Lysine: Sources, Metabolism, Physiological Importance, and Use as a Supplement
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
research area METD
Charles University
PubMed
41009362
PubMed Central
PMC12469518
DOI
10.3390/ijms26188791
PII: ijms26188791
Knihovny.cz E-zdroje
- Klíčová slova
- cadaverine, carnitine, desmosine, homoarginine, homocitrulline, lysine–arginine antagonism, saccharopine,
- MeSH
- lidé MeSH
- lysin * metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- potravní doplňky * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- lysin * MeSH
This article provides a comprehensive review and explores the gaps in current knowledge of lysine metabolism in humans and its potential nutritional and therapeutic indications. The first part of this study examines lysine sources, requirements, transport through the plasma membrane, lysine catabolism, and its disorders. The central part is focused on post-translational modifications of lysine in proteins, primarily desmosine formation in elastin, hydroxylation in collagen, covalent bonds with glutamine, methylation, ubiquitination, sumoylation, neddylation, acylation, lactylation, carbamylation, and glycation. Special sections are devoted to using lysine as a substrate for homoarginine and carnitine synthesis and in nutrition and medicine. It is concluded that the identification and detailed knowledge of writers, readers, and erasers of specific post-translational modifications of lysine residues in proteins is needed for a better understanding of the role of lysine in epigenetic regulation. Further research is required to explore the influence of lysine availability on homoarginine formation and how the phenomenon of lysine-arginine antagonism can be used to influence immune and cardiovascular functions and cancer development. Of unique importance is the investigation of the use of lysine in osteoporosis therapy and in reducing the resorption of harmful substances in the kidneys, as well as the therapeutic potential of polylysine and lysine analogs.
Department of Physiology Faculty of Medicine Charles University 500 03 Hradec Králové Czech Republic
Zobrazit více v PubMed
Bressani R., Wilson D., Behar M., Chung M., Scrimshaw N.S. Supplementation of cereal proteins with amino acids. IV. Lysine supplementation of wheat flour fed to young children at different levels of protein intake in the presence and absence of other amino acids. J. Nutr. 1963;79:333–339. doi: 10.1093/jn/79.3.333. PubMed DOI
Gunarathne R., Guan X., Feng T., Zhao Y., Lu J. L-lysine dietary supplementation for childhood and adolescent growth: Promises and precautions. J. Adv. Res. 2025;70:571–586. doi: 10.1016/j.jare.2024.05.014. PubMed DOI PMC
Sindhu R., Supreeth M., Prasad S.K., Thanmaya M. Shuttle between arginine and lysine: Influence on cancer immunonutrition. Amino Acids. 2023;55:1461–1473. doi: 10.1007/s00726-023-03327-9. PubMed DOI
Mailoo V.J., Rampes S. Lysine for herpes simplex prophylaxis: A review of the evidence. Integr. Med. 2017;16:42–46. PubMed PMC
Wu G., Mazzitelli B.A., Quek A.J., Veldman M.J., Conroy P.J., Caradoc-Davies T.T., Ooms L.M., Tuck K.L., Schoenecker J.G., Whisstock J.C., et al. Tranexamic acid is an active site inhibitor of urokinase plasminogen activator. Blood Adv. 2019;3:729–733. doi: 10.1182/bloodadvances.2018025429. PubMed DOI PMC
Estcourt L.J., Desborough M., Brunskill S.J., Doree C., Hopewell S., Murphy M.F., Stanworth S.J. Antifibrinolytics (lysine analogues) for the prevention of bleeding in people with haematological disorders. Cochrane Database Syst. Rev. 2016;3:CD009733. doi: 10.1002/14651858.CD009733.pub3. PubMed DOI PMC
