• This record comes from PubMed

Beyond day and night: The importance of ultradian rhythms in mouse physiology

. 2024 Jun ; 84 () : 101946. [epub] 20240423

Language English Country Germany Media print-electronic

Document type Journal Article

Links

PubMed 38657735
PubMed Central PMC11070603
DOI 10.1016/j.molmet.2024.101946
PII: S2212-8778(24)00077-2
Knihovny.cz E-resources

Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.

See more in PubMed

Hunter H., de Gracia Hahn D., Duret A., Im Y.R., Cheah Q., Dong J., et al. Weight loss, insulin resistance, and study design confound results in a meta-analysis of animal models of fatty liver. Elife. 2020;9 PubMed PMC

Hackam D.G., Redelmeier D.A. Translation of research evidence from animals to humans. JAMA. 2006;296(14):1731–1732. PubMed

Leenaars C.H.C., Kouwenaar C., Stafleu F.R., Bleich A., Ritskes-Hoitinga M., De Vries R.B.M., et al. Animal to human translation: a systematic scoping review of reported concordance rates. J Transl Med. 2019;17(1):223. PubMed PMC

Schmidt-Nielsen K. Cambridge University Press; Cambridge: 1984. Scaling: why is animal size so important?

Kleiber M. 2nd ed. Robert E. Krieger Publishing Company; Huntington, New York: 1975. The fire of Life.

Gordon C.J. Cambridge University Press; New York: 1993. Temperature regulation in laboratory rodents.

Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature (Austin) 2020;7(4):321–362. PubMed PMC

Abreu-Vieira G., Xiao C., Gavrilova O., Reitman M.L. Integration of body temperature into the analysis of energy expenditure in the mouse. Mol Metabol. 2015;4(6):461–470. PubMed PMC

Skop V., Guo J., Liu N., Xiao C., Hall K.D., Gavrilova O., et al. Mouse thermoregulation: introducing the concept of the thermoneutral point. Cell Rep. 2020;31(2) PubMed PMC

Skop V., Xiao C., Liu N., Gavrilova O., Reitman M.L. The effects of housing density on mouse thermal physiology depend on sex and ambient temperature. Mol Metabol. 2021;53 PubMed PMC

Ganeshan K., Chawla A. Warming the mouse to model human diseases. Nat Rev Endocrinol. 2017;13(8):458–465. PubMed PMC

Maloney S.K., Fuller A., Mitchell D., Gordon C., Overton J.M. Translating animal model research: does it matter that our rodents are cold? Physiology. 2014;29(6):413–420. PubMed

Reitman M.L. Of mice and men - environmental temperature, body temperature, and treatment of obesity. FEBS Lett. 2018;592(12):2098–2107. PubMed

Fischer A.W., Cannon B., Nedergaard J. Optimal housing temperatures for mice to mimic the thermal environment of humans: an experimental study. Mol Metabol. 2018;7:161–170. PubMed PMC

Fischer A.W., Cannon B., Nedergaard J. The answer to the question "What is the best housing temperature to translate mouse experiments to humans?" is: thermoneutrality. Mol Metabol. 2019;26:1–3. PubMed PMC

Keijer J., Li M., Speakman J.R. What is the best housing temperature to translate mouse experiments to humans? Mol Metabol. 2019;25:168–176. PubMed PMC

Speakman J.R., Keijer J. Not so hot: optimal housing temperatures for mice to mimic the environment of humans. Mol Metabol. 2013;2(1):5–9. PubMed PMC

LeGates T.A., Fernandez D.C., Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci. 2014;15(7):443–454. PubMed PMC

Panda S. Circadian physiology of metabolism. Science. 2016;354(6315):1008–1015. PubMed PMC

Adamovich Y., Ladeuix B., Sobel J., Manella G., Neufeld-Cohen A., Assadi M.H., et al. Oxygen and carbon dioxide rhythms are circadian clock controlled and differentially directed by behavioral signals. Cell Metabol. 2019;29(5):1092–1103 e1093. PubMed

Tan C.L., Knight Z.A. Regulation of body temperature by the nervous system. Neuron. 2018;98(1):31–48. PubMed PMC

Ootsuka Y., de Menezes R.C., Zaretsky D.V., Alimoradian A., Hunt J., Stefanidis A., et al. Brown adipose tissue thermogenesis heats brain and body as part of the brain-coordinated ultradian basic rest-activity cycle. Neuroscience. 2009;164(2):849–861. PubMed PMC

Pernold K., Rullman E., Ulfhake B. Bouts of rest and physical activity in C57BL/6J mice. PLoS One. 2023;18(6) PubMed PMC

Gordon C.J. The mouse: an “average” homeotherm. J Therm Biol. 2012;37:286–290.

Blessing W., Ootsuka Y. Timing of activities of daily life is jaggy: how episodic ultradian changes in body and brain temperature are integrated into this process. Temperature (Austin) 2016;3(3):371–383. PubMed PMC

Enerback S., Jacobsson A., Simpson E.M., Guerra C., Yamashita H., Harper M.E., et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997;387(6628):90–94. PubMed

Babu G.J., Bhupathy P., Timofeyev V., Petrashevskaya N.N., Reiser P.J., Chiamvimonvat N., et al. Ablation of sarcolipin enhances sarcoplasmic reticulum calcium transport and atrial contractility. Proc Natl Acad Sci U S A. 2007;104(45):17867–17872. PubMed PMC

Skop V., Guo J., Liu N., Xiao C., Hall K.D., Gavrilova O., et al. The metabolic cost of physical activity in mice using a physiology-based model of energy expenditure. Mol Metabol. 2023 PubMed PMC

Borchers H.W. 2022. R Package ‘pracma’. 2.4.2 ed.

Lighton J.R. Limitations and requirements for measuring metabolic rates: a mini review. Eur J Clin Nutr. 2017;71(3):301–305. PubMed

Pinol R.A., Zahler S.H., Li C., Saha A., Tan B.K., Skop V., et al. Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake. Nat Neurosci. 2018;21(11):1530–1540. PubMed PMC

Skop V., Liu N., Guo J., Gavrilova O., Reitman M.L. The contribution of the mouse tail to thermoregulation is modest. Am J Physiol Endocrinol Metab. 2020;319(2):E438–E446. PubMed PMC

Pinol R.A., Mogul A.S., Hadley C.K., Saha A., Li C., Skop V., et al. Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways. Cell Metabol. 2021;33(7):1389–1403 e1386. PubMed PMC

Kim S.M., Eisner C., Faulhaber-Walter R., Mizel D., Wall S.M., Briggs J.P., et al. Salt sensitivity of blood pressure in NKCC1-deficient mice. Am J Physiol Ren Physiol. 2008;295(4):F1230–F1238. PubMed PMC

Zhang Z., Beier C., Weil T., Hattar S. The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep. Nat Commun. 2021;12(1):5115. PubMed PMC

Mount L.E. Metabolic rate and thermal insulation in albino and hairless mice. J Physiol. 1971;217(2):315–326. PubMed PMC

Gordon C.J. The mouse thermoregulatory system: its impact on translating biomedical data to humans. Physiol Behav. 2017;179:55–66. PubMed PMC

Faber P., Garby L. Fat content affects heat capacity: a study in mice. Acta Physiol Scand. 1995;153(2):185–187. PubMed

Vinales K.L., Begaye B., Thearle M.S., Krakoff J., Piaggi P. Core body temperature, energy expenditure, and epinephrine during fasting, eucaloric feeding, and overfeeding in healthy adult men: evidence for a ceiling effect for human thermogenic response to diet. Metabolism. 2019;94:59–68. PubMed PMC

Saxton C. Effects of severe heat stress on respiration and metabolic rate in resting man. Aviat Space Environ Med. 1981;52(5):281–286. PubMed

Du Bois E.F. The basal metabolism in fever. JAMA. 1921;77:352–355.

Barr D.P., Cecile R.L., Du Bois E.F. Clinical calorimetry XXXIII: temperature regulation after the intravenous injection of proteose and typhoid vaccine. Arch Intern Med. 1922;29(5):608–634.

Bradbury P.A., Fox R.H., Goldsmith R., Hampton I.F., Muir A.L. Resting metabolism in man at elevated body temperatures. J Physiol. 1967;189(2):61P–62P. PubMed

R_Core_Team . R Foundation for Statistical Computing; Vienna, Austria: 2021. R: a language and environment for statistical computing.

Virtue S., Even P., Vidal-Puig A. Below thermoneutrality, changes in activity do not drive changes in total daily energy expenditure between groups of mice. Cell Metabol. 2012;16(5):665–671. PubMed PMC

Blaxter K. Cambridge University Press; Cambridge: 1989. Energy metabolism in animals and man; p. 336.

Guppy M., Withers P. Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev Camb Phil Soc. 1999;74(1):1–40. PubMed

Gillooly J.F., Brown J.H., West G.B., Savage V.M., Charnov E.L. Effects of size and temperature on metabolic rate. Science. 2001;293(5538):2248–2251. PubMed

White C.R., Seymour R.S. Mammalian basal metabolic rate is proportional to body mass2/3. Proc Natl Acad Sci U S A. 2003;100(7):4046–4049. PubMed PMC

Kreissl M.C., Wu H.M., Stout D.B., Ladno W., Schindler T.H., Zhang X., et al. Noninvasive measurement of cardiovascular function in mice with high-temporal-resolution small-animal PET. J Nucl Med. 2006;47(6):974–980. PubMed PMC

Jorgensen C.R., Gobel F.L., Taylor H.L., Wang Y. Myocardial blood flow and oxygen consumption during exercise. Ann N Y Acad Sci. 1977;301:213–223. PubMed

Howard B.T., Iles T.L., Coles J.A., Sigg D.C., Iaizzo P.A. In: Handbook of cardiac anatomy, physiology, and devices. Iaizzo P.A., editor. Springer International Publishing; Switzerland: 2015. Reversible and irreversible damage of the myocardium: ischemia/reperfusion injury and cardioprotection; pp. 279–294.

Bal N.C., Maurya S.K., Sopariwala D.H., Sahoo S.K., Gupta S.C., Shaikh S.A., et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med. 2012;18(10):1575–1579. PubMed PMC

Sanchez-Alavez M., Alboni S., Conti B. Sex- and age-specific differences in core body temperature of C57Bl/6 mice. Age. 2011;33(1):89–99. PubMed PMC

Zhang Z., Reis F., He Y., Park J.W., DiVittorio J.R., Sivakumar N., et al. Estrogen-sensitive medial preoptic area neurons coordinate torpor in mice. Nat Commun. 2020;11(1):6378. PubMed PMC

Rubio W.B., Cortopassi M.D., Ramachandran D., Walker S.J., Balough E.M., Wang J., et al. Not so fast: paradoxically increased variability in the glucose tolerance test due to food withdrawal in continuous glucose-monitored mice. Mol Metabol. 2023;77 PubMed PMC

IUPS Glossary of terms for thermal physiology. Jpn J Physiol. 2001;51(2):245–280.

Romanovsky A.A. The thermoregulation system and how it works. Handb Clin Neurol. 2018;156:3–43. PubMed

Sulaman B.A., Wang S., Tyan J., Eban-Rothschild A. Neuro-orchestration of sleep and wakefulness. Nat Neurosci. 2023;26(2):196–212. PubMed

Saper C.B., Romanovsky A.A., Scammell T.E. Neural circuitry engaged by prostaglandins during the sickness syndrome. Nat Neurosci. 2012;15(8):1088–1095. PubMed PMC

Ruf T., Geiser F. Daily torpor and hibernation in birds and mammals. Biol Rev Camb Phil Soc. 2015;90(3):891–926. PubMed PMC

Weinert D., Waterhouse J. The circadian rhythm of core temperature: effects of physical activity and aging. Physiol Behav. 2007;90(2–3):246–256. PubMed

Bennett A.F., Ruben J.A. Endothermy and activity in vertebrates. Science. 1979;206(4419):649–654. PubMed

Bennett A.F. Thermal dependence of muscle function. Am J Physiol. 1984;247(2 Pt 2):R217–R229. PubMed

Asmussen E., Boje O. Body temperature and the capacity for work. Acta Physiol Scand. 1945;10(1):1–22.

