The relationship between attentional control and injury-related biomechanics in young female volleyball players
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40688397
PubMed Central
PMC12271222
DOI
10.3389/fphys.2025.1622026
PII: 1622026
Knihovny.cz E-zdroje
- Klíčová slova
- Flanker test, LESS, biomechanical risk factors, dynamic balance, reaction time, reactive strength, response inhibition, stiffness,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Adolescent athletes, particularly in team sports, exhibit high risk of non-contact injuries due to the open environment and risk-associated movements. Both biomechanical risk factors and suboptimal neurocognitive function have been linked to such injuries. The association particularly between attentional control and injury-related biomechanics remains unexplored in young athletes. METHODS: Fifty female volleyball players aged 7-15 years participated. Attentional control was assessed using the Eriksen Flanker test (congruent, incongruent reaction times (RT) and interference effect). Biomechanical measures included the Landing Error Scoring System (LESS), single-leg dynamic balance (center of pressure [CoP] movement), leg stiffness during submaximal hopping, and reactive strength index (RSI) during drop jumps. Spearman's rank correlation and partial Spearman's rank correlation (controlling for age) were used. RESULTS: When controlling for age, a moderate positive correlation was observed between the Flanker interference effect and CoP movement in the antero-posterior direction of the non-dominant leg (rs = 0.40, r 2 = 0.16). When age was not accounted for, additional moderate negative correlations were observed between congruent and incongruent reaction times and leg stiffness, as well as with RSI. CONCLUSION: While response inhibition was positively associated with dynamic balance, other biomechanical measures, seemed to follow a more age-dependent developmental trajectory. Among injury-related biomechanical risks, only dynamic balance can thus be considered more related to neurocognitive function. Sport practitioners are advised to consider coupling dynamic stability exercises with neurocognitive evaluations for more holistic prevention of injuries in young athletes.
Department of Community Medicine and Rehabilitation Umeå University Umeå Sweden
Department of Physiotherapy Faculty of Physical Culture Palacký University Olomouc Olomouc Czechia
Department of Sport Faculty of Physical Culture Palacký University Olomouc Olomouc Czechia
Zobrazit více v PubMed
Akoglu H. (2018). User's guide to correlation coefficients. Turkish J. Emerg. Med. 18, 91–93. 10.1016/j.tjem.2018.08.001 PubMed DOI PMC
Almonroeder T. G., Kernozek T., Cobb S., Slavens B., Wang J., Huddleston W. (2018). Cognitive demands influence lower extremity mechanics during a drop vertical jump task in female athletes. J. Orthop. and sports Phys. Ther. 48, 381–387. 10.2519/jospt.2018.7739 PubMed DOI
Arendt E., Dick R. (1995). Knee injury patterns among men and women in collegiate basketball and soccer: NCAA data and review of literature. Am. J. sports Med. 23, 694–701. 10.1177/036354659502300611 PubMed DOI
Avedesian J. M., Forbes W., Covassin T., Dufek J. S. (2022). Influence of cognitive performance on musculoskeletal injury risk: a systematic review. Am. J. sports Med. 50, 554–562. 10.1177/0363546521998081 PubMed DOI
Beerse M., Wu J. (2016). Vertical stiffness and center-of-mass movement in children and adults during single-leg hopping. J. biomechanics 49, 3306–3312. 10.1016/j.jbiomech.2016.08.014 PubMed DOI
Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. 57, 289–300. 10.1111/j.2517-6161.1995.tb02031.x DOI
Bertozzi F., Fischer P. D., Hutchison K. A., Zago M., Sforza C., Monfort S. M. (2023). Associations between cognitive function and ACL injury-related biomechanics: a systematic review. Sports health 15, 855–866. 10.1177/19417381221146557 PubMed DOI PMC
