Effects of histidine supplementation on amino acid metabolism in rats
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
31852202
PubMed Central
PMC8565950
DOI
10.33549/physiolres.934296
PII: 934296
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny metabolismus MeSH
- histidin aplikace a dávkování MeSH
- játra metabolismus MeSH
- náhodné rozdělení MeSH
- potkani Wistar MeSH
- potravní doplňky MeSH
- proteasomový endopeptidasový komplex metabolismus MeSH
- svaly metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- histidin MeSH
- proteasomový endopeptidasový komplex MeSH
Histidine (HIS) is investigated for therapy of various disorders and as a nutritional supplement to enhance muscle performance. We examined effects of HIS on amino acid and protein metabolism. Rats consumed HIS in a drinking water at a dose of 0.5 g/l (low HIS), 2 g/l (high HIS) or 0 g/l (control) for 4 weeks. At the end of the study, the animals were euthanized and blood plasma, liver, soleus (SOL), tibialis (TIB), and extensor digitorum longus (EDL) muscles analysed. HIS supplementation increased food intake, body weight and weights and protein contents of the liver and kidneys, but not muscles. In blood plasma there were increases in glucose, urea, and several amino acids, particularly alanine, proline, aspartate, and glutamate and in high HIS group, ammonia was increased. The main findings in the liver were decreased concentrations of methionine, aspartate, and glycine and increased alanine. In muscles of HIS-consuming animals increased alanine and glutamine. In high HIS group (in SOL and TIB) increased chymotrypsin-like activity of proteasome (indicates increased proteolysis); in SOL decreased anserine (beta-alanyl-N1-methylhistidine). We conclude that HIS supplementation increases ammonia production, alanine and glutamine synthesis in muscles, affects turnover of proteins and HIS-containing peptides, and increases requirements for glycine and methionine.
Zobrazit více v PubMed
ANTHONY TG, GIETZEN DW. Detection of amino acid deprivation in the central nervous system. Curr Opin Clin Nutr Metab Care. 2013;16:96–101. doi: 10.1097/MCO.0b013e32835b618b. PubMed DOI
BILLINGS RE, NOKER PE, TEPHLY TR. The role of methionine in regulating folate-dependent reactions in isolated rat hepatocytes. Arch Biochem Biophys. 1981;208:108–120. doi: 10.1016/0003-9861(81)90129-6. PubMed DOI
BLANCQUAERT L, EVERAERT I, MISSINNE M, BAGUET A, STEGEN S, VOLKAERT A, PETROVIC M, VERVAET C, ACHTEN E, De MAEYER M, De HENAUW S, DERAVE W. Effects of histidine and β-alanine supplementation on human muscle carnosine storage. Med Sci Sports Exerc. 2017;49:602–609. doi: 10.1249/MSS.0000000000001213. PubMed DOI
BOLDYREV AA, ALDINI G, DERAVE W. Physiology and pathophysiology of carnosine. Physiol Rev. 2013;93:1803–1845. doi: 10.1152/physrev.00039.2012. PubMed DOI
BROSNAN JT. Glutamate at the interface between amino acid and carbohydrate metabolism. J Nutr. 2000;130:988S–990S. doi: 10.1093/jn/130.4.988S. PubMed DOI
CLEMMESEN JO, KONDRUP J, OTT P. Splanchnic and leg exchange of amino acids and ammonia in acute liver failure. Gastroenterology. 2000;118:1131–1139. doi: 10.1016/S0016-5085(00)70366-0. PubMed DOI
CYNOBER L. Metabolism of dietary glutamate in adults. Ann Nutr Metab 73: Suppl. 2018;5:5–14. doi: 10.1159/000494776. PubMed DOI
DAVULURI G, ALLAWY A, THAPALIYA S, RENNISON JH, SINGH D, KUMAR A, SANDLERS Y, Van WAGONER DR, FLASK CA, HOPPEL C, KASUMOV T, DASARATHY S. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress. J Physiol. 2016;594:7341–7360. doi: 10.1113/JP272796. PubMed DOI PMC
FELL D, STEELE RD. Effect of methionine on in vivo histidine metabolism in rats. J Nutr. 1983;113:860–866. doi: 10.1093/jn/113.4.860. PubMed DOI
GIRARD G, BUTTERWORTH RF. Effect of portacaval anastomosis on glutamine synthetase activities in liver, brain, and skeletal muscle. Dig Dis Sci. 1992;37:1121–1126. doi: 10.1007/BF01300297. PubMed DOI
GOMES-MARCONDES MC, TISDALE MJ. Induction of protein catabolism and the ubiquitin-proteasome pathway by mild oxidative stress. Cancer Lett. 2002;180:69–74. doi: 10.1016/S0304-3835(02)00006-X. PubMed DOI
