20073. PubMed DOI
Mothet J.P., Parent A.T., Wolosker H., Brady R.O., Jr., Linden D.J., Ferris C.D., Rogawski M.A., Snyder S.H. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc. Natl. Acad. Sci. USA. 2000;97:4926–4931. doi: 10.1073/pnas.97.9.4926. PubMed DOI PMC
Yang Y., Ge W., Chen Y., Zhang Z., Shen W., Wu C., Poo M., Duan S. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc. Natl. Acad. Sci. USA. 2003;100:15194–15199. doi: 10.1073/pnas.2431073100. PubMed DOI PMC
Montesinos Guevara C., Mani A.R. The role of D-serine in peripheral tissues. Eur. J. Pharmacol. 2016;780:216–223. doi: 10.1016/j.ejphar.2016.03.054. PubMed DOI
Heresco-Levy U., Javitt D.C., Ebstein R., Vass A., Lichtenberg P., Bar G., Catinari S., Ermilov M. D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol. Psychiatry. 2005;57:577–585. doi: 10.1016/j.biopsych.2004.12.037. PubMed DOI
Goh K.K., Wu T.H., Chen C.H., Lu M.L. Efficacy of N-methyl-D-aspartate receptor modulator augmentation in schizophrenia: A meta-analysis of randomised, placebo-controlled trials. J. Psychopharmacol. 2021;35:236–252. doi: 10.1177/0269881120965937. PubMed DOI
Tabatabaie L., Klomp L.W., Berger R., De Koning T.J. L-serine synthesis in the central nervous system: A review on serine deficiency disorders. Mol. Genet. Metab. 2010;99:256–262. doi: 10.1016/j.ymgme.2009.10.012. PubMed DOI
Glade M.J., Smith K. Phosphatidylserine and the human brain. Nutrition. 2015;31:781–786. doi: 10.1016/j.nut.2014.10.014. PubMed DOI
Acuna-Hidalgo R., Schanze D., Kariminejad A., Nordgren A., Kariminejad M.H., Conner P., Grigelioniene G., Nilsson D., Nordenskjöld M., Wedell A., et al. Neu-Laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am. J. Hum. Genet. 2014;95:285–293. doi: 10.1016/j.ajhg.2014.07.012. PubMed DOI PMC
De Koning T.J., Klomp L.W., Van Oppen A.C., Beemer F.A., Dorland L., Van den Berg I., Berger R. Prenatal and early postnatal treatment in 3-phosphoglycerate-dehydrogenase deficiency. Lancet. 2004;364:2221–2222. doi: 10.1016/S0140-6736(04)17596-X. PubMed DOI
Hart C.E., Race V., Achouri Y., Wiame E., Sharrard M., Olpin S.E., Watkinson J., Bonham J.R., Jaeken J., Matthijs G., et al. Phosphoserine aminotransferase deficiency: A novel disorder of the serine biosynthesis pathway. Am. J. Hum. Genet. 2007;80:931–937. doi: 10.1086/517888. PubMed DOI PMC
Garofalo K., Penno A., Schmidt B.P., Lee H.J., Frosch M.P., Von Eckardstein A., Brown R.H., Hornemann T., Eichler F.S. Oral L-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J. Clin. Investig. 2011;121:4735–4745. doi: 10.1172/JCI57549. PubMed DOI PMC
Le Douce J., Maugard M., Veran J., Matos M., Jégo P., Vigneron P.A., Faivre E., Toussay X., Vandenberghe M., Balbastre Y., et al. Impairment of glycolysis-derived l-serine production in astrocytes contributes to cognitive deficits in Alzheimer’s disease. Cell Metab. 2020;31:503–517. doi: 10.1016/j.cmet.2020.02.004. PubMed DOI
Holeček M., Vodeničarovová M., Fingrová R. Dual effects of beta-hydroxy-beta-methylbutyrate (HMB) on amino acid, energy, and protein metabolism in the liver and muscles of rats with streptozotocin-induced type 1 diabetes. Biomolecules. 2020;10:1475. doi: 10.3390/biom10111475. PubMed DOI PMC
Scharff R., Wool I.G. Effect of diabetes on the concentration of amino acids in plasma and heart muscle of rats. Biochem. J. 1966;99:173–178. doi: 10.1042/bj0990173. PubMed DOI PMC
Bervoets L., Massa G., Guedens W., Louis E., Noben J.P., Adriaensens P. Metabolic profiling of type 1 diabetes mellitus in children and adolescents: A case-control study. Diabetol. Metab. Syndr. 2017;9:48. doi: 10.1186/s13098-017-0246-9. PubMed DOI PMC
Drábková P., Šanderová J., Kovařík J., Kanďár R. An assay of selected serum amino acids in patients with type 2 diabetes mellitus. Adv. Clin. Exp. Med. 2015;24:447–451. doi: 10.17219/acem/29223. PubMed DOI
Kamaura M., Nishijima K., Takahashi M., Ando T., Mizushima S., Tochikubo O. Lifestyle modification in metabolic syndrome and associated changes in plasma amino acid profiles. Circ. J. 2010;74:2434–2440. doi: 10.1253/circj.CJ-10-0150. PubMed DOI
Mook-Kanamori D.O., De Mutsert R., Rensen P.C., Prehn C., Adamski J., Den Heijer M., Le Cessie S., Suhre K., Rosendaal F.R., Van Dijk K.W. Type 2 diabetes is associated with postprandial amino acid measures. Arch. Biochem. Biophys. 2016;589:138–144. doi: 10.1016/j.abb.2015.08.003. PubMed DOI
Enquobahrie D.A., Denis M., Tadesse M.G., Gelaye B., Ressom H.W., Williams M.A. Maternal early pregnancy serum metabolites and risk of gestational diabetes mellitus. J. Clin. Endocrinol. Metab. 2015;100:4348–4356. doi: 10.1210/jc.2015-2862. PubMed DOI PMC
Chen R., Hornemann T., Štefanić S., Schraner E.M., Zuellig R., Reding T., Malagola E., Henstridge D.C., Hills A.P., Graf R., et al. Serine administration as a novel prophylactic approach to reduce the severity of acute pancreatitis during diabetes in mice. Diabetologia. 2020;63:1885–1899. doi: 10.1007/s00125-020-05156-x. PubMed DOI
Holecek M., Sprongl L., Tilser I., Tichý M. Leucine and protein metabolism in rats with chronic renal insufficiency. Exp. Toxicol. Pathol. 2001;53:71–76. doi: 10.1078/0940-2993-00171. PubMed DOI
Suvanapha R., Tungsanga K., Laorpatanaskul S., Sitprija V., Suwan S. Plasma amino acid patterns in normal Thais and in patients with chronic renal failure. J. Med. Assoc. Thail. 1991;74:211–217. PubMed
Canepa A., Divino Filho J.C., Forsberg A.M., Perfumo F., Carrea A., Gusmano R., Bergström J. Nutritional status and muscle amino acids in children with end-stage renal failure. Kidney Int. 1992;41:1016–1022. doi: 10.1038/ki.1992.154. PubMed DOI
Ceballos I., Chauveau P., Guerin V., Bardet J., Parvy P., Kamoun P., Jungers P. Early alterations of plasma free amino acids in chronic renal failure. Clin. Chim. Acta. 1990;188:101–108. doi: 10.1016/0009-8981(90)90154-K. PubMed DOI
McDonald S.P., Whiting M.J., Tallis G.A., Barbara J.A. Relationships between homocysteine and related amino acids in chronic hemodialysis patients. Clin. Nephrol. 2001;55:465–470. PubMed
Van Guldener C., Stehouwer C.D. Homocysteine and methionine metabolism in renal failure. Semin. Vasc. Med. 2005;5:201–208. doi: 10.1055/s-2005-872405. PubMed DOI
Hamed S.A. Neurologic conditions and disorders of uremic syndrome of chronic kidney disease: Presentations, causes, and treatment strategies. Expert Rev. Clin. Pharmacol. 2019;12:61–90. doi: 10.1080/17512433.2019.1555468. PubMed DOI
Kimura T., Hesaka A., Isaka Y. D-Amino acids and kidney diseases. Clin. Exp. Nephrol. 2020;24:404–410. doi: 10.1007/s10157-020-01862-3. PubMed DOI PMC
Ganote C.E., Peterson D.R., Carone F.A. The nature of D-serine-induced nephrotoxicity. Am. J. Pathol. 1974;77:269–282. PubMed PMC
