Polylactide/Polyvinylalcohol-Based Porous Bioscaffold Loaded with Gentamicin for Wound Dressing Applications
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
RP/CPS/2020/002
Ministry of Education, Youth, and Sports of the Czech Republic
IGA/CPS/2020/002
Internal Grant Agency of TBU in Zlin
PubMed
33802770
PubMed Central
PMC8002437
DOI
10.3390/polym13060921
PII: polym13060921
Knihovny.cz E-resources
- Keywords
- Polylactide, additives, porous bioscaffolds, sustained release, thermal treatment, wound dressing,
- Publication type
- Journal Article MeSH
This study explores the feasibility of modifying the surface liquid spraying method to prepare porous bioscaffolds intended for wound dressing applications. For this purpose, gentamicin sulfate was loaded into polylactide-polyvinyl alcohol bioscaffolds as a highly soluble (hygroscopic) model drug for in vitro release study. Moreover, the influence of inorganic salts including NaCl (10 g/L) and KMnO4 (0.4 mg/L), and post-thermal treatment (T) (80 °C for 2 min) on the properties of the bioscaffolds were studied. The bioscaffolds were characterized by scanning electron microscopy, Fourier Transform infrared spectroscopy, and differential scanning calorimetry. In addition, other properties including porosity, swelling degree, water vapor transmission rate, entrapment efficiency, and the release of gentamicin sulfate were investigated. Results showed that high concentrations of NaCl (10 g/L) in the aqueous phase led to an increase of around 68% in the initial burst release due to the increase in porosity. In fact, porosity increased from 68.1 ± 1.2 to 94.1 ± 1.5. Moreover, the thermal treatment of the Polylactide-polyvinyl alcohol/NaCl (PLA-PVA/NaCl) bioscaffolds above glass transition temperature (Tg) reduced the initial burst release by approximately 11% and prolonged the release of the drug. These results suggest that thermal treatment of polymer above Tg can be an efficient approach for a sustained release.
See more in PubMed
Boateng J.S., Matthews K.H., Stevens H.N., Eccleston G.M. Wound Healing Dressings and Drug Delivery Systems: A Review. J. Pharm. Sci. 2008;97:2892–2923. doi: 10.1002/jps.21210. PubMed DOI
Zilberman M., Egozi D., Shemesh M., Keren A., Mazor E., Baranes-Zeevi M., Goldstein N., Berdicevsky I., Gilhar A., Ullmann Y. Hybrid wound dressings with controlled release of antibiotics: Structure-release profile effects and in vivo study in a guinea pig burn model. Acta Biomater. 2015;22:155–163. doi: 10.1016/j.actbio.2015.04.029. PubMed DOI
Lin Z., Wu T., Wang W., Li B., Wang M., Chen L., Xia H., Zhang T. Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound. Int. J. Biol. Macromol. 2019;140:330–342. doi: 10.1016/j.ijbiomac.2019.08.087. PubMed DOI
Shemesh M., Zilberman M. Structure–property effects of novel bioresorbable hybrid structures with controlled release of analgesic drugs for wound healing applications. Acta Biomater. 2014;10:1380–1391. doi: 10.1016/j.actbio.2013.11.025. PubMed DOI
Zou F., Sun X., Wang X. Elastic, hydrophilic and biodegradable poly (1, 8-octanediol-co-citric acid)/polylactic acid nanofibrous membranes for potential wound dressing applications. Polym. Degrad. Stab. 2019;166:163–173. doi: 10.1016/j.polymdegradstab.2019.05.024. DOI
