Beyond day and night: The importance of ultradian rhythms in mouse physiology
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38657735
PubMed Central
PMC11070603
DOI
10.1016/j.molmet.2024.101946
PII: S2212-8778(24)00077-2
Knihovny.cz E-zdroje
- Klíčová slova
- Body temperature regulation, Brown adipose tissue, Contributors to energy expenditure, Physical activity and physical activity energy expenditure, Sleep/wake, Ultradian and circadian rhythms,
- MeSH
- bdění fyziologie MeSH
- cirkadiánní rytmus * fyziologie MeSH
- energetický metabolismus * fyziologie MeSH
- fotoperioda * MeSH
- hnědá tuková tkáň metabolismus fyziologie MeSH
- myši MeSH
- spánek fyziologie MeSH
- tělesná teplota * fyziologie MeSH
- ultradiánní rytmus * fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Our circadian world shapes much of metabolic physiology. In mice ∼40% of the light and ∼80% of the dark phase time is characterized by bouts of increased energy expenditure (EE). These ultradian bouts have a higher body temperature (Tb) and thermal conductance and contain virtually all of the physical activity and awake time. Bout status is a better classifier of mouse physiology than photoperiod, with ultradian bouts superimposed on top of the circadian light/dark cycle. We suggest that the primary driver of ultradian bouts is a brain-initiated transition to a higher defended Tb of the active/awake state. Increased energy expenditure from brown adipose tissue, physical activity, and cardiac work combine to raise Tb from the lower defended Tb of the resting/sleeping state. Thus, unlike humans, much of mouse metabolic physiology is episodic with large ultradian increases in EE and Tb that correlate with the active/awake state and are poorly aligned with circadian cycling.
Zobrazit více v PubMed
Hunter H., de Gracia Hahn D., Duret A., Im Y.R., Cheah Q., Dong J., et al. Weight loss, insulin resistance, and study design confound results in a meta-analysis of animal models of fatty liver. Elife. 2020;9 PubMed PMC
Hackam D.G., Redelmeier D.A. Translation of research evidence from animals to humans. JAMA. 2006;296(14):1731–1732. PubMed
Leenaars C.H.C., Kouwenaar C., Stafleu F.R., Bleich A., Ritskes-Hoitinga M., De Vries R.B.M., et al. Animal to human translation: a systematic scoping review of reported concordance rates. J Transl Med. 2019;17(1):223. PubMed PMC
Schmidt-Nielsen K. Cambridge University Press; Cambridge: 1984. Scaling: why is animal size so important?
Kleiber M. 2nd ed. Robert E. Krieger Publishing Company; Huntington, New York: 1975. The fire of Life.
Gordon C.J. Cambridge University Press; New York: 1993. Temperature regulation in laboratory rodents.
Refinetti R. Circadian rhythmicity of body temperature and metabolism. Temperature (Austin) 2020;7(4):321–362. PubMed PMC
Abreu-Vieira G., Xiao C., Gavrilova O., Reitman M.L. Integration of body temperature into the analysis of energy expenditure in the mouse. Mol Metabol. 2015;4(6):461–470. PubMed PMC
Skop V., Guo J., Liu N., Xiao C., Hall K.D., Gavrilova O., et al. Mouse thermoregulation: introducing the concept of the thermoneutral point. Cell Rep. 2020;31(2) PubMed PMC
Skop V., Xiao C., Liu N., Gavrilova O., Reitman M.L. The effects of housing density on mouse thermal physiology depend on sex and ambient temperature. Mol Metabol. 2021;53 PubMed PMC
Ganeshan K., Chawla A. Warming the mouse to model human diseases. Nat Rev Endocrinol. 2017;13(8):458–465. PubMed PMC
Maloney S.K., Fuller A., Mitchell D., Gordon C., Overton J.M. Translating animal model research: does it matter that our rodents are cold? Physiology. 2014;29(6):413–420. PubMed
Reitman M.L. Of mice and men - environmental temperature, body temperature, and treatment of obesity. FEBS Lett. 2018;592(12):2098–2107. PubMed
Fischer A.W., Cannon B., Nedergaard J. Optimal housing temperatures for mice to mimic the thermal environment of humans: an experimental study. Mol Metabol. 2018;7:161–170. PubMed PMC
Fischer A.W., Cannon B., Nedergaard J. The answer to the question "What is the best housing temperature to translate mouse experiments to humans?" is: thermoneutrality. Mol Metabol. 2019;26:1–3. PubMed PMC