GOTO K, KASAOKA S, TAKIZAWA M, OGAWA M, TSUCHIYA T, NAKAJIMA S. Bitter taste and blood glucose are not involved in the suppressive effect of dietary histidine on food intake. Neurosci Lett. 2007;420:106–109. doi: 10.1016/j.neulet.2007.03.074. PubMed DOI
HOLECEK M, SPRONGL L, TICHÝ M. Effect of hyperammonemia on leucine and protein metabolism in rats. Metabolism. 2000;49:1330–1334. doi: 10.1053/meta.2000.9531. PubMed DOI
HOLECEK M, KANDAR R, SISPERA L, KOVARIK M. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: different sensitivity of red and white muscle. Amino Acids. 2011;40:575–584. doi: 10.1007/s00726-010-0679-z. PubMed DOI
HOLECEK M, KOVARIK M. Alterations in protein metabolism and amino acid concentrations in rats fed by a high-protein (casein-enriched) diet - effect of starvation. Food Chem Toxicol. 2011;49:3336–3342. doi: 10.1016/j.fct.2011.09.016. PubMed DOI
HOLECEK M, SISPERA L. Glutamine deficiency in extracellular fluid exerts adverse effects on protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats. Amino Acids. 2014;46:1377–1384. doi: 10.1007/s00726-014-1701-7. PubMed DOI
HOLEČEK M, MIČUDA S. Amino acid concentrations and protein metabolism of two types of rat skeletal muscle in postprandial state and after brief starvation. Physiol Res. 2017;66:959–967. PubMed
HOLEČEK M, VODENIČAROVOVÁ M. Effects of beta-hydroxy-beta-methylbutyrate in partially hepatectomized rats. Physiol Res. 2018;67:741–751. doi: 10.33549/physiolres.933861. PubMed DOI
JOHNSON AW, BERRINGTON JM, WALKER I, MANNING A, LOSOWSKY MS. Measurement of the transfer of the nitrogen moiety of intestinal lumen glutamic acid in man after oral ingestion of l-[15N]glutamic acid. Clin Sci (Lond) 1988;75:499–502. doi: 10.1042/cs0750499. PubMed DOI
MELÉNDEZ-HEVIA E, De PAZ-LUGO P, CORNISH-BOWDEN A, CÁRDENAS ML. A weak link in metabolism: the metabolic capacity for glycine biosynthesis does not satisfy the need for collagen synthesis. J Biosci. 2009;34:853–872. doi: 10.1007/s12038-009-0100-9. PubMed DOI
KASAOKA S, TSUBOYAMA-KASAOKA N, KAWAHARA Y, INOUE S, TSUJI M, EZAKI O, KATO H, TSUCHIYA T, OKUDA H, NAKAJIMA S. Histidine supplementation suppresses food intake and fat accumulation in rats. Nutrition. 2004;20:991–996. doi: 10.1016/j.nut.2004.08.006. PubMed DOI
KLIN Y, ZLOTNIK A, BOYKO M, OHAYON S, SHAPIRA Y, TEICHBERG V. Distribution of radiolabeled l-glutamate and d-aspartate from blood into peripheral tissues in naive rats: significance for brain neuroprotection. Biochem Biophys Res Commun. 2010;399:694–698. doi: 10.1016/j.bbrc.2010.07.144. PubMed DOI
LEE YT, HSU CC, LIN MH, LIU KS, YIN MC. Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation. Eur J Pharmacol. 2005;513:145–150. doi: 10.1016/j.ejphar.2005.02.010. PubMed DOI
LIU WH, LIU TC, YIN MC. Beneficial effects of histidine and carnosine on ethanol-induced chronic liver injury. Food Chem Toxicol. 2008;46:1503–1509. doi: 10.1016/j.fct.2007.12.013. PubMed DOI
MUTHNY T, KOVARIK M, SISPERA L, TILSER I, HOLECEK M. Protein metabolism in slow- and fast-twitch skeletal muscle during turpentine-induced inflammation. Int J Exp Pathol. 2008;89:64–71. doi: 10.1111/j.1365-2613.2007.00553.x. PubMed DOI PMC
NEWSHOLME E, HARDY G. Supplementation of diets with nutritional pharmaceuticals. Nutrition. 1997;13:837–839. doi: 10.1016/S0899-9007(97)00253-0. PubMed DOI
SASAHARA I, FUJIMURA N, NOZAWA Y, FURUHATA Y, SATO H. The effect of histidine on mental fatigue and cognitive performance in subjects with high fatigue and sleep disruption scores. Physiol Behav. 2015;147:238–244. doi: 10.1016/j.physbeh.2015.04.042. PubMed DOI
SUZUKI Y, NAKAO T, MAEMURA H, SATO M, KAMAHARA K, MORIMATSU F, TAKAMATSU K. Carnosine and anserine ingestion enhances contribution of nonbicarbonate buffering. Med Sci Sports Exerc. 2006;38:334–338. PubMed
TAMAKI N, TSUNEMORI F, WAKABAYASHI M, HAMA T. Effect of histidine-free and -excess diets on anserine and carnosine contents in rat gastrocnemius muscle. J Nutr Sci Vitaminol (Tokyo) 1977;23:331–340. doi: 10.3177/jnsv.23.331. PubMed DOI
Serine Metabolism in Health and Disease and as a Conditionally Essential Amino Acid
Side effects of amino acid supplements
Influence of Histidine Administration on Ammonia and Amino Acid Metabolism: A Review
Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement