Lysine: Sources, Metabolism, Physiological Importance, and Use as a Supplement

. 2025 Sep 09 ; 26 (18) : . [epub] 20250909

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41009362

Grantová podpora
research area METD Charles University

This article provides a comprehensive review and explores the gaps in current knowledge of lysine metabolism in humans and its potential nutritional and therapeutic indications. The first part of this study examines lysine sources, requirements, transport through the plasma membrane, lysine catabolism, and its disorders. The central part is focused on post-translational modifications of lysine in proteins, primarily desmosine formation in elastin, hydroxylation in collagen, covalent bonds with glutamine, methylation, ubiquitination, sumoylation, neddylation, acylation, lactylation, carbamylation, and glycation. Special sections are devoted to using lysine as a substrate for homoarginine and carnitine synthesis and in nutrition and medicine. It is concluded that the identification and detailed knowledge of writers, readers, and erasers of specific post-translational modifications of lysine residues in proteins is needed for a better understanding of the role of lysine in epigenetic regulation. Further research is required to explore the influence of lysine availability on homoarginine formation and how the phenomenon of lysine-arginine antagonism can be used to influence immune and cardiovascular functions and cancer development. Of unique importance is the investigation of the use of lysine in osteoporosis therapy and in reducing the resorption of harmful substances in the kidneys, as well as the therapeutic potential of polylysine and lysine analogs.

Zobrazit více v PubMed

Bressani R., Wilson D., Behar M., Chung M., Scrimshaw N.S. Supplementation of cereal proteins with amino acids. IV. Lysine supplementation of wheat flour fed to young children at different levels of protein intake in the presence and absence of other amino acids. J. Nutr. 1963;79:333–339. doi: 10.1093/jn/79.3.333. PubMed DOI

Gunarathne R., Guan X., Feng T., Zhao Y., Lu J. L-lysine dietary supplementation for childhood and adolescent growth: Promises and precautions. J. Adv. Res. 2025;70:571–586. doi: 10.1016/j.jare.2024.05.014. PubMed DOI PMC

Sindhu R., Supreeth M., Prasad S.K., Thanmaya M. Shuttle between arginine and lysine: Influence on cancer immunonutrition. Amino Acids. 2023;55:1461–1473. doi: 10.1007/s00726-023-03327-9. PubMed DOI

Mailoo V.J., Rampes S. Lysine for herpes simplex prophylaxis: A review of the evidence. Integr. Med. 2017;16:42–46. PubMed PMC

Wu G., Mazzitelli B.A., Quek A.J., Veldman M.J., Conroy P.J., Caradoc-Davies T.T., Ooms L.M., Tuck K.L., Schoenecker J.G., Whisstock J.C., et al. Tranexamic acid is an active site inhibitor of urokinase plasminogen activator. Blood Adv. 2019;3:729–733. doi: 10.1182/bloodadvances.2018025429. PubMed DOI PMC

Estcourt L.J., Desborough M., Brunskill S.J., Doree C., Hopewell S., Murphy M.F., Stanworth S.J. Antifibrinolytics (lysine analogues) for the prevention of bleeding in people with haematological disorders. Cochrane Database Syst. Rev. 2016;3:CD009733. doi: 10.1002/14651858.CD009733.pub3. PubMed DOI PMC

Stagi L., de Forni D., Innocenzi P. Blocking viral infections with lysine-based polymeric nanostructures: A critical review. Biomater. Sci. 2022;10:1904–1919. doi: 10.1039/D2BM00030J. PubMed DOI

Messina V. Nutritional and health benefits of dried beans. Am. J. Clin. Nutr. 2014;100:437S–442S. doi: 10.3945/ajcn.113.071472. PubMed DOI

Millward D.J. The nutritional value of plant-based diets in relation to human amino acid and protein requirements. Proc. Nutr. Soc. 1999;58:249–260. doi: 10.1017/S0029665199000348. PubMed DOI

Friedman M. Chemically Reactive and Unreactive Lysine as an Index of Browning. Diabetes. 1982;31:5–14S. doi: 10.2337/diab.31.3.S5. DOI

Metges C.C. Contribution of microbial amino acids to amino acid homeostasis of the host. J. Nutr. 2000;130:1857S–1864S. doi: 10.1093/jn/130.7.1857S. PubMed DOI

Metges C.C., El-Khoury A.E., Henneman L., Petzke K.J., Grant I., Bedri S., Pereira P.P., Ajami A.M., Fuller M.F., Young V.R. Availability of intestinal microbial lysine for whole body lysine homeostasis in human subjects. Am. J. Physiol. 1999;277:E597–E607. doi: 10.1152/ajpendo.1999.277.4.E597. PubMed DOI