Keijer J., Li M., Speakman J.R. What is the best housing temperature to translate mouse experiments to humans? Mol Metabol. 2019;25:168–176. PubMed PMC
Speakman J.R., Keijer J. Not so hot: optimal housing temperatures for mice to mimic the environment of humans. Mol Metabol. 2013;2(1):5–9. PubMed PMC
LeGates T.A., Fernandez D.C., Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci. 2014;15(7):443–454. PubMed PMC
Panda S. Circadian physiology of metabolism. Science. 2016;354(6315):1008–1015. PubMed PMC
Adamovich Y., Ladeuix B., Sobel J., Manella G., Neufeld-Cohen A., Assadi M.H., et al. Oxygen and carbon dioxide rhythms are circadian clock controlled and differentially directed by behavioral signals. Cell Metabol. 2019;29(5):1092–1103 e1093. PubMed
Tan C.L., Knight Z.A. Regulation of body temperature by the nervous system. Neuron. 2018;98(1):31–48. PubMed PMC
Ootsuka Y., de Menezes R.C., Zaretsky D.V., Alimoradian A., Hunt J., Stefanidis A., et al. Brown adipose tissue thermogenesis heats brain and body as part of the brain-coordinated ultradian basic rest-activity cycle. Neuroscience. 2009;164(2):849–861. PubMed PMC
Pernold K., Rullman E., Ulfhake B. Bouts of rest and physical activity in C57BL/6J mice. PLoS One. 2023;18(6) PubMed PMC
Gordon C.J. The mouse: an “average” homeotherm. J Therm Biol. 2012;37:286–290.
Blessing W., Ootsuka Y. Timing of activities of daily life is jaggy: how episodic ultradian changes in body and brain temperature are integrated into this process. Temperature (Austin) 2016;3(3):371–383. PubMed PMC
Enerback S., Jacobsson A., Simpson E.M., Guerra C., Yamashita H., Harper M.E., et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997;387(6628):90–94. PubMed
Babu G.J., Bhupathy P., Timofeyev V., Petrashevskaya N.N., Reiser P.J., Chiamvimonvat N., et al. Ablation of sarcolipin enhances sarcoplasmic reticulum calcium transport and atrial contractility. Proc Natl Acad Sci U S A. 2007;104(45):17867–17872. PubMed PMC
Skop V., Guo J., Liu N., Xiao C., Hall K.D., Gavrilova O., et al. The metabolic cost of physical activity in mice using a physiology-based model of energy expenditure. Mol Metabol. 2023 PubMed PMC
Borchers H.W. 2022. R Package ‘pracma’. 2.4.2 ed.
Lighton J.R. Limitations and requirements for measuring metabolic rates: a mini review. Eur J Clin Nutr. 2017;71(3):301–305. PubMed
Pinol R.A., Zahler S.H., Li C., Saha A., Tan B.K., Skop V., et al. Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake. Nat Neurosci. 2018;21(11):1530–1540. PubMed PMC
Skop V., Liu N., Guo J., Gavrilova O., Reitman M.L. The contribution of the mouse tail to thermoregulation is modest. Am J Physiol Endocrinol Metab. 2020;319(2):E438–E446. PubMed PMC
Pinol R.A., Mogul A.S., Hadley C.K., Saha A., Li C., Skop V., et al. Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways. Cell Metabol. 2021;33(7):1389–1403 e1386. PubMed PMC
Kim S.M., Eisner C., Faulhaber-Walter R., Mizel D., Wall S.M., Briggs J.P., et al. Salt sensitivity of blood pressure in NKCC1-deficient mice. Am J Physiol Ren Physiol. 2008;295(4):F1230–F1238. PubMed PMC
Zhang Z., Beier C., Weil T., Hattar S. The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep. Nat Commun. 2021;12(1):5115. PubMed PMC
Mount L.E. Metabolic rate and thermal insulation in albino and hairless mice. J Physiol. 1971;217(2):315–326. PubMed PMC
Gordon C.J. The mouse thermoregulatory system: its impact on translating biomedical data to humans. Physiol Behav. 2017;179:55–66. PubMed PMC
Faber P., Garby L. Fat content affects heat capacity: a study in mice. Acta Physiol Scand. 1995;153(2):185–187. PubMed
Vinales K.L., Begaye B., Thearle M.S., Krakoff J., Piaggi P. Core body temperature, energy expenditure, and epinephrine during fasting, eucaloric feeding, and overfeeding in healthy adult men: evidence for a ceiling effect for human thermogenic response to diet. Metabolism. 2019;94:59–68. PubMed PMC
Saxton C. Effects of severe heat stress on respiration and metabolic rate in resting man. Aviat Space Environ Med. 1981;52(5):281–286. PubMed
Du Bois E.F. The basal metabolism in fever. JAMA. 1921;77:352–355.
Barr D.P., Cecile R.L., Du Bois E.F. Clinical calorimetry XXXIII: temperature regulation after the intravenous injection of proteose and typhoid vaccine. Arch Intern Med. 1922;29(5):608–634.
Bradbury P.A., Fox R.H., Goldsmith R., Hampton I.F., Muir A.L. Resting metabolism in man at elevated body temperatures. J Physiol. 1967;189(2):61P–62P. PubMed
R_Core_Team . R Foundation for Statistical Computing; Vienna, Austria: 2021. R: a language and environment for statistical computing.
Virtue S., Even P., Vidal-Puig A. Below thermoneutrality, changes in activity do not drive changes in total daily energy expenditure between groups of mice. Cell Metabol. 2012;16(5):665–671. PubMed PMC
Blaxter K. Cambridge University Press; Cambridge: 1989. Energy metabolism in animals and man; p. 336.
Guppy M., Withers P. Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev Camb Phil Soc. 1999;74(1):1–40. PubMed
Gillooly J.F., Brown J.H., West G.B., Savage V.M., Charnov E.L. Effects of size and temperature on metabolic rate. Science. 2001;293(5538):2248–2251. PubMed
White C.R., Seymour R.S. Mammalian basal metabolic rate is proportional to body mass2/3. Proc Natl Acad Sci U S A. 2003;100(7):4046–4049. PubMed PMC
Kreissl M.C., Wu H.M., Stout D.B., Ladno W., Schindler T.H., Zhang X., et al. Noninvasive measurement of cardiovascular function in mice with high-temporal-resolution small-animal PET. J Nucl Med. 2006;47(6):974–980. PubMed PMC
Jorgensen C.R., Gobel F.L., Taylor H.L., Wang Y. Myocardial blood flow and oxygen consumption during exercise. Ann N Y Acad Sci. 1977;301:213–223. PubMed
Howard B.T., Iles T.L., Coles J.A., Sigg D.C., Iaizzo P.A. In: Handbook of cardiac anatomy, physiology, and devices. Iaizzo P.A., editor. Springer International Publishing; Switzerland: 2015. Reversible and irreversible damage of the myocardium: ischemia/reperfusion injury and cardioprotection; pp. 279–294.
Bal N.C., Maurya S.K., Sopariwala D.H., Sahoo S.K., Gupta S.C., Shaikh S.A., et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med. 2012;18(10):1575–1579. PubMed PMC
Sanchez-Alavez M., Alboni S., Conti B. Sex- and age-specific differences in core body temperature of C57Bl/6 mice. Age. 2011;33(1):89–99. PubMed PMC
Zhang Z., Reis F., He Y., Park J.W., DiVittorio J.R., Sivakumar N., et al. Estrogen-sensitive medial preoptic area neurons coordinate torpor in mice. Nat Commun. 2020;11(1):6378. PubMed PMC
Rubio W.B., Cortopassi M.D., Ramachandran D., Walker S.J., Balough E.M., Wang J., et al. Not so fast: paradoxically increased variability in the glucose tolerance test due to food withdrawal in continuous glucose-monitored mice. Mol Metabol. 2023;77 PubMed PMC
IUPS Glossary of terms for thermal physiology. Jpn J Physiol. 2001;51(2):245–280.
Romanovsky A.A. The thermoregulation system and how it works. Handb Clin Neurol. 2018;156:3–43. PubMed
Sulaman B.A., Wang S., Tyan J., Eban-Rothschild A. Neuro-orchestration of sleep and wakefulness. Nat Neurosci. 2023;26(2):196–212. PubMed
Saper C.B., Romanovsky A.A., Scammell T.E. Neural circuitry engaged by prostaglandins during the sickness syndrome. Nat Neurosci. 2012;15(8):1088–1095. PubMed PMC
Ruf T., Geiser F. Daily torpor and hibernation in birds and mammals. Biol Rev Camb Phil Soc. 2015;90(3):891–926. PubMed PMC
Weinert D., Waterhouse J. The circadian rhythm of core temperature: effects of physical activity and aging. Physiol Behav. 2007;90(2–3):246–256. PubMed
Bennett A.F., Ruben J.A. Endothermy and activity in vertebrates. Science. 1979;206(4419):649–654. PubMed
Bennett A.F. Thermal dependence of muscle function. Am J Physiol. 1984;247(2 Pt 2):R217–R229. PubMed
Asmussen E., Boje O. Body temperature and the capacity for work. Acta Physiol Scand. 1945;10(1):1–22.