Beutler A. I., De La Motte S. J., Marshall S. W., Padua D. A., Boden B. P. (2009). Muscle strength and qualitative jump-landing differences in Male and female military cadets: the jump-ACL study. J. sports Sci. and Med. 8, 663–671. PubMed PMC
Bram J. T., Magee L. C., Mehta N. N., Patel N. M., Ganley T. J. (2021). Anterior cruciate ligament injury incidence in adolescent athletes: a systematic review and meta-analysis. Am. J. sports Med. 49, 1962–1972. 10.1177/0363546520959619 PubMed DOI
Brent J. L., Myer G. D., Ford K. R., Hewett T. E. (2008). A longitudinal examination of hip abduction strength in adolescent males and females: 731: may 29 9: 45 AM-10: 00 AM. Med. and Sci. Sports and Exerc. 40, S50–s51. 10.1249/01.mss.0000321665.14617.fb DOI
Cobley S., Javet M., Abbott S., Fox-Harding C., Bested S., Hackett D., et al. (2025). Train less and still similarly improve?’maturational growth is more influential than training engagement on performance indices development in volleyball. J. Sports Sci., 1–10. 10.1080/02640414.2025.2496098 PubMed DOI
Culvenor A. G., Alexander B. C., Clark R. A., Collins N. J., Ageberg E., Morris H. G., et al. (2016). Dynamic single-leg postural control is impaired bilaterally following anterior cruciate ligament reconstruction: implications for reinjury risk. J. Orthop. and sports Phys. Ther. 46, 357–364. 10.2519/jospt.2016.6305 PubMed DOI
Dalleau G., Belli A., Viale F., Lacour J.-R., Bourdin M. (2004). A simple method for field measurements of leg stiffness in hopping. Int. J. sports Med. 25, 170–176. 10.1055/s-2003-45252 PubMed DOI
Di Giminiani R., Visca C. (2017). Explosive strength and endurance adaptations in young elite soccer players during two soccer seasons. PLoS One 12, e0171734. 10.1371/journal.pone.0171734 PubMed DOI PMC
Eiling E., Bryant A., Petersen W., Murphy A., Hohmann E. (2007). Effects of menstrual-cycle hormone fluctuations on musculotendinous stiffness and knee joint laxity. Knee Surg. sports Traumatol. Arthrosc. 15, 126–132. 10.1007/s00167-006-0143-5 PubMed DOI
Emery C. A., Cassidy J. D., Klassen T. P., Rosychuk R. J., Rowe B. H. (2005). Effectiveness of a home-based balance-training program in reducing sports-related injuries among healthy adolescents: a cluster randomized controlled trial. Cmaj 172, 749–754. 10.1503/cmaj.1040805 PubMed DOI PMC
Flanagan E. P., Comyns T. M. (2008). The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength and Cond. J. 30, 32–38. 10.1519/ssc.0b013e318187e25b DOI
Ford K. R., Shapiro R., Myer G. D., Van Den Bogert A. J., Hewett T. E. (2010). Longitudinal sex differences during landing in knee abduction in young athletes. Med. Sci. sports Exerc. 42, 1923–1931. 10.1249/MSS.0b013e3181dc99b1 PubMed DOI PMC
Fox A. S., Bonacci J., Mclean S. G., Spittle M., Saunders N. (2014). What is normal? Female lower limb kinematic profiles during athletic tasks used to examine anterior cruciate ligament injury risk: a systematic review. Sports Med. 44, 815–832. 10.1007/s40279-014-0168-8 PubMed DOI
Frost G., Bar-Or O., Dowling J., Dyson K. (2002). Explaining differences in the metabolic cost and efficiency of treadmill locomotion in children. J. sports Sci. 20, 451–461. 10.1080/02640410252925125 PubMed DOI
Gatts S. K., Woollacott M. H. (2006). Neural mechanisms underlying balance improvement with short term Tai chi training. Aging Clin. Exp. Res. 18, 7–19. 10.1007/BF03324635 PubMed DOI
Giesche F., Engeroff T., Wilke J., Niederer D., Vogt L., Banzer W. (2018). Neurophysiological correlates of motor planning and movement initiation in ACL-Reconstructed individuals: a case–control study. BMJ open 8, e023048. 10.1136/bmjopen-2018-023048 PubMed DOI PMC
Gondwe B., Benjaminse A., Heuvelmans P., Nijmeijer E. M., Büchel D., Tak I., et al. (2020). “Neurocognition and sport: an overview of its application to sports injury prevention and rehabilitation,” in Sports injuries: prevention, diagnosis, treatment and rehabilitation. Editors Doral M. N., Karlsson J. (Berlin, Heidelberg: Springer Berlin Heidelberg; ), 1–12.