Ghafari R., Scaffaro R., Maio A., Gulino E.F., Re G.L., Jonoobi M. Processing-structure-property relationships of electrospun PLA-PEO membranes reinforced with enzymatic cellulose nanofibers. Polym. Test. 2020;81:106182. doi: 10.1016/j.polymertesting.2019.106182. DOI
Zhang Y., Wu X., Han Y., Mo F., Duan Y., Li S. Novel thymopentin release systems prepared from bioresorbable PLA–PEG–PLA hydrogels. Int. J. Pharm. 2010;386:15–22. doi: 10.1016/j.ijpharm.2009.10.045. PubMed DOI
Gomaa S.F., Madkour T.M., Moghannem S., El-Sherbiny I.M. New polylactic acid/ cellulose acetate-based antimicrobial interactive single dose nanofibrous wound dressing mats. Int. J. Biol. Macromol. 2017;105:1148–1160. doi: 10.1016/j.ijbiomac.2017.07.145. PubMed DOI
Park J.-Y., Lee I.-H. Controlled release of ketoprofen from electrospun porous polylactic acid (PLA) nanofibers. J. Polym. Res. 2011;18:1287–1291. doi: 10.1007/s10965-010-9531-0. DOI
Inphonlek S., Niamsiri N., Sunintaboon P., Sirisinha C. Chitosan/xanthan gum porous scaffolds incorporated with in-situ-formed poly(lactic acid) particles: Their fabrication and ability to adsorb anionic compounds. Colloids Surf. A Physicochem. Eng. Asp. 2020;603:125263. doi: 10.1016/j.colsurfa.2020.125263. DOI
Bi H., Feng T., Li B., Han Y. In Vitro and In Vivo Comparison Study of Electrospun PLA and PLA/PVA/SA Fiber Membranes for Wound Healing. Polymers. 2020;12:839. doi: 10.3390/polym12040839. PubMed DOI PMC
Liu Y., Wei H., Wang Z., Li Q., Tian N. Simultaneous Enhancement of Strength and Toughness of PLA Induced by Miscibility Variation with PVA. Polymers. 2018;10:1178. doi: 10.3390/polym10101178. PubMed DOI PMC
Augustine R., Zahid A.A., Hasan A., Wang M., Webster T.J. CTGF loaded electrospun dual porous core-shell membrane for diabetic wound healing. Int. J. Nanomed. 2019;14:8573. doi: 10.2147/IJN.S224047. PubMed DOI PMC
Ribba L., Tamayo L., Flores M., Riveros A., Kogan M.J., Cerda E., Goyanes S. Asymmetric biphasic hydrophobic/hydrophilic poly (lactic acid)–polyvinyl alcohol meshes with moisture control and noncytotoxic effects for wound dressing applications. J. Appl. Polym. Sci. 2019;136:47369. doi: 10.1002/app.47369. DOI
Bhattarai R.S., Das A., Alzhrani R.M., Kang D., Bhaduri S.B., Boddu S.H. Comparison of electrospun and solvent cast polylactic acid (PLA)/poly (vinyl alcohol)(PVA) inserts as potential ocular drug delivery vehicles. Mater. Sci. Eng. C. 2017;77:895–903. doi: 10.1016/j.msec.2017.03.305. PubMed DOI
Cardea S., Baldino L., Scognamiglio M., Reverchon E. 3D PLLA/Ibuprofen composite scaffolds obtained by a supercritical fluids assisted process. J. Mater. Sci. Mater. Med. 2014;25:989–998. doi: 10.1007/s10856-013-5130-z. PubMed DOI
Sujka W., Draczynski Z., Kolesinska B., Latanska I., Jastrzebski Z., Rybak Z., Zywicka B. Influence of Porous Dressings Based on Butyric-Acetic Chitin Co-Polymer on Biological Processes In Vitro and In Vivo. Materials. 2019;12:970. doi: 10.3390/ma12060970. PubMed DOI PMC
Tang H., Xu N., Meng J., Wang C., Nie S.F., Pan W.S. Application of a novel approach to prepare biodegradable polylactic-co-glycolic acid microspheres: Surface liquid spraying. Yakugaku Zasshi. 2007;127:1851–1862. doi: 10.1248/yakushi.127.1851. PubMed DOI
Tang H., Xu N., Meng J., Wang C., Nie S.F., Pan W. Optimization of a novel method: Surface liquid spraying to prepare poly (d, l-lactide-co-glycolide) microspheres using central composite design experiment. J. Anal. Bio-Sci. 2008;31:283–290.
Qian L., Zhang H. Controlled freezing and freeze drying: A versatile route for porous and micro--/nano--structured materials. J. Chem. Technol. Biotechnol. 2011;86:172–184. doi: 10.1002/jctb.2495. DOI
do Vale Morais A.R., do Nascimento Alencar É., Júnior F.H.X., De Oliveira C.M., Marcelino H.R., Barratt G., Fessi H., Do Egito E.S.T., Elaissari A. Freeze-drying of emulsified systems: A review. Int. J. Pharm. 2016;503:102–114. doi: 10.1016/j.ijpharm.2016.02.047. PubMed DOI
Ali M., Walboomers X.F., Jansen J.A., Yang F. Influence of formulation parameters on encapsulation of doxycycline in PLGA microspheres prepared by double emulsion technique for the treatment of periodontitis. J. Drug Deliv. Sci. Technol. 2019;52:263–271. doi: 10.1016/j.jddst.2019.04.031. DOI
Molavi F., Barzegar-Jalali M., Hamishehkar H. Polyester based polymeric nano and microparticles for pharmaceutical purposes: A review on formulation approaches. J. Control. Release. 2020;320:265–282. doi: 10.1016/j.jconrel.2020.01.028. PubMed DOI
Dinarvand R., Moghadam S.H., Sheikhi A., Atyabi F. Effect of surfactant HLB and different formulation variables on the properties of poly-D,L-lactide microspheres of naltrexone prepared by double emulsion technique. J. Microencapsul. 2005;22:139–151. doi: 10.1080/02652040400026392. PubMed DOI
Yin W., Yates M. Encapsulation and sustained release from biodegradable microcapsules made by emulsification/freeze drying and spray/freeze drying. J. Colloid Interface Sci. 2009;336:155–161. doi: 10.1016/j.jcis.2009.03.065. PubMed DOI
Ong Y.X.J., Lee L.Y., Davoodi P., Wang C.H. Production of drug-releasing biodegradable microporous scaffold using a two-step micro-encapsulation/supercritical foaming process. J. Supercrit. Fluids. 2018;133:263–269. doi: 10.1016/j.supflu.2017.10.018. DOI
Pistel K.F., Kissel T. Effects of salt addition on the microencapsulation of proteins using W/O/W double emulsion technique. J. Microencapsul. 2000;17:467–483. PubMed
Azarmi S., Ghaffari F., Löbenberg R., Nokhodchi A. Mechanistic evaluation of the effect of thermal-treating on Eudragit RS matrices. Il Farm. 2005;60:925–930. doi: 10.1016/j.farmac.2005.07.009. PubMed DOI
Billa N., Yuen K.-H., Peh K.-K. Diclofenac Release from Eudragit-Containing Matrices and Effects of Thermal Treatment. Drug Dev. Ind. Pharm. 1998;24:45–50. doi: 10.3109/03639049809082351. PubMed DOI
Azarmi S., Farid J., Nokhodchi A., Bahari-Saravi S.M., Valizadeh H. Thermal treating as a tool for sustained release of indomethacin from Eudragit RS and RL matrices. Int. J. Pharm. 2002;246:171–177. doi: 10.1016/S0378-5173(02)00378-2. PubMed DOI
Castro A.G., Löwik D.W., van Steenbergen M.J., Jansen J.A., van den Beucken J.J., Yang F. Incorporation of simvastatin in PLLA membranes for guided bone regeneration: Effect of thermal treatment on simvastatin release. RSC Adv. 2018;8:28546–28554. doi: 10.1039/C8RA04397C. PubMed DOI PMC