Stagi L., de Forni D., Innocenzi P. Blocking viral infections with lysine-based polymeric nanostructures: A critical review. Biomater. Sci. 2022;10:1904–1919. doi: 10.1039/D2BM00030J. PubMed DOI
Messina V. Nutritional and health benefits of dried beans. Am. J. Clin. Nutr. 2014;100:437S–442S. doi: 10.3945/ajcn.113.071472. PubMed DOI
Millward D.J. The nutritional value of plant-based diets in relation to human amino acid and protein requirements. Proc. Nutr. Soc. 1999;58:249–260. doi: 10.1017/S0029665199000348. PubMed DOI
Friedman M. Chemically Reactive and Unreactive Lysine as an Index of Browning. Diabetes. 1982;31:5–14S. doi: 10.2337/diab.31.3.S5. DOI
Metges C.C. Contribution of microbial amino acids to amino acid homeostasis of the host. J. Nutr. 2000;130:1857S–1864S. doi: 10.1093/jn/130.7.1857S. PubMed DOI
Metges C.C., El-Khoury A.E., Henneman L., Petzke K.J., Grant I., Bedri S., Pereira P.P., Ajami A.M., Fuller M.F., Young V.R. Availability of intestinal microbial lysine for whole body lysine homeostasis in human subjects. Am. J. Physiol. 1999;277:E597–E607. doi: 10.1152/ajpendo.1999.277.4.E597. PubMed DOI
Matthews D.E. Review of Lysine Metabolism with a Focus on Humans. J. Nutr. 2020;150:2548S–2555S. doi: 10.1093/jn/nxaa224. PubMed DOI
Meredith C.N., Wen Z.M., Bier D.M., Matthews D.E., Young V.R. Lysine kinetics at graded lysine intakes in young men. Am. J. Clin. Nutr. 1986;43:787–794. doi: 10.1093/ajcn/43.5.787. PubMed DOI
Chapman K.P., Courtney-Martin G., Moore A.M., Langer J.C., Tomlinson C., Ball R.O., Pencharz P.B. Lysine requirement in parenterally fed postsurgical human neonates. Am. J. Clin. Nutr. 2010;91:958–965. doi: 10.3945/ajcn.2009.28729. PubMed DOI
Huang L., Hogewind-Schoonenboom J.E., de Groof F., Twisk J.W., Voortman G.J., Dorst K., Schierbeek H., Boehm G., Huang Y., Chen C., et al. Lysine requirement of the enterally fed term infant in the first month of life. Am. J. Clin. Nutr. 2011;94:1496–1503. doi: 10.3945/ajcn.111.024166. PubMed DOI
Tomé D., Bos C. Lysine requirement through the human life cycle. J. Nutr. 2007;137:1642S–1645S. doi: 10.1093/jn/137.6.1642S. PubMed DOI
Budiman T., Bamberg E., Koepsell H., Nagel G. Mechanism of electrogenic cation transport by the cloned organic cation transporter 2 from rat. J. Biol. Chem. 2000;275:29413–29420. doi: 10.1074/jbc.M004645200. PubMed DOI
Filho J.C., Bergström J., Stehle P., Fürst P. Simultaneous measurements of free amino acid patterns of plasma, muscle and erythrocytes in healthy human subjects. Clin. Nutr. 1997;16:299–305. doi: 10.1016/S0261-5614(97)80015-5. PubMed DOI
Holecek M., Sispera L. Effects of Arginine Supplementation on Amino Acid Profiles in Blood and Tissues in Fed and Overnight-Fasted Rats. Nutrients. 2016;8:206. doi: 10.3390/nu8040206. PubMed DOI PMC
Fotiadis D., Kanai Y., Palacín M. The SLC3 and SLC7 families of amino acid transporters. Mol. Aspects Med. 2013;34:139–158. doi: 10.1016/j.mam.2012.10.007. PubMed DOI
Bröer S. Intestinal Amino Acid Transport and Metabolic Health. Annu. Rev. Nutr. 2023;43:73–99. doi: 10.1146/annurev-nutr-061121-094344. PubMed DOI
Verrey F., Closs E.I., Wagner C.A., Palacin M., Endou H., Kanai Y. CATs and HATs: The SLC7 family of amino acid transporters. Pflugers Arch. 2004;447:532–542. doi: 10.1007/s00424-003-1086-z. PubMed DOI
Noguchi A., Takahashi T. Overview of symptoms and treatment for lysinuric protein intolerance. J. Hum. Genet. 2019;64:849–858. doi: 10.1038/s10038-019-0620-6. PubMed DOI
Closs E.I., Scheld J.S., Sharafi M., Förstermann U. Substrate supply for nitric-oxide synthase in macrophages and endothelial cells: Role of cationic amino acid transporters. Mol. Pharmacol. 2000;57:68–74. doi: 10.1016/S0026-895X(24)26443-9. PubMed DOI
Pink D.B., Gatrell S.K., Elango R., Turchinsky J., Kiess A.S., Blemings K.P., Dixon W.T., Ball R.O. Lysine α-ketoglutarate reductase, but not saccharopine dehydrogenase, is subject to substrate inhibition in pig liver. Nutr. Res. 2011;31:544–554. doi: 10.1016/j.nutres.2011.06.001. PubMed DOI
Leandro J., Houten S.M. The lysine degradation pathway: Subcellular compartmentalization and enzyme deficiencies. Mol. Genet. Metab. 2020;131:14–22. doi: 10.1016/j.ymgme.2020.07.010. PubMed DOI
Blemings K.P., Crenshaw T.D., Benevenga N.J. Mitochondrial lysine uptake limits hepatic lysine oxidation in rats fed diets containing 5, 20 or 60% casein. J. Nutr. 1998;128:2427–2434. doi: 10.1093/jn/128.12.2427. PubMed DOI
Monné M., Miniero D.V., Daddabbo L., Palmieri L., Porcelli V., Palmieri F. Mitochondrial transporters for ornithine and related amino acids: A review. Amino Acids. 2015;47:1763–1777. doi: 10.1007/s00726-015-1990-5. PubMed DOI
Hallen A., Jamie J.F., Cooper A.J. Lysine metabolism in mammalian brain: An update on the importance of recent discoveries. Amino Acids. 2013;45:1249–1272. doi: 10.1007/s00726-013-1590-1. PubMed DOI PMC
Struys E.A., Jansen E.E., Salomons G.S. Human pyrroline-5-carboxylate reductase (PYCR1) acts on Δ(1)-piperideine-6-carboxylate generating L-pipecolic acid. J. Inherit. Metab. Dis. 2014;37:327–332. doi: 10.1007/s10545-013-9673-4. PubMed DOI
Hallen A., Cooper A.J. Reciprocal Control of Thyroid Binding and the Pipecolate Pathway in the Brain. Neurochem. Res. 2017;42:217–243. doi: 10.1007/s11064-016-2015-9. Erratum in Neurochem. Res. 2017, 42, 1580. PubMed DOI
Kinney C.J., Bloch R.J. µ-Crystallin: A thyroid hormone binding protein. Endocr. Regul. 2021;55:89–102. doi: 10.2478/enr-2021-0011. PubMed DOI PMC
Bouchereau J., Schiff M. Inherited Disorders of Lysine Metabolism: A Review. J. Nutr. 2020;150:2556S–2560S. doi: 10.1093/jn/nxaa112. PubMed DOI
Kölker S., Boy S.P., Heringer J., Müller E., Maier E.M., Ensenauer R., Mühlhausen C., Schlune A., Greenberg C.R., Koeller D.M., et al. Complementary dietary treatment using lysine-free, arginine-fortified amino acid supplements in glutaric aciduria type I—A decade of experience. Mol. Genet. Metab. 2012;107:72–80. doi: 10.1016/j.ymgme.2012.03.021. PubMed DOI
Mills P.B., Struys E., Jakobs C., Plecko B., Baxter P., Baumgartner M., Willemsen M.A., Omran H., Tacke U., Uhlenberg B., et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat. Med. 2006;12:307–309. doi: 10.1038/nm1366. PubMed DOI
Stockler S., Plecko B., Gospe S.M., Jr., Coulter-Mackie M., Connolly M., van Karnebeek C., Mercimek-Mahmutoglu S., Hartmann H., Scharer G., Struijs E., et al. Pyridoxine dependent epilepsy and antiquitin deficiency: Clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol. Genet. Metab. 2011;104:48–60. doi: 10.1016/j.ymgme.2011.05.014. PubMed DOI
Crowther L.M., Mathis D., Poms M., Plecko B. New insights into human lysine degradation pathways with relevance to pyridoxine-dependent epilepsy due to antiquitin deficiency. J. Inherit. Metab. Dis. 2019;42:620–628. doi: 10.1002/jimd.12076. PubMed DOI
Norioka R., Tobisawa S., Nishigori R., Kuhara T., Yazaki M., Nagao M., Ohura T., Takai Y., Funai A., Miyamoto K., et al. Saccharopinuria accompanied by hyperammonemia and hypercitrullinemia presented with elderly-onset epilepsy, progressive cognitive decline, and gait ataxia. Intractable Rare Dis. Res. 2021;10:126–130. doi: 10.5582/irdr.2021.01003. PubMed DOI PMC
Ameen M., Palmer T. Inhibition of urea cycle enzymes by lysine and saccharopine. Biochem. Int. 1987;14:395–400. PubMed
Zhou J., Wang X., Wang M., Chang Y., Zhang F., Ban Z., Tang R., Gan Q., Wu S., Guo Y., et al. The lysine catabolite saccharopine impairs development by disrupting mitochondrial homeostasis. J. Cell Biol. 2019;218:580–597. doi: 10.1083/jcb.201807204. PubMed DOI PMC
Daly M.M., Mirsky A.E. Histones with high lysine content. J. Gen. Physiol. 1955;38:405–413. doi: 10.1085/jgp.38.3.405. PubMed DOI PMC
Malle E., Ibovnik A., Leis H.J., Kostner G.M., Verhallen P.F., Sattler W. Lysine modification of LDL or lipoprotein(a) by 4-hydroxynonenal or malondialdehyde decreases platelet serotonin secretion without affecting platelet aggregability and eicosanoid formation. Arterioscler. Thromb. Vasc. Biol. 1995;15:377–384. doi: 10.1161/01.ATV.15.3.377. PubMed DOI
Hörkkö S., Huttunen K., Kervinen K., Kesäniemi Y.A. Decreased clearance of uraemic and mildly carbamylated low-density lipoprotein. Eur. J. Clin. Investig. 1994;24:105–113. doi: 10.1111/j.1365-2362.1994.tb00974.x. PubMed DOI
Maas M.N., Hintzen J.C.J., Porzberg M.R.B., Mecinović J. Trimethyllysine: From Carnitine Biosynthesis to Epigenetics. Int. J. Mol. Sci. 2020;21:9451. doi: 10.3390/ijms21249451. PubMed DOI PMC
Hyun K., Jeon J., Park K., Kim J. Writing, erasing and reading histone lysine methylations. Exp. Mol. Med. 2017;49:e324. doi: 10.1038/emm.2017.11. PubMed DOI PMC
Gil J., Ramírez-Torres A., Encarnación-Guevara S. Lysine acetylation and cancer: A proteomics perspective. J. Proteom. 2017;150:297–309. doi: 10.1016/j.jprot.2016.10.003. PubMed DOI
Wang R., Sun H., Wang G., Ren H. Imbalance of Lysine Acetylation Contributes to the Pathogenesis of Parkinson’s Disease. Int. J. Mol. Sci. 2020;21:7182. doi: 10.3390/ijms21197182. PubMed DOI PMC
Yeo G.C., Keeley F.W., Weiss A.S. Coacervation of tropoelastin. Adv. Colloid. Interface Sci. 2011;167:94–103. doi: 10.1016/j.cis.2010.10.003. PubMed DOI
Schmelzer C.E.H., Hedtke T., Heinz A. Unique molecular networks: Formation and role of elastin crosslinks. IUBMB Life. 2020;72:842–854. doi: 10.1002/iub.2213. PubMed DOI
Memtsoudis S.G., Starcher B., Ma Y., Buschiazzo V., Urban M.K., Girardi F.P. The utility of urine desmosine as a marker of lung injury in spine surgery. HSS J. 2010;6:160–163. doi: 10.1007/s11420-010-9158-z. PubMed DOI PMC
Zhang J., Lu M., Guan X., Hao J., Li Y., Zhang L., Li C. The Role of Lysyl Oxidase in the Pathological Stage of Atherosclerosis: Structural Stabilizer or Disease Driver? Curr. Atheroscler. Rep. 2025;27:69. doi: 10.1007/s11883-025-01312-z. PubMed DOI
Knott L., Bailey A.J. Collagen crosslinks in mineralizing tissues: A review of their chemistry, function, and clinical relevance. Bone. 1998;22:181–187. doi: 10.1016/S8756-3282(97)00279-2. PubMed DOI
Krane S.M., Kantrowitz F.G., Byrne M., Pinnell S.R., Singer F.R. Urinary excretion of hydroxylysine and its glycosides as an index of collagen degradation. J. Clin. Investig. 1977;59:819–827. doi: 10.1172/JCI108704. PubMed DOI PMC
Simsek B., Karacaer O., Karaca I. Urine products of bone breakdown as markers of bone resorption and clinical usefulness of urinary hydroxyproline: An overview. Chin. Med. J. 2004;117:291–295. PubMed
Tatsukawa H., Takeuchi T., Shinoda Y., Hitomi K. Identification and characterization of substrates crosslinked by transglutaminases in liver and kidney fibrosis. Anal. Biochem. 2020;604:113629. doi: 10.1016/j.ab.2020.113629. PubMed DOI
Lanouette S., Mongeon V., Figeys D., Couture J.F. The functional diversity of protein lysine methylation. Mol. Syst. Biol. 2014;10:724. doi: 10.1002/msb.134974. PubMed DOI PMC
Damgaard R.B. The ubiquitin system: From cell signalling to disease biology and new therapeutic opportunities. Cell Death Differ. 2021;28:423–426. doi: 10.1038/s41418-020-00703-w. PubMed DOI PMC
Foletta V.C., White L.J., Larsen A.E., Léger B., Russell A.P. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch. 2011;461:325–335. doi: 10.1007/s00424-010-0919-9. PubMed DOI
Sahin U., de Thé H., Lallemand-Breitenbach V. Sumoylation in Physiology, Pathology and Therapy. Cells. 2022;11:814. doi: 10.3390/cells11050814. PubMed DOI PMC
Han Z.J., Feng Y.H., Gu B.H., Li Y.M., Chen H. The posttranslational modification, SUMOylation, and cancer (Review) Int. J. Oncol. 2018;52:1081–1094. doi: 10.3892/ijo.2018.4280. PubMed DOI PMC
Zhang S., Yu Q., Li Z., Zhao Y., Sun Y. Protein neddylation and its role in health and diseases. Signal Transduct. Target. Ther. 2024;9:85. doi: 10.1038/s41392-024-01800-9. PubMed DOI PMC
Zou T., Zhang J. Diverse and pivotal roles of neddylation in metabolism and immunity. FEBS J. 2021;288:3884–3912. doi: 10.1111/febs.15584. PubMed DOI
Mu A., Latario C.J., Pickrell L.E., Higgs H.N. Lysine acetylation of cytoskeletal proteins: Emergence of an actin code. J. Cell Biol. 2020;219:e202006151. doi: 10.1083/jcb.202006151. PubMed DOI PMC
Li Y., Cao Q., Hu Y., He B., Cao T., Tang Y., Zhou X.P., Lan X.P., Liu S.Q. Advances in the interaction of glycolytic reprogramming with lactylation. Biomed. Pharmacother. 2024;177:116982. doi: 10.1016/j.biopha.2024.116982. PubMed DOI
Wang Z., Nicholls S.J., Rodriguez E.R., Kummu O., Hörkkö S., Barnard J., Reynolds W.F., Topol E.J., DiDonato J.A., Hazen S.L. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med. 2007;13:1176–1184. doi: 10.1038/nm1637. PubMed DOI
Koeth R.A., Kalantar-Zadeh K., Wang Z., Fu X., Tang W.H., Hazen S.L. Protein carbamylation predicts mortality in ESRD. J. Am. Soc. Nephrol. 2013;24:853–861. doi: 10.1681/ASN.2012030254. PubMed DOI PMC
Parwani K., Mandal P. Role of advanced glycation end products and insulin resistance in diabetic nephropathy. Arch. Physiol. Biochem. 2020;30:1–13. doi: 10.1080/13813455.2020.1797106. PubMed DOI
Adams S., Che D., Qin G., Farouk M.H., Hailong J., Rui H. Novel Biosynthesis, Metabolism and Physiological Functions of L-Homoarginine. Curr. Protein Pept. Sci. 2019;20:184–193. doi: 10.2174/1389203719666181026170049. PubMed DOI
Levin B., Oberholzer V.G., Palmer T. Letter: The high levels of lysine, homocitrulline, and homoarginine found in argininosuccinate synthetase deficiency. Pediatr. Res. 1974;8:857–858. doi: 10.1203/00006450-197410000-00009. PubMed DOI
Cathelineau L., Saudubray J.M., Charpentier C., Polonovski C. Letter: The presence of the homoanalogues of substrates of the urea cycle in the presence of argininosuccinate synthetase deficiency. Pediatr. Res. 1974;8:857. doi: 10.1203/00006450-197410000-00008. PubMed DOI
Karetnikova E.S., Jarzebska N., Markov A.G., Weiss N., Lentz S.R., Rodionov R.N. Is Homoarginine a Protective Cardiovascular Risk Factor? Arterioscler. Thromb. Vasc. Biol. 2019;39:869–875. doi: 10.1161/ATVBAHA.118.312218. PubMed DOI
Koch V., Gruenewald L.D., Gruber-Rouh T., Eichler K., Leistner D.M., Mahmoudi S., Booz C., Bernatz S., D’Angelo T., Albrecht M.H., et al. Homoarginine in the cardiovascular system: Pathophysiology and recent developments. Fundam. Clin. Pharmacol. 2023;37:519–529. doi: 10.1111/fcp.12858. PubMed DOI
Rodionov R.N., Oppici E., Martens-Lobenhoffer J., Jarzebska N., Brilloff S., Burdin D., Demyanov A., Kolouschek A., Leiper J., Maas R., et al. A Novel Pathway for Metabolism of the Cardiovascular Risk Factor Homoarginine by alanine:glyoxylate aminotransferase 2. Sci. Rep. 2016;6:35277. doi: 10.1038/srep35277. PubMed DOI PMC
Pilz S., Meinitzer A., Gaksch M., Grübler M., Verheyen N., Drechsler C., Hartaigh B.Ó., Lang F., Alesutan I., Voelkl J., et al. Homoarginine in the renal and cardiovascular systems. Amino Acids. 2015;47:1703–1713. doi: 10.1007/s00726-015-1993-2. PubMed DOI
Zinellu A., Paliogiannis P., Carru C., Mangoni A.A. Homoarginine and all-cause mortality: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2018;48:e12960. doi: 10.1111/eci.12960. PubMed DOI
Vaz F.M., Wanders R.J. Carnitine biosynthesis in mammals. Biochem. J. 2002;361:417–429. doi: 10.1042/bj3610417. PubMed DOI PMC
Almannai M., Alfadhel M., El-Hattab A.W. Carnitine inborn errors of metabolism. Molecules. 2019;24:3251. doi: 10.3390/molecules24183251. PubMed DOI PMC
Galluccio M., Tripicchio M., Pochini L. The Human OCTN Sub-Family: Gene and Protein Structure, Expression, and Regulation. Int. J. Mol. Sci. 2024;25:8743. doi: 10.3390/ijms25168743. PubMed DOI PMC
Holecek M., Simek J., Zadák Z., Bláha V. Acceleration of the onset of liver regeneration by carnitine in partially hepatectomized rats. Physiol. Bohemoslov. 1989;38:503–508. PubMed
Pooyandjoo M., Nouhi M., Shab-Bidar S., Djafarian K., Olyaeemanesh A. The effect of (L-)carnitine on weight loss in adults: A systematic review and meta-analysis of randomized controlled trials. Obes. Rev. 2016;17:970–976. doi: 10.1111/obr.12436. PubMed DOI
Ferreira G.C., McKenna M.C. L-Carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain. Neurochem. Res. 2017;42:1661–1675. doi: 10.1007/s11064-017-2288-7. PubMed DOI PMC
Sergi G., Pizzato S., Piovesan F., Trevisan C., Veronese N., Manzato E. Effects of acetyl-L-carnitine in diabetic neuropathy and other geriatric disorders. Aging Clin. Exp. Res. 2018;30:133–138. doi: 10.1007/s40520-017-0770-3. PubMed DOI
Wang Z.Y., Liu Y.Y., Liu G.H., Lu H.B., Mao C.Y. l-Carnitine and heart disease. Life Sci. 2018;194:88–97. doi: 10.1016/j.lfs.2017.12.015. PubMed DOI
Weng Y., Zhang S., Huang W., Xie X., Ma Z., Fan Q. Efficacy of L-Carnitine for Dilated Cardiomyopathy: A Meta-Analysis of Randomized Controlled Trials. Biomed. Res. Int. 2021;2021:9491615. doi: 10.1155/2021/9491615. PubMed DOI PMC
El-Hattab A.W., Scaglia F. Disorders of carnitine biosynthesis and transport. Mol. Genet. Metab. 2015;116:107–112. doi: 10.1016/j.ymgme.2015.09.004. PubMed DOI
Crefcoeur L.L., Visser G., Ferdinandusse S., Wijburg F.A., Langeveld M., Sjouke B. Clinical characteristics of primary carnitine deficiency: A structured review using a case-by-case approach. J. Inherit. Metab. Dis. 2022;45:386–405. doi: 10.1002/jimd.12475. PubMed DOI PMC
Fischer M., Hirche F., Kluge H., Eder K. A moderate excess of dietary lysine lowers plasma and tissue carnitine concentrations in pigs. Br. J. Nutr. 2009;101:190–196. doi: 10.1017/S0007114508994770. PubMed DOI
Holeček M., Vodeničarovová M. Effects of low and high doses of fenofibrate on protein, amino acid, and energy metabolism in rat. Int. J. Exp. Pathol. 2020;101:171–182. doi: 10.1111/iep.12368. PubMed DOI PMC
Rouyer A., Tard C., Dessein A.F., Spinazzi M., Bédat-Millet A.L., Dimitri-Boulos D., Nadaj-Pakleza A., Chanson J.B., Nicolas G., Douillard C., et al. Long-term prognosis of fatty-acid oxidation disorders in adults: Optimism despite the limited effective therapies available. Eur. J. Neurol. 2024;31:e16138. doi: 10.1111/ene.16138. PubMed DOI PMC
Scully C., El-Maaytah M., Porter S.R., Greenman J. Breath odor: Etiopathogenesis, assessment and management. Eur. J. Oral Sci. 1997;105:287–293. doi: 10.1111/j.1600-0722.1997.tb00242.x. PubMed DOI
Hussain A., Saraiva L.R., Ferrero D.M., Ahuja G., Krishna V.S., Liberles S.D., Korsching S.I. High-affinity olfactory receptor for the death-associated odor cadaverine. Proc. Natl. Acad. Sci. USA. 2013;110:19579–19584. doi: 10.1073/pnas.1318596110. PubMed DOI PMC
Amin M., Tang S., Shalamanova L., Taylor R.L., Wylie S., Abdullah B.M., Whitehead K.A. Polyamine biomarkers as indicators of human disease. Biomarkers. 2021;26:77–94. doi: 10.1080/1354750X.2021.1875506. PubMed DOI
Wikramanayake T.W., De Silva C.C., Fernando P.V., Jayawickrema L. Lysine supplementation of a rice and milk diet fed to children recovering from kwashiorkor and undernutrition. Am. J. Clin. Nutr. 1961;9:625–631. doi: 10.1093/ajcn/9.5.625. PubMed DOI
Carpenter K.J., March B.E. The availability of lysine in groundnut biscuits used in the treatment of kwashiorkor. 2. Br. J. Nutr. 1961;15:403–410. doi: 10.1079/BJN19610049. PubMed DOI
Aggarwal R., Bains K. Protein, lysine and vitamin D: Critical role in muscle and bone health. Crit. Rev. Food Sci. Nutr. 2022;62:2548–2559. doi: 10.1080/10408398.2020.1855101. PubMed DOI
Knopf R.F., Conn J.W., Fajans S.S., Floyd J.C., Guntsche E.M., Rull J.A. Plasma growth hormone response to intravenous administration of amino acids. J. Clin. Endocrinol. Metab. 1965;25:1140–1144. doi: 10.1210/jcem-25-8-1140. PubMed DOI
Sato T., Ito Y., Nagasawa T. Regulation of skeletal muscle protein degradation and synthesis by oral administration of lysine in rats. J. Nutr. Sci. Vitaminol. 2013;59:412–419. doi: 10.3177/jnsv.59.412. PubMed DOI
Chromiak J.A., Antonio J. Use of amino acids as growth hormone-releasing agents by athletes. Nutrition. 2002;18:657–661. doi: 10.1016/S0899-9007(02)00807-9. PubMed DOI
Stout J.R. Amino acids and growth hormone manipulation. Nutrition. 2002;18:683–684. doi: 10.1016/S0899-9007(02)00810-9. PubMed DOI
Xiao C.W., Hendry A., Kenney L., Bertinato J. L-Lysine supplementation affects dietary protein quality and growth and serum amino acid concentrations in rats. Sci. Rep. 2023;13:19943. doi: 10.1038/s41598-023-47321-3. PubMed DOI PMC
Reddy P., Leong J., Jialal I. Amino acid levels in nascent metabolic syndrome: A contributor to the pro-inflammatory burden. J. Diabetes Complicat. 2018;32:465–469. doi: 10.1016/j.jdiacomp.2018.02.005. PubMed DOI
Stathopulos P.B., Lu X., Shen J., Scott J.A., Hammond J.R., McCormack D.G., Arnold J.M., Feng Q. Increased L-arginine uptake and inducible nitric oxide synthase activity in aortas of rats with heart failure. Am. J. Physiol. 2001;280:H859–H867. PubMed
Vazquez Rodriguez G., Abrahamsson A., Turkina M.V., Dabrosin C. Lysine in Combination with Estradiol Promote Dissemination of Estrogen Receptor Positive Breast Cancer via Upregulation of U2AF1 and RPN2 Proteins. Front. Oncol. 2020;10:598684. doi: 10.3389/fonc.2020.598684. PubMed DOI PMC
Kang J.S. Dietary restriction of amino acids for Cancer therapy. Nutr. Metab. 2020;17:20. doi: 10.1186/s12986-020-00439-x. PubMed DOI PMC
Mogensen C.E., Sølling K. Studies on renal tubular protein reabsorption: Partial and near complete inhibition by certain amino acids. Scand. J. Clin. Lab. Investig. 1977;37:477–486. doi: 10.3109/00365517709101835. PubMed DOI
Behr T.M., Becker W.S., Sharkey R.M., Juweid M.E., Dunn R.M., Bair H.J., Wolf F.G., Goldenberg D.M. Reduction of renal uptake of monoclonal antibody fragments by amino acid infusion. J. Nucl. Med. 1996;37:829–833. PubMed
Verwijnen S.M., Krenning E.P., Valkema R., Huijmans J.G., de Jong M. Oral versus intravenous administration of lysine: Equal effectiveness in reduction of renal uptake of [111In-DTPA]octreotide. J. Nucl. Med. 2005;46:2057–2060. PubMed
Bernard B.F., Krenning E.P., Breeman W.A., Rolleman E.J., Bakker W.H., Visser T.J., Mäcke H., de Jong M. D-lysine reduction of indium-111 octreotide and yttrium-90 octreotide renal uptake. J. Nucl. Med. 1997;38:1929–1933. PubMed
Civitelli R., Villareal D.T., Agnusdei D., Nardi P., Avioli L.V., Gennari C. Dietary L-lysine and calcium metabolism in humans. Nutrition. 1992;8:400–405. PubMed
Wasserman R.H., Comar C.L., Schooley J.C., Lengemann F.W. Interrelated effects of L-lysine and other dietary factors on the gastrointestinal absorption of calcium 45 in the rat and chick. J. Nutr. 1957;62:367–376. doi: 10.1093/jn/62.3.367. PubMed DOI
El Maraghi-Ater H., Hourdry J., Mesnard J., Dupuis Y. Variations of intestinal calcium absorption in adult frogs (Rana esculenta). Effect of lysine. Reprod. Nutr. Dev. 1987;27:407–412. doi: 10.1051/rnd:19870303. PubMed DOI