Fradkin A.J., Zazryn T.R., Smoliga J.M. Effects of warming-up on physical performance: a systematic review with meta-analysis. J Strength Condit Res. 2010;24(1):140–148. PubMed

Nielsen B., Nielsen M. Body temperature during work at different environmental temperatures. Acta Physiol Scand. 1962;56:120–129. PubMed

Chandra R., Farah F., Munoz-Lobato F., Bokka A., Benedetti K.L., Brueggemann C., et al. Sleep is required to consolidate odor memory and remodel olfactory synapses. Cell. 2023;186(13):2911–2928 e2920. PubMed PMC

Klinzing J.G., Niethard N., Born J. Mechanisms of systems memory consolidation during sleep. Nat Neurosci. 2019;22(10):1598–1610. PubMed

Hauglund N.L., Pavan C., Nedergaard M. Cleaning the sleeping brain – the potential restorative function of the glymphatic system. Curr Opin Physiol. 2020;15:1–6.

Anafi R.C., Kayser M.S., Raizen D.M. Exploring phylogeny to find the function of sleep. Nat Rev Neurosci. 2019;20(2):109–116. PubMed

Nath R.D., Bedbrook C.N., Abrams M.J., Basinger T., Bois J.S., Prober D.A., et al. The jellyfish cassiopea exhibits a sleep-like state. Curr Biol. 2017;27(19):2984–2990 e2983. PubMed PMC

Krueger J.M., Takahashi S. Thermoregulation and sleep. Closely linked but separable. Ann N Y Acad Sci. 1997;813:281–286. PubMed

Saper C.B., Scammell T.E., Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437(7063):1257–1263. PubMed

Harding E.C., Franks N.P., Wisden W. The temperature dependence of sleep. Front Neurosci. 2019;13:336. PubMed PMC

Walker J.M., Berger R.J. Sleep as an adaptation for energy conservation functionally related to hibernation and shallow torpor. Prog Brain Res. 1980;53:255–278. PubMed

Schmidt M.H., Swang T.W., Hamilton I.M., Best J.A. State-dependent metabolic partitioning and energy conservation: a theoretical framework for understanding the function of sleep. PLoS One. 2017;12(10) PubMed PMC

Joosten H.F., van der Kroon P.H. Role of the thyroid in the development of the obese-hyperglycemic syndrome in mice (ob ob) Metabolism. 1974;23(5):425–436. PubMed

Fischer A.W., Cannon B., Nedergaard J. Leptin: is it thermogenic? Endocr Rev. 2020;41(2):232–260. PubMed PMC

Lee D.L., Webb R.C., Brands M.W. Sympathetic and angiotensin-dependent hypertension during cage-switch stress in mice. Am J Physiol Regul Integr Comp Physiol. 2004;287(6):R1394–R1398. PubMed

Rasmussen S., Miller M.M., Filipski S.B., Tolwani R.J. Cage change influences serum corticosterone and anxiety-like behaviors in the mouse. J Am Assoc Lab Anim Sci. 2011;50(4):479–483. PubMed PMC

Suzuki A., Sinton C.M., Greene R.W., Yanagisawa M. Behavioral and biochemical dissociation of arousal and homeostatic sleep need influenced by prior wakeful experience in mice. Proc Natl Acad Sci U S A. 2013;110(25):10288–10293. PubMed PMC

National_Research_Council . Eighth ed. The National Academies Press; Washington, DC: 2011. Guide for the care and use of laboratory animals.

Ravussin E., Lillioja S., Anderson T.E., Christin L., Bogardus C. Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. J Clin Invest. 1986;78(6):1568–1578. PubMed PMC

Schmidt-Nielsen K. Locomotion: energy cost of swimming, flying, and running. Science. 1972;177(4045):222–228. PubMed

Speakman J.R. Measuring energy metabolism in the mouse - theoretical, practical, and analytical considerations. Front Physiol. 2013;4:34. PubMed PMC

Ksiazek A., Konarzewski M., Lapo I.B. Anatomic and energetic correlates of divergent selection for basal metabolic rate in laboratory mice. Physiol Biochem Zool. 2004;77(6):890–899. PubMed

D'Alessio D.A., Kavle E.C., Mozzoli M.A., Smalley K.J., Polansky M., Kendrick Z.V., et al. Thermic effect of food in lean and obese men. J Clin Invest. 1988;81(6):1781–1789. PubMed PMC

Kinabo J.L., Durnin J.V. Thermic effect of food in man: effect of meal composition, and energy content. Br J Nutr. 1990;64(1):37–44. PubMed

Newest 20 citations...

See more in
Medvik | PubMed

A consensus guide to preclinical indirect calorimetry experiments

. 2025 Sep ; 7 (9) : 1765-1780. [epub] 20250924

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...