Granata K., Padua D., Wilson S. (2002). Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks. J. Electromyogr. Kinesiol. 12, 127–135. 10.1016/s1050-6411(02)00003-2 PubMed DOI
Grinberg A., Hanzlíková I., Lehnert M., Abdollahipour R. (2024). The impact of maturation level, not chronological age, on attentional control: implications for sports injury prevention in female adolescents. BMC Sports Sci. Med. Rehabilitation 16, 195. 10.1186/s13102-024-00984-5 PubMed DOI PMC
Grinberg A., Strong A., Buck S., Selling J., Häger C. K. (2022). An obstacle clearance test for evaluating sensorimotor control after anterior cruciate ligament Injury–A kinematic analysis. J. Orthop. Res. 40, 105–116. 10.1002/jor.25016 PubMed DOI
Grosset J.-F., Mora I., Lambertz D., Pérot C. (2007). Changes in stretch reflexes and muscle stiffness with age in prepubescent children. J. Appl. physiology 102, 2352–2360. 10.1152/japplphysiol.01045.2006 PubMed DOI
Hanzlíková I., Athens J., Hébert-Losier K. (2021a). Factors influencing the landing error scoring system: systematic review with meta-analysis. J. Sci. Med. sport 24, 269–280. 10.1016/j.jsams.2020.08.013 PubMed DOI
Hanzlíková I., Hébert-Losier K. (2020). Is the landing error scoring system reliable and valid? A systematic review. Sports Health 12, 181–188. 10.1177/1941738119886593 PubMed DOI PMC
Hanzlíková I., Masters R. S., Hébert-Losier K. (2021b). Propensity for conscious control of movement is unrelated to asymptomatic hypermobility or injury-risk scores.
Hewett T. E., Myer G. D., Ford K. R. (2004). Decrease in neuromuscular control about the knee with maturation in female athletes. Jbjs 86, 1601–1608. 10.2106/00004623-200408000-00001 PubMed DOI
Hewett T. E., Myer G. D., Ford K. R., Heidt R. S., Colosimo A. J., Mclean S. G., et al. (2005). Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am. J. Sports Med. 33, 492–501. 10.1177/0363546504269591 PubMed DOI
Hrysomallis C. (2007). Relationship between balance ability, training and sports injury risk. Sports Med. 37, 547–556. 10.2165/00007256-200737060-00007 PubMed DOI
Hughes G., Dai B. (2021). The influence of decision making and divided attention on lower limb biomechanics associated with anterior cruciate ligament injury: a narrative review. Sports Biomech. 22, 30–45. 10.1080/14763141.2021.1898671 PubMed DOI
Hughes G., Watkins J. (2006). A risk-factor model for anterior cruciate ligament injury. Sports Med. 36, 411–428. 10.2165/00007256-200636050-00004 PubMed DOI
Huxhold O., Li S.-C., Schmiedek F., Lindenberger U. (2006). Dual-tasking postural control: aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res. Bull. 69, 294–305. 10.1016/j.brainresbull.2006.01.002 PubMed DOI
Jarvis P., Turner A., Read P., Bishop C. (2022). Reactive strength index and its associations with measures of physical and sports performance: a systematic review with meta-analysis. Sports Med. 52, 301–330. 10.1007/s40279-021-01566-y PubMed DOI
Khamis H. J., Roche A. F. (1994). Predicting adult stature without using skeletal age: the khamis-roche method. Pediatrics 94, 504–507. 10.1542/peds.94.4.504 PubMed DOI
Laffaye G., Choukou M., Benguigui N., Padulo J. (2016). Age-and gender-related development of stretch shortening cycle during a sub-maximal hopping task. Biol. sport 33, 29–35. 10.5604/20831862.1180169 PubMed DOI PMC
Lambertz D., Mora I., Grosset J.-F., Pérot C. (2003). Evaluation of musculotendinous stiffness in prepubertal children and adults, taking into account muscle activity. J. Appl. physiology 95, 64–72. 10.1152/japplphysiol.00885.2002 PubMed DOI
Lehnert M., Psotta R., Helešic J. (2022). Influence of chronological age on reactive strength in 8-13-year-old female figure skaters. J. Phys. Educ. Sport 22, 724–731. 10.7752/jpes.2022.03091 DOI
Lloyd D. G. (2001). Rationale for training programs to reduce anterior cruciate ligament injuries in Australian football. J. Orthop. and Sports Phys. Ther. 31, 645–654. 10.2519/jospt.2001.31.11.645 PubMed DOI
Lloyd R. S., Oliver J. L., Hughes M. G., Williams C. A. (2009). Reliability and validity of field-based measures of leg stiffness and reactive strength index in youths. J. sports Sci. 27, 1565–1573. 10.1080/02640410903311572 PubMed DOI
Lloyd R. S., Oliver J. L., Hughes M. G., Williams C. A. (2012). Age-related differences in the neural regulation of stretch–shortening cycle activities in Male youths during maximal and sub-maximal hopping. J. Electromyogr. Kinesiol. 22, 37–43. 10.1016/j.jelekin.2011.09.008 PubMed DOI
Loes M. D., Dahlstedt L. J., Thomée R. (2000). A 7‐year study on risks and costs of knee injuries in Male and female youth participants in 12 sports. Scand. J. Med. and Sci. sports 10, 90–97. 10.1034/j.1600-0838.2000.010002090.x PubMed DOI
Markström J. L., Grinberg A., Häger C. K. (2021a). Fear of re-injury following anterior cruciate ligament reconstruction is manifested in muscle activation patterns of single-leg side-hop landings. Phys. Ther. 102, pzab218. 10.1093/ptj/pzab218 PubMed DOI PMC
Markström J. L., Tengman E., Häger C. K. (2021b). Side-hops challenge knee control in the frontal and transversal plane more than hops for distance or height among ACL-Reconstructed individuals. Sports Biomech., 1–18. 10.1080/14763141.2020.1869296 PubMed DOI
Martin-Garetxana I., Hughes J., De Ste Croix M., Larruskain J., Lekue J. A., Ayala F. (2024). Acute pre-and post-competitive soccer match-play changes in neuromuscular factors, physical performance, and muscle response in youth Male players. Sci. Med. Footb. 8, 427–437. 10.1080/24733938.2024.2329273 PubMed DOI
Materne O., Chamari K., Farooq A., Weir A., Hölmich P., Bahr R., et al. (2021). Association of skeletal maturity and injury risk in elite youth soccer players: a 4-season prospective study with survival analysis. Orthop. J. sports Med. 9, 2325967121999113. 10.1177/2325967121999113 PubMed DOI PMC
Mcwethy M., Norte G. E., Bazett-Jones D. M., Murray A. M., Rush J. L. (2025). Cognitive-motor dual-task performance of the landing error scoring system. J. Athl. Train. 60, 21–28. 10.4085/1062-6050-0558.23 PubMed DOI PMC
Mohammadi-Rad S., Salavati M., Ebrahimi-Takamjani I., Akhbari B., Sherafat S., Negahban H., et al. (2016). Dual-tasking effects on dynamic postural stability in athletes with and without anterior cruciate ligament reconstruction. J. sport rehabilitation 25, 324–329. 10.1123/jsr.2015-0012 PubMed DOI
Müller L., Hildebrandt C., Müller E., Oberhoffer R., Raschner C. (2017). Injuries and illnesses in a cohort of elite youth alpine ski racers and the influence of biological maturity and relative age: a two-season prospective study. Open access J. sports Med. 8, 113–122. 10.2147/OAJSM.S133811 PubMed DOI PMC
Myer G. D., Faigenbaum A. D., Ford K. R., Best T. M., Bergeron M. F., Hewett T. E. (2011). When to initiate integrative neuromuscular training to reduce sports-related injuries and enhance health in youth? Curr. Sports Med. Rep. 10, 155–166. 10.1249/JSR.0b013e31821b1442 PubMed DOI PMC
Myer G. D., Ford K. R., Mclean S. G., Hewett T. E. (2006). The effects of plyometric PubMed DOI
O’brien T. D., Reeves N. D., Baltzopoulos V., Jones D. A., Maganaris C. N. (2010). Muscle–tendon structure and dimensions in adults and children. J. Anat. 216, 631–642. 10.1111/j.1469-7580.2010.01218.x PubMed DOI PMC
Oliver J., Smith P. M. (2010). Neural control of leg stiffness during hopping in boys and men. J. Electromyogr. Kinesiol. 20, 973–979. 10.1016/j.jelekin.2010.03.011 PubMed DOI
O'sullivan S. B., Schmitz T. J., Fulk G. (2019). Physical rehabilitation. F. A. Davis.