Matthews D.E. Review of Lysine Metabolism with a Focus on Humans. J. Nutr. 2020;150:2548S–2555S. doi: 10.1093/jn/nxaa224. PubMed DOI

Meredith C.N., Wen Z.M., Bier D.M., Matthews D.E., Young V.R. Lysine kinetics at graded lysine intakes in young men. Am. J. Clin. Nutr. 1986;43:787–794. doi: 10.1093/ajcn/43.5.787. PubMed DOI

Chapman K.P., Courtney-Martin G., Moore A.M., Langer J.C., Tomlinson C., Ball R.O., Pencharz P.B. Lysine requirement in parenterally fed postsurgical human neonates. Am. J. Clin. Nutr. 2010;91:958–965. doi: 10.3945/ajcn.2009.28729. PubMed DOI

Huang L., Hogewind-Schoonenboom J.E., de Groof F., Twisk J.W., Voortman G.J., Dorst K., Schierbeek H., Boehm G., Huang Y., Chen C., et al. Lysine requirement of the enterally fed term infant in the first month of life. Am. J. Clin. Nutr. 2011;94:1496–1503. doi: 10.3945/ajcn.111.024166. PubMed DOI

Tomé D., Bos C. Lysine requirement through the human life cycle. J. Nutr. 2007;137:1642S–1645S. doi: 10.1093/jn/137.6.1642S. PubMed DOI

Budiman T., Bamberg E., Koepsell H., Nagel G. Mechanism of electrogenic cation transport by the cloned organic cation transporter 2 from rat. J. Biol. Chem. 2000;275:29413–29420. doi: 10.1074/jbc.M004645200. PubMed DOI

Filho J.C., Bergström J., Stehle P., Fürst P. Simultaneous measurements of free amino acid patterns of plasma, muscle and erythrocytes in healthy human subjects. Clin. Nutr. 1997;16:299–305. doi: 10.1016/S0261-5614(97)80015-5. PubMed DOI

Holecek M., Sispera L. Effects of Arginine Supplementation on Amino Acid Profiles in Blood and Tissues in Fed and Overnight-Fasted Rats. Nutrients. 2016;8:206. doi: 10.3390/nu8040206. PubMed DOI PMC

Fotiadis D., Kanai Y., Palacín M. The SLC3 and SLC7 families of amino acid transporters. Mol. Aspects Med. 2013;34:139–158. doi: 10.1016/j.mam.2012.10.007. PubMed DOI

Bröer S. Intestinal Amino Acid Transport and Metabolic Health. Annu. Rev. Nutr. 2023;43:73–99. doi: 10.1146/annurev-nutr-061121-094344. PubMed DOI

Verrey F., Closs E.I., Wagner C.A., Palacin M., Endou H., Kanai Y. CATs and HATs: The SLC7 family of amino acid transporters. Pflugers Arch. 2004;447:532–542. doi: 10.1007/s00424-003-1086-z. PubMed DOI

Noguchi A., Takahashi T. Overview of symptoms and treatment for lysinuric protein intolerance. J. Hum. Genet. 2019;64:849–858. doi: 10.1038/s10038-019-0620-6. PubMed DOI

Closs E.I., Scheld J.S., Sharafi M., Förstermann U. Substrate supply for nitric-oxide synthase in macrophages and endothelial cells: Role of cationic amino acid transporters. Mol. Pharmacol. 2000;57:68–74. doi: 10.1016/S0026-895X(24)26443-9. PubMed DOI

Pink D.B., Gatrell S.K., Elango R., Turchinsky J., Kiess A.S., Blemings K.P., Dixon W.T., Ball R.O. Lysine α-ketoglutarate reductase, but not saccharopine dehydrogenase, is subject to substrate inhibition in pig liver. Nutr. Res. 2011;31:544–554. doi: 10.1016/j.nutres.2011.06.001. PubMed DOI

Leandro J., Houten S.M. The lysine degradation pathway: Subcellular compartmentalization and enzyme deficiencies. Mol. Genet. Metab. 2020;131:14–22. doi: 10.1016/j.ymgme.2020.07.010. PubMed DOI

Blemings K.P., Crenshaw T.D., Benevenga N.J. Mitochondrial lysine uptake limits hepatic lysine oxidation in rats fed diets containing 5, 20 or 60% casein. J. Nutr. 1998;128:2427–2434. doi: 10.1093/jn/128.12.2427. PubMed DOI

Monné M., Miniero D.V., Daddabbo L., Palmieri L., Porcelli V., Palmieri F. Mitochondrial transporters for ornithine and related amino acids: A review. Amino Acids. 2015;47:1763–1777. doi: 10.1007/s00726-015-1990-5. PubMed DOI