Maekawa M., Okamura T., Kasai N., Hori Y., Summer K.H., Konno R. D-amino-acid oxidase is involved in D-serine-induced nephrotoxicity. Chem. Res. Toxicol. 2005;18:1678–1682. doi: 10.1021/tx0500326. PubMed DOI
Lin C.S., Hung S.F., Huang H.S., Ma M.C. Blockade of the N-methyl-D-aspartate glutamate receptor ameliorates lipopolysaccharide-induced renal insufficiency. PLoS ONE. 2015;10:e0132204. doi: 10.1371/journal.pone.0132204. PubMed DOI PMC
Snell K., Natsumeda Y., Eble J.N., Glover J.L., Weber G. Enzymic imbalance in serine metabolism in human colon carcinoma and rat sarcoma. Br. J. Cancer. 1988;57:87–90. doi: 10.1038/bjc.1988.15. PubMed DOI PMC
Pan S., Fan M., Liu Z., Li X., Wang H. Serine, glycine and one-carbon metabolism in cancer (Review) Int. J. Oncol. 2021;58:158–170. doi: 10.3892/ijo.2020.5158. PubMed DOI PMC
Possemato R., Marks K.M., Shaul Y.D., Pacold M.E., Kim D., Birsoy K., Sethumadhavan S., Woo H.K., Jang H.G., Jha A.K., et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature. 2011;476:346–350. doi: 10.1038/nature10350. PubMed DOI PMC
Xie M., Pei D.S. Serine hydroxymethyltransferase 2: A novel target for human cancer therapy. Investig. New Drugs. 2021;39:1671–1681. doi: 10.1007/s10637-021-01144-z. PubMed DOI
Maddocks O.D.K., Athineos D., Cheung E.C., Lee P., Zhang T., Van den Broek N.J.F., Mackay G.M., Labuschagne C.F., Gay D., Kruiswijk F., et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature. 2017;544:372–376. doi: 10.1038/nature22056. PubMed DOI
Jiang J., Li B., He W., Huang C. Dietary serine supplementation: Friend or foe? Curr. Opin. Pharmacol. 2021;61:12–20. doi: 10.1016/j.coph.2021.08.011. PubMed DOI
Stead L.M., Brosnan M.E., Brosnan J.T. Characterization of homocysteine metabolism in the rat liver. Biochem. J. 2000;350:685–692. doi: 10.1042/bj3500685. PubMed DOI PMC
Benevenga N.J., Harper A.E. Effect of glycine and serine on methionine metabolism in rats fed diets high in methionine. J. Nutr. 1970;100:1205–1214. doi: 10.1093/jn/100.10.1205. PubMed DOI
Fukada S., Shimada Y., Morita T., Sugiyama K. Suppression of methionine-induced hyperhomocysteinemia by glycine and serine in rats. Biosci. Biotechnol. Biochem. 2006;70:2403–2409. doi: 10.1271/bbb.60130. PubMed DOI
Verhoef P., Steenge G.R., Boelsma E., Van Vliet T., Olthof M.R., Katan M.B. Dietary serine and cystine attenuate the homocysteine-raising effect of dietary methionine: A randomized crossover trial in humans. Am. J. Clin. Nutr. 2004;80:674–679. doi: 10.1093/ajcn/80.3.674. PubMed DOI
Sim W.C., Yin H.Q., Choi H.S., Choi Y.J., Kwak H.C., Kim S.K., Lee B.H. L-serine supplementation attenuates alcoholic fatty liver by enhancing homocysteine metabolism in mice and rats. J. Nutr. 2015;145:260–267. doi: 10.3945/jn.114.199711. PubMed DOI
Cox P.A., Davis D.A., Mash D.C., Metcalf J.S., Banack S.A. Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proc. Biol. Sci. 2016;283:20152397. doi: 10.1098/rspb.2015.2397. PubMed DOI PMC
Soto D., Olivella M., Grau C., Armstrong J., Alcon C., Gasull X., Santos-Gómez A., Locubiche S., Gómez de Salazar M., García-Díaz R., et al. L-Serine dietary supplementation is associated with clinical improvement of loss-of-function GRIN2B-related pediatric encephalopathy. Sci. Signal. 2019;12:eaaw0936. doi: 10.1126/scisignal.aaw0936. PubMed DOI
Aspartate-glutamate carrier 2 (citrin): a role in glucose and amino acid metabolism in the liver
Role of Impaired Glycolysis in Perturbations of Amino Acid Metabolism in Diabetes Mellitus