Delgado-Enciso I., Madrigal-Perez V.M., Lara-Esqueda A., Diaz-Sanchez M.G., Guzman-Esquivel J., Rosas-Vizcaino L.E., Soriano Hernández A.D. Topical 5% potassium permanganate solution accelerates the healing process in chronic diabetic foot ulcers. Biomed. Rep. 2018;8:156–159. doi: 10.3892/br.2018.1038. PubMed DOI PMC
Hollingworth H. Professional concerns in wound care: A discussion of questionable practice recorded by nurses. Br. J. Community Nurs. 2002;7(Suppl. 2):36–42. doi: 10.12968/bjcn.2002.7.Sup2.12980. PubMed DOI
Amini Moghaddam M., Stloukal P., Kucharczyk P., Tow-Swiatek A., Garbacz T., Pummerova M., Klepka T., Sedlařík V. Microcellular antibacterial polylactide-based systems prepared by additive extrusion with ALUM. Polym. Adv. Technol. 2019;30:2100–2108. doi: 10.1002/pat.4643. DOI
Gonzaga V.D.A., Poli A.L., Gabriel J.S., Tezuka D.Y., Valdes T.A., Leitão A., Rodero C.F., Bauab T.M., Chorilli M., Schmitt C.C. Chitosan-laponite nanocomposite scaffolds for wound dressing application. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020;108:1388–1397. doi: 10.1002/jbm.b.34487. PubMed DOI
Cai N., Li C., Han C., Luo X., Shen L., Xue Y., Yu F. Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application. Appl. Surf. Sci. 2016;369:492–500. doi: 10.1016/j.apsusc.2016.02.053. DOI
Kavoosi G., Dadfar S.M.M., Purfard A.M. Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. J. Food Sci. 2013;78:E244–E250. doi: 10.1111/1750-3841.12015. PubMed DOI
De Cicco F., Porta A., Sansone F., Aquino R.P., Del Gaudio P. Nanospray technology for an in situ gelling nanoparticulate powder as a wound dressing. Int. J. Pharm. 2014;473:30–37. doi: 10.1016/j.ijpharm.2014.06.049. PubMed DOI
Adeli H., Khorasani M.T., Parvazinia M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: Fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int. J. Biol. Macromol. 2019;122:238–254. doi: 10.1016/j.ijbiomac.2018.10.115. PubMed DOI
Motiei M., Sedlařík V., Lucia L.A., Fei H., Münster L. Stabilization of chitosan-based polyelectrolyte nanoparticle cargo delivery biomaterials by a multiple ionic cross-linking strategy. Carbohydr. Polym. 2020;231:115709. doi: 10.1016/j.carbpol.2019.115709. PubMed DOI
Smelá D., Pechová P., Komprda T., Klejdus B., Kubán V. Chromatographic determination of biogenic amines in meat products during fermentation and long-term storage. Chem. Listy. 2004;98 doi: 10.17221/3495-CJFS. DOI
Li T.T., Zhang Y., Ling L., Lin M.C., Wang Y., Wu L., Lin J.H., Lou C.W. Manufacture and characteristics of HA-Electrodeposited polylactic acid/polyvinyl alcohol biodegradable braided scaffolds. J. Mech. Behav. Biomed. Mater. 2020;103:103555. doi: 10.1016/j.jmbbm.2019.103555. PubMed DOI
Li T.T., Ling L., Lin M.C., Jiang Q., Lin Q., Lin J.H., Lou C.W. Properties and Mechanism of Hydroxyapatite Coating Prepared by Electrodeposition on a Braid for Biodegradable Bone Scaffolds. Nanomaterials. 2019;9:679. doi: 10.3390/nano9050679. PubMed DOI PMC
Abdullah O.G., Aziz S.B., Rasheed M.A. Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte. Results Phys. 2016;6:1103–1108. doi: 10.1016/j.rinp.2016.11.050. DOI