Hallen A., Jamie J.F., Cooper A.J. Lysine metabolism in mammalian brain: An update on the importance of recent discoveries. Amino Acids. 2013;45:1249–1272. doi: 10.1007/s00726-013-1590-1. PubMed DOI PMC

Struys E.A., Jansen E.E., Salomons G.S. Human pyrroline-5-carboxylate reductase (PYCR1) acts on Δ(1)-piperideine-6-carboxylate generating L-pipecolic acid. J. Inherit. Metab. Dis. 2014;37:327–332. doi: 10.1007/s10545-013-9673-4. PubMed DOI

Hallen A., Cooper A.J. Reciprocal Control of Thyroid Binding and the Pipecolate Pathway in the Brain. Neurochem. Res. 2017;42:217–243. doi: 10.1007/s11064-016-2015-9. Erratum in Neurochem. Res. 2017, 42, 1580. PubMed DOI

Kinney C.J., Bloch R.J. µ-Crystallin: A thyroid hormone binding protein. Endocr. Regul. 2021;55:89–102. doi: 10.2478/enr-2021-0011. PubMed DOI PMC

Bouchereau J., Schiff M. Inherited Disorders of Lysine Metabolism: A Review. J. Nutr. 2020;150:2556S–2560S. doi: 10.1093/jn/nxaa112. PubMed DOI

Kölker S., Boy S.P., Heringer J., Müller E., Maier E.M., Ensenauer R., Mühlhausen C., Schlune A., Greenberg C.R., Koeller D.M., et al. Complementary dietary treatment using lysine-free, arginine-fortified amino acid supplements in glutaric aciduria type I—A decade of experience. Mol. Genet. Metab. 2012;107:72–80. doi: 10.1016/j.ymgme.2012.03.021. PubMed DOI

Mills P.B., Struys E., Jakobs C., Plecko B., Baxter P., Baumgartner M., Willemsen M.A., Omran H., Tacke U., Uhlenberg B., et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat. Med. 2006;12:307–309. doi: 10.1038/nm1366. PubMed DOI

Stockler S., Plecko B., Gospe S.M., Jr., Coulter-Mackie M., Connolly M., van Karnebeek C., Mercimek-Mahmutoglu S., Hartmann H., Scharer G., Struijs E., et al. Pyridoxine dependent epilepsy and antiquitin deficiency: Clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol. Genet. Metab. 2011;104:48–60. doi: 10.1016/j.ymgme.2011.05.014. PubMed DOI

Crowther L.M., Mathis D., Poms M., Plecko B. New insights into human lysine degradation pathways with relevance to pyridoxine-dependent epilepsy due to antiquitin deficiency. J. Inherit. Metab. Dis. 2019;42:620–628. doi: 10.1002/jimd.12076. PubMed DOI

Norioka R., Tobisawa S., Nishigori R., Kuhara T., Yazaki M., Nagao M., Ohura T., Takai Y., Funai A., Miyamoto K., et al. Saccharopinuria accompanied by hyperammonemia and hypercitrullinemia presented with elderly-onset epilepsy, progressive cognitive decline, and gait ataxia. Intractable Rare Dis. Res. 2021;10:126–130. doi: 10.5582/irdr.2021.01003. PubMed DOI PMC

Ameen M., Palmer T. Inhibition of urea cycle enzymes by lysine and saccharopine. Biochem. Int. 1987;14:395–400. PubMed

Zhou J., Wang X., Wang M., Chang Y., Zhang F., Ban Z., Tang R., Gan Q., Wu S., Guo Y., et al. The lysine catabolite saccharopine impairs development by disrupting mitochondrial homeostasis. J. Cell Biol. 2019;218:580–597. doi: 10.1083/jcb.201807204. PubMed DOI PMC

Daly M.M., Mirsky A.E. Histones with high lysine content. J. Gen. Physiol. 1955;38:405–413. doi: 10.1085/jgp.38.3.405. PubMed DOI PMC

Malle E., Ibovnik A., Leis H.J., Kostner G.M., Verhallen P.F., Sattler W. Lysine modification of LDL or lipoprotein(a) by 4-hydroxynonenal or malondialdehyde decreases platelet serotonin secretion without affecting platelet aggregability and eicosanoid formation. Arterioscler. Thromb. Vasc. Biol. 1995;15:377–384. doi: 10.1161/01.ATV.15.3.377. PubMed DOI

Hörkkö S., Huttunen K., Kervinen K., Kesäniemi Y.A. Decreased clearance of uraemic and mildly carbamylated low-density lipoprotein. Eur. J. Clin. Investig. 1994;24:105–113. doi: 10.1111/j.1365-2362.1994.tb00974.x. PubMed DOI