Bihuniak J.D., Sullivan R.R., Simpson C.A., Caseria D.M., Huedo-Medina T.B., O’Brien K.O., Kerstetter J.E., Insogna K.L. Supplementing a low-protein diet with dibasic amino acids increases urinary calcium excretion in young women. J. Nutr. 2014;144:282–288. doi: 10.3945/jn.113.185009. PubMed DOI PMC
Conconi M.T., Tommasini M., Muratori E., Parnigotto P.P. Essential amino acids increase the growth and alkaline phosphatase activity in osteoblasts cultured in vitro. Farmacol. 2001;56:755–761. doi: 10.1016/S0014-827X(01)01126-0. PubMed DOI
Tavafoghi M., Cerruti M. The role of amino acids in hydroxyapatite mineralization. J. R. Soc. Interface. 2016;13:20160462. doi: 10.1098/rsif.2016.0462. PubMed DOI PMC
Shashikumara S., Jayaraman V., Chikkegowda P., Lingaiah D.C., Kalal B.S. Efficacy of 15% lysine cream in treating diabetic foot ulcers: A randomized interventional study. Int. J. Physiol. Pathophysiol. Pharmacol. 2023;15:88–97. PubMed PMC
Felzani G., Spoletini I., Convento A., Di Lorenzo B., Rossi P., Miceli M., Rosano G. Effect of lysine hyaluronate on the healing of decubitus ulcers in rehabilitation patients. Adv. Ther. 2011;28:439–445. doi: 10.1007/s12325-011-0016-2. PubMed DOI
Colella G., Cannavale R., Vicidomini A., Rinaldi G., Compilato D., Campisi G. Efficacy of a spray compound containing a pool of collagen precursor synthetic aminoacids (l-proline, l-leucine, l-lysine and glycine) combined with sodium hyaluronate to manage chemo/radiotherapy-induced oral mucositis: Preliminary data of an open trial. Int. J. Immunopathol. Pharmacol. 2010;23:143–151. doi: 10.1177/039463201002300113. PubMed DOI
Shima S., Matsuoka H., Iwamoto T., Sakai H. Antimicrobial action of epsilon-poly-L-lysine. J. Antibiot. 1984;37:1449–1455. doi: 10.7164/antibiotics.37.1449. PubMed DOI
Hiraki J. Basic and applied studies on ε-polylysine. J. Antibact. Antifung. Agents. 1995;23:349–354.
Kwiatkowska A., Granicka L.H. Anti-Viral Surfaces in the Fight against the Spread of Coronaviruses. Membranes. 2023;13:464. doi: 10.3390/membranes13050464. PubMed DOI PMC
Hayamizu K., Oshima I., Nakano M. Comprehensive Safety Assessment of l-Lysine Supplementation from Clinical Studies: A Systematic Review. J. Nutr. 2020;150:2561S–2569S. doi: 10.1093/jn/nxaa218. PubMed DOI
Flodin N.W. The metabolic roles, pharmacology, and toxicology of lysine. J. Am. Coll. Nutr. 1997;16:7–21. doi: 10.1080/07315724.1997.10718644. PubMed DOI
Racusen L.C., Whelton A., Solez K. Effects of lysine and other amino acids on kidney structure and function in the rat. Am. J. Pathol. 1985;120:436–442. PubMed PMC
Asanuma K., Adachi K., Sugimoto T., Chiba S. Effects of lysine-induced acute renal failure in dogs. J. Toxicol. Sci. 2006;31:87–98. doi: 10.2131/jts.31.87. PubMed DOI
Verzola D., Famà A., Villaggio B., Di Rocco M., Simonato A., D’Amato E., Gianiorio F., Garibotto G. Lysine triggers apoptosis through a NADPH oxidase-dependent mechanism in human renal tubular cells. J. Inherit. Metab. Dis. 2012;35:1011–1019. doi: 10.1007/s10545-012-9468-z. PubMed DOI
Holeček M. Side effects of amino acid supplements. Physiol. Res. 2022;71:29–45. doi: 10.33549/physiolres.934790. PubMed DOI PMC
Zani B.G., Bohlen H.G. Transport of extracellular l-arginine via cationic amino acid transporter is required during in vivo endothelial nitric oxide production. Am. J. Physiol. 2005;289:H1381–H1390. doi: 10.1152/ajpheart.01231.2004. PubMed DOI
Carter B.W., Jr., Chicoine L.G., Nelin L.D. L-lysine decreases nitric oxide production and increases vascular resistance in lungs isolated from lipopolysaccharide-treated neonatal pigs. Pediatr. Res. 2004;55:979–987. doi: 10.1203/01.pdr.0000127722.55965.b3. PubMed DOI