Hassan R.M., Abd-Alla M.A. New coordination polymers. Part 1.—Novel synthesis of poly (vinyl ketone) and characterization as chelating agent. J. Mater. Chem. 1992;2:609–611. doi: 10.1039/JM9920200609. DOI
Ali H.E. A novel optical limiter and UV–Visible filters made of Poly (vinyl alcohol)/KMnO4 polymeric films on glass-based substrate. J. Mater. Sci. Mater. Electron. 2019;30:7043–7053. doi: 10.1007/s10854-019-01021-9. DOI
Dai L., Ukai K., Shaheen S.M., Yamaura K. Gelation of a new hydrogel system of atactic-poly(vinyl alcohol)/NaCl/H2O. Polym. Int. 2002;51:715–720. doi: 10.1002/pi.951. DOI
Yang H., Xu S., Jiang L., Dan Y. Thermal decomposition behavior of poly (vinyl alcohol) with different hydroxyl content. J. Macromol. Sci. Part B. 2012;51:464–480. doi: 10.1080/00222348.2011.597687. DOI
Zhang D., Zhou W., Wei B., Wang X., Tang R., Nie J., Wang J. Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. Carbohydr. Polym. 2015;125:189–199. doi: 10.1016/j.carbpol.2015.02.034. PubMed DOI
Doménech-Carbó M.T., Yusá-Marco D.J., Bitossi G., Silva M.F., Mas-Barberá X., Osete-Cortina L. Study of ageing of ketone resins used as picture varnishes by FTIR spectroscopy, UV–Vis spectrophotometry, atomic force microscopy and scanning electron microscopy X-ray microanalysis. Anal. Bioanal. Chem. 2008;391:1351–1359. doi: 10.1007/s00216-008-1864-8. PubMed DOI
Daoud S., Bou-Maroun E., Dujourdy L., Waschatko G., Billecke N., Cayot P. Fast and direct analysis of oxidation levels of oil-in-water emulsions using ATR-FTIR. Food Chem. 2019;293:307–314. doi: 10.1016/j.foodchem.2019.05.005. PubMed DOI
Chelliah A., Subramaniam M., Gupta R., Gupta A. Evaluation on the thermo-oxidative degradation of PET using prodegradant additives. Indian J. Sci. Technol. 2017;10:2–5. doi: 10.17485/ijst/2017/v10i6/111212. DOI
Omelczuk M.O., McGinity J.W. The Influence of Thermal Treatment on the Physical-Mechanical and Dissolution Properties of Tablets Containing Poly(DL-Lactic Acid) Pharm. Res. 1993;10:542–548. doi: 10.1023/A:1018993818206. PubMed DOI
Yin H.M., Qian J., Zhang J., Lin Z.F., Li J.S., Xu J.Z., Li Z.M. Engineering Porous Poly(lactic acid) Scaffolds with High Mechanical Performance via a Solid State Extrusion/Porogen Leaching Approach. Polymers. 2016;8:213. doi: 10.3390/polym8060213. PubMed DOI PMC
Sabino M.A. Oxidation of polycaprolactone to induce compatibility with other degradable polyesters. Polym. Degrad. Stab. 2007;92:986–996. doi: 10.1016/j.polymdegradstab.2007.03.010. DOI
Stocco E., Barbon S., Grandi F., Gamba P.G., Borgio L., Del Gaudio C., Grandi C. Partially oxidized polyvinyl alcohol as a promising material for tissue engineering. J. Tissue Eng. Regen. Med. 2017;11:2060–2070. doi: 10.1002/term.2101. PubMed DOI
Ranganath M., Patil R.V., Lobo B. Morphological modifications in potassium permanganate doped poly (vinyl alcohol) films; Proceedings of the International Workshop on Applications of Nanotechnology to Energy, Environment and Biotechnology (NANOEEB); Karnataka, India. 14–16 December 2010.