Padua D. A., Distefano L. J., Beutler A. I., De La Motte S. J., Distefano M. J., Marshall S. W. (2015). The landing error scoring system as a screening tool for an anterior cruciate ligament injury–prevention program in elite-youth soccer athletes. J. Athl. Train. 50, 589–595. 10.4085/1062-6050-50.1.10 PubMed DOI PMC
Padua D. A., Marshall S. W., Boling M. C., Thigpen C. A., Garrett Jr W. E., Beutler A. I. (2009). The landing error scoring system (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: the JUMP-ACL study. Am. J. sports Med. 37, 1996–2002. 10.1177/0363546509343200 PubMed DOI
Paterno M. V., Schmitt L. C., Ford K. R., Rauh M. J., Myer G. D., Huang B., et al. (2010). Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am. J. Sports Med. 38, 1968–1978. 10.1177/0363546510376053 PubMed DOI PMC
Piskin D., Benjaminse A., Dimitrakis P., Gokeler A. (2022). Neurocognitive and neurophysiological functions related to ACL injury: a framework for neurocognitive approaches in rehabilitation and return-to-sports tests. Sports Health 14, 549–555. 10.1177/19417381211029265 PubMed DOI PMC
Prieto T. E., Myklebust J. B., Hoffmann R. G., Lovett E. G., Myklebust B. M. (1996). Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans. Biomed. Eng. 43, 956–966. 10.1109/10.532130 PubMed DOI
Raschner C., Platzer H.-P., Patterson C., Werner I., Huber R., Hildebrandt C. (2012). The relationship between ACL injuries and physical fitness in young competitive ski racers: a 10-year longitudinal study. Br. J. sports Med. 46, 1065–1071. 10.1136/bjsports-2012-091050 PubMed DOI
Read P. J., Oliver J. L., De Ste Croix M. B., Myer G. D., Lloyd R. S. (2016). Neuromuscular risk factors for knee and ankle ligament injuries in Male youth soccer players. Sports Med. 46, 1059–1066. 10.1007/s40279-016-0479-z PubMed DOI PMC
Rueda M. R., Fan J., Mccandliss B. D., Halparin J. D., Gruber D. B., Lercari L. P., et al. (2004). Development of attentional networks in childhood. Neuropsychologia 42, 1029–1040. 10.1016/j.neuropsychologia.2003.12.012 PubMed DOI
Salthouse T. A. (2010). Is flanker-based inhibition related to age? Identifying specific influences of individual differences on neurocognitive variables. Brain cognition 73, 51–61. 10.1016/j.bandc.2010.02.003 PubMed DOI PMC
Shin C. S., Chaudhari A. M., Andriacchi T. P. (2009). The effect of isolated valgus moments on ACL strain during single-leg landing: a simulation study. J. biomechanics 42, 280–285. 10.1016/j.jbiomech.2008.10.031 PubMed DOI PMC
Smith H. C., Johnson R. J., Shultz S. J., Tourville T., Holterman L. A., Slauterbeck J., et al. (2012). A prospective evaluation of the landing error scoring system (LESS) as a screening tool for anterior cruciate ligament injury risk. Am. J. Sports Med. 40, 521–526. 10.1177/0363546511429776 PubMed DOI PMC
Sole G., Hamrén J., Milosavljevic S., Nicholson H., Sullivan S. J. (2007). Test-retest reliability of isokinetic knee extension and flexion. Archives Phys. Med. rehabilitation 88, 626–631. 10.1016/j.apmr.2007.02.006 PubMed DOI
Tamura A., Akasaka K., Otsudo T., Shiozawa J., Toda Y., Yamada K. (2017). Dynamic knee valgus alignment influences impact attenuation in the lower extremity during the deceleration phase of a single-leg landing. PLoS One 12, e0179810. 10.1371/journal.pone.0179810 PubMed DOI PMC
Toumi H., Poumarat G., Best T. M., Martin A., Fairclough J., Benjamin M. (2006). Fatigue and muscle–tendon stiffness after stretch–shortening cycle and isometric exercise. Appl. physiology, Nutr. metabolism 31, 565–572. 10.1139/h06-034 PubMed DOI
Westbrook A. E., Taylor J. B., Nguyen A.-D., Paterno M. V., Ford K. R. (2020). Effects of maturation on knee biomechanics during cutting and landing in young female soccer players. Plos one 15, e0233701. 10.1371/journal.pone.0233701 PubMed DOI PMC
Winter D., Prince F., Patla A. (1996). Interpretation of COM and COP balance control during quiet standing. Gait and Posture 2, 174–175. 10.1016/0966-6362(96)80589-3 DOI
Wittenberg E., Thompson J., Nam C. S., Franz J. R. (2017). Neuroimaging of human balance control: a systematic review. Front. Hum. Neurosci. 11, 170. 10.3389/fnhum.2017.00170 PubMed DOI PMC
Yan Y., Seoyoung P., Seomyeong H., Zhao Y. (2025). The effect of 12-week combined balance and plyometric training on dynamic balance and lower extremity injury risk in college dancers. Front. Physiology 16, 1501828. 10.3389/fphys.2025.1501828 PubMed DOI PMC
Young W. (1995). Laboratory strength assessment of athletes. New Stud. Athlete 10, 88.
Zatsiorsky V. M., Kraemer W. J., Fry A. C. (2020). Science and practice of strength training, Champaign Illinois, USA: Human kinetics.