Maas M.N., Hintzen J.C.J., Porzberg M.R.B., Mecinović J. Trimethyllysine: From Carnitine Biosynthesis to Epigenetics. Int. J. Mol. Sci. 2020;21:9451. doi: 10.3390/ijms21249451. PubMed DOI PMC

Hyun K., Jeon J., Park K., Kim J. Writing, erasing and reading histone lysine methylations. Exp. Mol. Med. 2017;49:e324. doi: 10.1038/emm.2017.11. PubMed DOI PMC

Gil J., Ramírez-Torres A., Encarnación-Guevara S. Lysine acetylation and cancer: A proteomics perspective. J. Proteom. 2017;150:297–309. doi: 10.1016/j.jprot.2016.10.003. PubMed DOI

Wang R., Sun H., Wang G., Ren H. Imbalance of Lysine Acetylation Contributes to the Pathogenesis of Parkinson’s Disease. Int. J. Mol. Sci. 2020;21:7182. doi: 10.3390/ijms21197182. PubMed DOI PMC

Yeo G.C., Keeley F.W., Weiss A.S. Coacervation of tropoelastin. Adv. Colloid. Interface Sci. 2011;167:94–103. doi: 10.1016/j.cis.2010.10.003. PubMed DOI

Schmelzer C.E.H., Hedtke T., Heinz A. Unique molecular networks: Formation and role of elastin crosslinks. IUBMB Life. 2020;72:842–854. doi: 10.1002/iub.2213. PubMed DOI

Memtsoudis S.G., Starcher B., Ma Y., Buschiazzo V., Urban M.K., Girardi F.P. The utility of urine desmosine as a marker of lung injury in spine surgery. HSS J. 2010;6:160–163. doi: 10.1007/s11420-010-9158-z. PubMed DOI PMC

Zhang J., Lu M., Guan X., Hao J., Li Y., Zhang L., Li C. The Role of Lysyl Oxidase in the Pathological Stage of Atherosclerosis: Structural Stabilizer or Disease Driver? Curr. Atheroscler. Rep. 2025;27:69. doi: 10.1007/s11883-025-01312-z. PubMed DOI

Knott L., Bailey A.J. Collagen crosslinks in mineralizing tissues: A review of their chemistry, function, and clinical relevance. Bone. 1998;22:181–187. doi: 10.1016/S8756-3282(97)00279-2. PubMed DOI

Krane S.M., Kantrowitz F.G., Byrne M., Pinnell S.R., Singer F.R. Urinary excretion of hydroxylysine and its glycosides as an index of collagen degradation. J. Clin. Investig. 1977;59:819–827. doi: 10.1172/JCI108704. PubMed DOI PMC

Simsek B., Karacaer O., Karaca I. Urine products of bone breakdown as markers of bone resorption and clinical usefulness of urinary hydroxyproline: An overview. Chin. Med. J. 2004;117:291–295. PubMed

Tatsukawa H., Takeuchi T., Shinoda Y., Hitomi K. Identification and characterization of substrates crosslinked by transglutaminases in liver and kidney fibrosis. Anal. Biochem. 2020;604:113629. doi: 10.1016/j.ab.2020.113629. PubMed DOI

Lanouette S., Mongeon V., Figeys D., Couture J.F. The functional diversity of protein lysine methylation. Mol. Syst. Biol. 2014;10:724. doi: 10.1002/msb.134974. PubMed DOI PMC

Damgaard R.B. The ubiquitin system: From cell signalling to disease biology and new therapeutic opportunities. Cell Death Differ. 2021;28:423–426. doi: 10.1038/s41418-020-00703-w. PubMed DOI PMC

Foletta V.C., White L.J., Larsen A.E., Léger B., Russell A.P. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch. 2011;461:325–335. doi: 10.1007/s00424-010-0919-9. PubMed DOI

Sahin U., de Thé H., Lallemand-Breitenbach V. Sumoylation in Physiology, Pathology and Therapy. Cells. 2022;11:814. doi: 10.3390/cells11050814. PubMed DOI PMC

Han Z.J., Feng Y.H., Gu B.H., Li Y.M., Chen H. The posttranslational modification, SUMOylation, and cancer (Review) Int. J. Oncol. 2018;52:1081–1094. doi: 10.3892/ijo.2018.4280. PubMed DOI PMC

Zhang S., Yu Q., Li Z., Zhao Y., Sun Y. Protein neddylation and its role in health and diseases. Signal Transduct. Target. Ther. 2024;9:85. doi: 10.1038/s41392-024-01800-9. PubMed DOI PMC

Zou T., Zhang J. Diverse and pivotal roles of neddylation in metabolism and immunity. FEBS J. 2021;288:3884–3912. doi: 10.1111/febs.15584. PubMed DOI

Mu A., Latario C.J., Pickrell L.E., Higgs H.N. Lysine acetylation of cytoskeletal proteins: Emergence of an actin code. J. Cell Biol. 2020;219:e202006151. doi: 10.1083/jcb.202006151. PubMed DOI PMC

Li Y., Cao Q., Hu Y., He B., Cao T., Tang Y., Zhou X.P., Lan X.P., Liu S.Q. Advances in the interaction of glycolytic reprogramming with lactylation. Biomed. Pharmacother. 2024;177:116982. doi: 10.1016/j.biopha.2024.116982. PubMed DOI

Wang Z., Nicholls S.J., Rodriguez E.R., Kummu O., Hörkkö S., Barnard J., Reynolds W.F., Topol E.J., DiDonato J.A., Hazen S.L. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med. 2007;13:1176–1184. doi: 10.1038/nm1637. PubMed DOI

Koeth R.A., Kalantar-Zadeh K., Wang Z., Fu X., Tang W.H., Hazen S.L. Protein carbamylation predicts mortality in ESRD. J. Am. Soc. Nephrol. 2013;24:853–861. doi: 10.1681/ASN.2012030254. PubMed DOI PMC

Parwani K., Mandal P. Role of advanced glycation end products and insulin resistance in diabetic nephropathy. Arch. Physiol. Biochem. 2020;30:1–13. doi: 10.1080/13813455.2020.1797106. PubMed DOI

Adams S., Che D., Qin G., Farouk M.H., Hailong J., Rui H. Novel Biosynthesis, Metabolism and Physiological Functions of L-Homoarginine. Curr. Protein Pept. Sci. 2019;20:184–193. doi: 10.2174/1389203719666181026170049. PubMed DOI

Levin B., Oberholzer V.G., Palmer T. Letter: The high levels of lysine, homocitrulline, and homoarginine found in argininosuccinate synthetase deficiency. Pediatr. Res. 1974;8:857–858. doi: 10.1203/00006450-197410000-00009. PubMed DOI

Cathelineau L., Saudubray J.M., Charpentier C., Polonovski C. Letter: The presence of the homoanalogues of substrates of the urea cycle in the presence of argininosuccinate synthetase deficiency. Pediatr. Res. 1974;8:857. doi: 10.1203/00006450-197410000-00008. PubMed DOI

Karetnikova E.S., Jarzebska N., Markov A.G., Weiss N., Lentz S.R., Rodionov R.N. Is Homoarginine a Protective Cardiovascular Risk Factor? Arterioscler. Thromb. Vasc. Biol. 2019;39:869–875. doi: 10.1161/ATVBAHA.118.312218. PubMed DOI

Koch V., Gruenewald L.D., Gruber-Rouh T., Eichler K., Leistner D.M., Mahmoudi S., Booz C., Bernatz S., D’Angelo T., Albrecht M.H., et al. Homoarginine in the cardiovascular system: Pathophysiology and recent developments. Fundam. Clin. Pharmacol. 2023;37:519–529. doi: 10.1111/fcp.12858. PubMed DOI

Rodionov R.N., Oppici E., Martens-Lobenhoffer J., Jarzebska N., Brilloff S., Burdin D., Demyanov A., Kolouschek A., Leiper J., Maas R., et al. A Novel Pathway for Metabolism of the Cardiovascular Risk Factor Homoarginine by alanine:glyoxylate aminotransferase 2. Sci. Rep. 2016;6:35277. doi: 10.1038/srep35277. PubMed DOI PMC

Pilz S., Meinitzer A., Gaksch M., Grübler M., Verheyen N., Drechsler C., Hartaigh B.Ó., Lang F., Alesutan I., Voelkl J., et al. Homoarginine in the renal and cardiovascular systems. Amino Acids. 2015;47:1703–1713. doi: 10.1007/s00726-015-1993-2. PubMed DOI

Zinellu A., Paliogiannis P., Carru C., Mangoni A.A. Homoarginine and all-cause mortality: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2018;48:e12960. doi: 10.1111/eci.12960. PubMed DOI

Vaz F.M., Wanders R.J. Carnitine biosynthesis in mammals. Biochem. J. 2002;361:417–429. doi: 10.1042/bj3610417. PubMed DOI PMC

Almannai M., Alfadhel M., El-Hattab A.W. Carnitine inborn errors of metabolism. Molecules. 2019;24:3251. doi: 10.3390/molecules24183251. PubMed DOI PMC

Galluccio M., Tripicchio M., Pochini L. The Human OCTN Sub-Family: Gene and Protein Structure, Expression, and Regulation. Int. J. Mol. Sci. 2024;25:8743. doi: 10.3390/ijms25168743. PubMed DOI PMC

Holecek M., Simek J., Zadák Z., Bláha V. Acceleration of the onset of liver regeneration by carnitine in partially hepatectomized rats. Physiol. Bohemoslov. 1989;38:503–508. PubMed

Pooyandjoo M., Nouhi M., Shab-Bidar S., Djafarian K., Olyaeemanesh A. The effect of (L-)carnitine on weight loss in adults: A systematic review and meta-analysis of randomized controlled trials. Obes. Rev. 2016;17:970–976. doi: 10.1111/obr.12436. PubMed DOI

Ferreira G.C., McKenna M.C. L-Carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain. Neurochem. Res. 2017;42:1661–1675. doi: 10.1007/s11064-017-2288-7. PubMed DOI PMC

Sergi G., Pizzato S., Piovesan F., Trevisan C., Veronese N., Manzato E. Effects of acetyl-L-carnitine in diabetic neuropathy and other geriatric disorders. Aging Clin. Exp. Res. 2018;30:133–138. doi: 10.1007/s40520-017-0770-3. PubMed DOI

Wang Z.Y., Liu Y.Y., Liu G.H., Lu H.B., Mao C.Y. l-Carnitine and heart disease. Life Sci. 2018;194:88–97. doi: 10.1016/j.lfs.2017.12.015. PubMed DOI

Weng Y., Zhang S., Huang W., Xie X., Ma Z., Fan Q. Efficacy of L-Carnitine for Dilated Cardiomyopathy: A Meta-Analysis of Randomized Controlled Trials. Biomed. Res. Int. 2021;2021:9491615. doi: 10.1155/2021/9491615. PubMed DOI PMC

El-Hattab A.W., Scaglia F. Disorders of carnitine biosynthesis and transport. Mol. Genet. Metab. 2015;116:107–112. doi: 10.1016/j.ymgme.2015.09.004. PubMed DOI

Crefcoeur L.L., Visser G., Ferdinandusse S., Wijburg F.A., Langeveld M., Sjouke B. Clinical characteristics of primary carnitine deficiency: A structured review using a case-by-case approach. J. Inherit. Metab. Dis. 2022;45:386–405. doi: 10.1002/jimd.12475. PubMed DOI PMC

Fischer M., Hirche F., Kluge H., Eder K. A moderate excess of dietary lysine lowers plasma and tissue carnitine concentrations in pigs. Br. J. Nutr. 2009;101:190–196. doi: 10.1017/S0007114508994770. PubMed DOI

Holeček M., Vodeničarovová M. Effects of low and high doses of fenofibrate on protein, amino acid, and energy metabolism in rat. Int. J. Exp. Pathol. 2020;101:171–182. doi: 10.1111/iep.12368. PubMed DOI PMC

Rouyer A., Tard C., Dessein A.F., Spinazzi M., Bédat-Millet A.L., Dimitri-Boulos D., Nadaj-Pakleza A., Chanson J.B., Nicolas G., Douillard C., et al. Long-term prognosis of fatty-acid oxidation disorders in adults: Optimism despite the limited effective therapies available. Eur. J. Neurol. 2024;31:e16138. doi: 10.1111/ene.16138. PubMed DOI PMC

Scully C., El-Maaytah M., Porter S.R., Greenman J. Breath odor: Etiopathogenesis, assessment and management. Eur. J. Oral Sci. 1997;105:287–293. doi: 10.1111/j.1600-0722.1997.tb00242.x. PubMed DOI

Hussain A., Saraiva L.R., Ferrero D.M., Ahuja G., Krishna V.S., Liberles S.D., Korsching S.I. High-affinity olfactory receptor for the death-associated odor cadaverine. Proc. Natl. Acad. Sci. USA. 2013;110:19579–19584. doi: 10.1073/pnas.1318596110. PubMed DOI PMC

Amin M., Tang S., Shalamanova L., Taylor R.L., Wylie S., Abdullah B.M., Whitehead K.A. Polyamine biomarkers as indicators of human disease. Biomarkers. 2021;26:77–94. doi: 10.1080/1354750X.2021.1875506. PubMed DOI

Wikramanayake T.W., De Silva C.C., Fernando P.V., Jayawickrema L. Lysine supplementation of a rice and milk diet fed to children recovering from kwashiorkor and undernutrition. Am. J. Clin. Nutr. 1961;9:625–631. doi: 10.1093/ajcn/9.5.625. PubMed DOI

Carpenter K.J., March B.E. The availability of lysine in groundnut biscuits used in the treatment of kwashiorkor. 2. Br. J. Nutr. 1961;15:403–410. doi: 10.1079/BJN19610049. PubMed DOI

Aggarwal R., Bains K. Protein, lysine and vitamin D: Critical role in muscle and bone health. Crit. Rev. Food Sci. Nutr. 2022;62:2548–2559. doi: 10.1080/10408398.2020.1855101. PubMed DOI

Knopf R.F., Conn J.W., Fajans S.S., Floyd J.C., Guntsche E.M., Rull J.A. Plasma growth hormone response to intravenous administration of amino acids. J. Clin. Endocrinol. Metab. 1965;25:1140–1144. doi: 10.1210/jcem-25-8-1140. PubMed DOI

Sato T., Ito Y., Nagasawa T. Regulation of skeletal muscle protein degradation and synthesis by oral administration of lysine in rats. J. Nutr. Sci. Vitaminol. 2013;59:412–419. doi: 10.3177/jnsv.59.412. PubMed DOI

Chromiak J.A., Antonio J. Use of amino acids as growth hormone-releasing agents by athletes. Nutrition. 2002;18:657–661. doi: 10.1016/S0899-9007(02)00807-9. PubMed DOI

Stout J.R. Amino acids and growth hormone manipulation. Nutrition. 2002;18:683–684. doi: 10.1016/S0899-9007(02)00810-9. PubMed DOI

Xiao C.W., Hendry A., Kenney L., Bertinato J. L-Lysine supplementation affects dietary protein quality and growth and serum amino acid concentrations in rats. Sci. Rep. 2023;13:19943. doi: 10.1038/s41598-023-47321-3. PubMed DOI PMC

Reddy P., Leong J., Jialal I. Amino acid levels in nascent metabolic syndrome: A contributor to the pro-inflammatory burden. J. Diabetes Complicat. 2018;32:465–469. doi: 10.1016/j.jdiacomp.2018.02.005. PubMed DOI

Stathopulos P.B., Lu X., Shen J., Scott J.A., Hammond J.R., McCormack D.G., Arnold J.M., Feng Q. Increased L-arginine uptake and inducible nitric oxide synthase activity in aortas of rats with heart failure. Am. J. Physiol. 2001;280:H859–H867. PubMed

Vazquez Rodriguez G., Abrahamsson A., Turkina M.V., Dabrosin C. Lysine in Combination with Estradiol Promote Dissemination of Estrogen Receptor Positive Breast Cancer via Upregulation of U2AF1 and RPN2 Proteins. Front. Oncol. 2020;10:598684. doi: 10.3389/fonc.2020.598684. PubMed DOI PMC

Kang J.S. Dietary restriction of amino acids for Cancer therapy. Nutr. Metab. 2020;17:20. doi: 10.1186/s12986-020-00439-x. PubMed DOI PMC

Mogensen C.E., Sølling K. Studies on renal tubular protein reabsorption: Partial and near complete inhibition by certain amino acids. Scand. J. Clin. Lab. Investig. 1977;37:477–486. doi: 10.3109/00365517709101835. PubMed DOI

Behr T.M., Becker W.S., Sharkey R.M., Juweid M.E., Dunn R.M., Bair H.J., Wolf F.G., Goldenberg D.M. Reduction of renal uptake of monoclonal antibody fragments by amino acid infusion. J. Nucl. Med. 1996;37:829–833. PubMed

Verwijnen S.M., Krenning E.P., Valkema R., Huijmans J.G., de Jong M. Oral versus intravenous administration of lysine: Equal effectiveness in reduction of renal uptake of [111In-DTPA]octreotide. J. Nucl. Med. 2005;46:2057–2060. PubMed

Bernard B.F., Krenning E.P., Breeman W.A., Rolleman E.J., Bakker W.H., Visser T.J., Mäcke H., de Jong M. D-lysine reduction of indium-111 octreotide and yttrium-90 octreotide renal uptake. J. Nucl. Med. 1997;38:1929–1933. PubMed

Civitelli R., Villareal D.T., Agnusdei D., Nardi P., Avioli L.V., Gennari C. Dietary L-lysine and calcium metabolism in humans. Nutrition. 1992;8:400–405. PubMed

Wasserman R.H., Comar C.L., Schooley J.C., Lengemann F.W. Interrelated effects of L-lysine and other dietary factors on the gastrointestinal absorption of calcium 45 in the rat and chick. J. Nutr. 1957;62:367–376. doi: 10.1093/jn/62.3.367. PubMed DOI

El Maraghi-Ater H., Hourdry J., Mesnard J., Dupuis Y. Variations of intestinal calcium absorption in adult frogs (Rana esculenta). Effect of lysine. Reprod. Nutr. Dev. 1987;27:407–412. doi: 10.1051/rnd:19870303. PubMed DOI

Bihuniak J.D., Sullivan R.R., Simpson C.A., Caseria D.M., Huedo-Medina T.B., O’Brien K.O., Kerstetter J.E., Insogna K.L. Supplementing a low-protein diet with dibasic amino acids increases urinary calcium excretion in young women. J. Nutr. 2014;144:282–288. doi: 10.3945/jn.113.185009. PubMed DOI PMC

Conconi M.T., Tommasini M., Muratori E., Parnigotto P.P. Essential amino acids increase the growth and alkaline phosphatase activity in osteoblasts cultured in vitro. Farmacol. 2001;56:755–761. doi: 10.1016/S0014-827X(01)01126-0. PubMed DOI

Tavafoghi M., Cerruti M. The role of amino acids in hydroxyapatite mineralization. J. R. Soc. Interface. 2016;13:20160462. doi: 10.1098/rsif.2016.0462. PubMed DOI PMC

Shashikumara S., Jayaraman V., Chikkegowda P., Lingaiah D.C., Kalal B.S. Efficacy of 15% lysine cream in treating diabetic foot ulcers: A randomized interventional study. Int. J. Physiol. Pathophysiol. Pharmacol. 2023;15:88–97. PubMed PMC

Felzani G., Spoletini I., Convento A., Di Lorenzo B., Rossi P., Miceli M., Rosano G. Effect of lysine hyaluronate on the healing of decubitus ulcers in rehabilitation patients. Adv. Ther. 2011;28:439–445. doi: 10.1007/s12325-011-0016-2. PubMed DOI

Colella G., Cannavale R., Vicidomini A., Rinaldi G., Compilato D., Campisi G. Efficacy of a spray compound containing a pool of collagen precursor synthetic aminoacids (l-proline, l-leucine, l-lysine and glycine) combined with sodium hyaluronate to manage chemo/radiotherapy-induced oral mucositis: Preliminary data of an open trial. Int. J. Immunopathol. Pharmacol. 2010;23:143–151. doi: 10.1177/039463201002300113. PubMed DOI

Shima S., Matsuoka H., Iwamoto T., Sakai H. Antimicrobial action of epsilon-poly-L-lysine. J. Antibiot. 1984;37:1449–1455. doi: 10.7164/antibiotics.37.1449. PubMed DOI

Hiraki J. Basic and applied studies on ε-polylysine. J. Antibact. Antifung. Agents. 1995;23:349–354.

Kwiatkowska A., Granicka L.H. Anti-Viral Surfaces in the Fight against the Spread of Coronaviruses. Membranes. 2023;13:464. doi: 10.3390/membranes13050464. PubMed DOI PMC

Hayamizu K., Oshima I., Nakano M. Comprehensive Safety Assessment of l-Lysine Supplementation from Clinical Studies: A Systematic Review. J. Nutr. 2020;150:2561S–2569S. doi: 10.1093/jn/nxaa218. PubMed DOI

Flodin N.W. The metabolic roles, pharmacology, and toxicology of lysine. J. Am. Coll. Nutr. 1997;16:7–21. doi: 10.1080/07315724.1997.10718644. PubMed DOI

Racusen L.C., Whelton A., Solez K. Effects of lysine and other amino acids on kidney structure and function in the rat. Am. J. Pathol. 1985;120:436–442. PubMed PMC

Asanuma K., Adachi K., Sugimoto T., Chiba S. Effects of lysine-induced acute renal failure in dogs. J. Toxicol. Sci. 2006;31:87–98. doi: 10.2131/jts.31.87. PubMed DOI

Verzola D., Famà A., Villaggio B., Di Rocco M., Simonato A., D’Amato E., Gianiorio F., Garibotto G. Lysine triggers apoptosis through a NADPH oxidase-dependent mechanism in human renal tubular cells. J. Inherit. Metab. Dis. 2012;35:1011–1019. doi: 10.1007/s10545-012-9468-z. PubMed DOI

Holeček M. Side effects of amino acid supplements. Physiol. Res. 2022;71:29–45. doi: 10.33549/physiolres.934790. PubMed DOI PMC

Zani B.G., Bohlen H.G. Transport of extracellular l-arginine via cationic amino acid transporter is required during in vivo endothelial nitric oxide production. Am. J. Physiol. 2005;289:H1381–H1390. doi: 10.1152/ajpheart.01231.2004. PubMed DOI

Carter B.W., Jr., Chicoine L.G., Nelin L.D. L-lysine decreases nitric oxide production and increases vascular resistance in lungs isolated from lipopolysaccharide-treated neonatal pigs. Pediatr. Res. 2004;55:979–987. doi: 10.1203/01.pdr.0000127722.55965.b3. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...