Poonguzhali R., Basha S.K., Kumari V.S. Novel asymmetric chitosan/PVP/nanocellulose wound dressing: In vitro and in vivo evaluation. Int. J. Biol. Macromol. 2018;112:1300–1309. doi: 10.1016/j.ijbiomac.2018.02.073. PubMed DOI
Hasanzadeh D., Ghaffari S., Monajjemzadeh F., Al-Hallak M.K., Soltani G., Azarmi S. Thermal Treating of Acrylic Matrices as a Tool for Controlling Drug Release. Chem. Pharm. Bull. 2009;57:1356–1362. doi: 10.1248/cpb.57.1356. PubMed DOI
Ungaro F., De Rosa G., Miro A., Quaglia F., La Rotonda M.I. Cyclodextrins in the production of large porous particles: Development of dry powders for the sustained release of insulin to the lungs. Eur. J. Pharm. Sci. 2006;28:423–432. doi: 10.1016/j.ejps.2006.05.005. PubMed DOI
Archana D., Dutta J., Dutta P.K. Evaluation of chitosan nano dressing for wound healing: Characterization, in vitro and in vivo studies. Int. J. Biol. Macromol. 2013;57:193–203. doi: 10.1016/j.ijbiomac.2013.03.002. PubMed DOI
Pantani R., Sorrentino A. Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym. Degrad. Stab. 2013;98:1089–1096. doi: 10.1016/j.polymdegradstab.2013.01.005. DOI
Ivanets A.I., Prozorovich V.G., Krivoshapkina E.F., Kuznetsova T.F., Krivoshapkin P.V., Katsoshvili L.L. Physicochemical properties of manganese oxides obtained via the sol–gel method: The reduction of potassium permanganate by polyvinyl alcohol. Russ. J. Phys. Chem. A. 2017;91:1486–1492. doi: 10.1134/S0036024417080143. DOI
McMurry J.E. Organic Chemistry. Cengage Learning; Boston, MA, USA: 2015.
Koosehgol S., Ebrahimian-Hosseinabadi M., Alizadeh M., Zamanian A. Preparation and characterization of in situ chitosan/polyethylene glycol fumarate/thymol hydrogel as an effective wound dressing. Mater. Sci. Eng. C. 2017;79:66–75. doi: 10.1016/j.msec.2017.05.001. PubMed DOI
Akhavan-Kharazian N., Izadi-Vasafi H. Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications. Int. J. Biol. Macromol. 2019;133:881–891. doi: 10.1016/j.ijbiomac.2019.04.159. PubMed DOI
Alippilakkotte S., Kumar S., Sreejith L. Fabrication of PLA/Ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications. Colloids Surf. A Physicochem. Eng. Asp. 2017;529:771–782. doi: 10.1016/j.colsurfa.2017.06.066. DOI
Khorasani M.T., Joorabloo A., Moghaddam A., Shamsi H., MansooriMoghadam Z. Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int. J. Biol. Macromol. 2018;114:1203–1215. doi: 10.1016/j.ijbiomac.2018.04.010. PubMed DOI
Al-Maaieh A., Flanagan D.R. Salt and cosolvent effects on ionic drug loading into microspheres using an O/W method. J. Control. Release. 2001;70:169–181. doi: 10.1016/S0168-3659(00)00347-3. PubMed DOI
Al-Sokanee Z.N., Toabi A.A.H., Al-Assadi M.J., Alassadi E.A. The Drug Release Study of Ceftriaxone from Porous Hydroxyapatite Scaffolds. AAPS PharmSciTech. 2009;10:772–779. doi: 10.1208/s12249-009-9265-7. PubMed DOI PMC
Zare M., Mobedi H., Barzin J., Mivehchi H., Jamshidi A., Mashayekhi R. Effect of additives on release profile of leuprolide acetate in an in situ forming controlled-release system: In vitro study. J. Appl. Polym. Sci. 2008;107:3781–3787. doi: 10.1002/app.27520. DOI
Javadzadeh Y., Musaalrezaei L., Nokhodchi A. Liquisolid technique as a new approach to sustain propranolol hydrochloride release from tablet matrices. Int. J. Pharm. 2008;362:102–108. doi: 10.1016/j.ijpharm.2008.06.022. PubMed DOI
Tamboli V., Mishra G.P., Mitra A.K. Novel pentablock copolymer (PLA–PCL–PEG–PCL–PLA)-based nanoparticles for controlled drug delivery: Effect of copolymer compositions on the crystallinity of copolymers and in vitro drug release profile from nanoparticles. Colloid Polym. Sci. 2013;291:1235–1245. doi: 10.1007/s00396-012-2854-0. PubMed DOI PMC
Antibacterial Porous Systems Based on Polylactide Loaded with Amikacin