Fradkin A.J., Zazryn T.R., Smoliga J.M. Effects of warming-up on physical performance: a systematic review with meta-analysis. J Strength Condit Res. 2010;24(1):140–148. PubMed
Nielsen B., Nielsen M. Body temperature during work at different environmental temperatures. Acta Physiol Scand. 1962;56:120–129. PubMed
Chandra R., Farah F., Munoz-Lobato F., Bokka A., Benedetti K.L., Brueggemann C., et al. Sleep is required to consolidate odor memory and remodel olfactory synapses. Cell. 2023;186(13):2911–2928 e2920. PubMed PMC
Klinzing J.G., Niethard N., Born J. Mechanisms of systems memory consolidation during sleep. Nat Neurosci. 2019;22(10):1598–1610. PubMed
Hauglund N.L., Pavan C., Nedergaard M. Cleaning the sleeping brain – the potential restorative function of the glymphatic system. Curr Opin Physiol. 2020;15:1–6.
Anafi R.C., Kayser M.S., Raizen D.M. Exploring phylogeny to find the function of sleep. Nat Rev Neurosci. 2019;20(2):109–116. PubMed
Nath R.D., Bedbrook C.N., Abrams M.J., Basinger T., Bois J.S., Prober D.A., et al. The jellyfish cassiopea exhibits a sleep-like state. Curr Biol. 2017;27(19):2984–2990 e2983. PubMed PMC
Krueger J.M., Takahashi S. Thermoregulation and sleep. Closely linked but separable. Ann N Y Acad Sci. 1997;813:281–286. PubMed
Saper C.B., Scammell T.E., Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 2005;437(7063):1257–1263. PubMed
Harding E.C., Franks N.P., Wisden W. The temperature dependence of sleep. Front Neurosci. 2019;13:336. PubMed PMC
Walker J.M., Berger R.J. Sleep as an adaptation for energy conservation functionally related to hibernation and shallow torpor. Prog Brain Res. 1980;53:255–278. PubMed
Schmidt M.H., Swang T.W., Hamilton I.M., Best J.A. State-dependent metabolic partitioning and energy conservation: a theoretical framework for understanding the function of sleep. PLoS One. 2017;12(10) PubMed PMC
Joosten H.F., van der Kroon P.H. Role of the thyroid in the development of the obese-hyperglycemic syndrome in mice (ob ob) Metabolism. 1974;23(5):425–436. PubMed
Fischer A.W., Cannon B., Nedergaard J. Leptin: is it thermogenic? Endocr Rev. 2020;41(2):232–260. PubMed PMC
Lee D.L., Webb R.C., Brands M.W. Sympathetic and angiotensin-dependent hypertension during cage-switch stress in mice. Am J Physiol Regul Integr Comp Physiol. 2004;287(6):R1394–R1398. PubMed
Rasmussen S., Miller M.M., Filipski S.B., Tolwani R.J. Cage change influences serum corticosterone and anxiety-like behaviors in the mouse. J Am Assoc Lab Anim Sci. 2011;50(4):479–483. PubMed PMC
Suzuki A., Sinton C.M., Greene R.W., Yanagisawa M. Behavioral and biochemical dissociation of arousal and homeostatic sleep need influenced by prior wakeful experience in mice. Proc Natl Acad Sci U S A. 2013;110(25):10288–10293. PubMed PMC
National_Research_Council . Eighth ed. The National Academies Press; Washington, DC: 2011. Guide for the care and use of laboratory animals.
Ravussin E., Lillioja S., Anderson T.E., Christin L., Bogardus C. Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber. J Clin Invest. 1986;78(6):1568–1578. PubMed PMC
Schmidt-Nielsen K. Locomotion: energy cost of swimming, flying, and running. Science. 1972;177(4045):222–228. PubMed
Speakman J.R. Measuring energy metabolism in the mouse - theoretical, practical, and analytical considerations. Front Physiol. 2013;4:34. PubMed PMC
Ksiazek A., Konarzewski M., Lapo I.B. Anatomic and energetic correlates of divergent selection for basal metabolic rate in laboratory mice. Physiol Biochem Zool. 2004;77(6):890–899. PubMed
D'Alessio D.A., Kavle E.C., Mozzoli M.A., Smalley K.J., Polansky M., Kendrick Z.V., et al. Thermic effect of food in lean and obese men. J Clin Invest. 1988;81(6):1781–1789. PubMed PMC
Kinabo J.L., Durnin J.V. Thermic effect of food in man: effect of meal composition, and energy content. Br J Nutr. 1990;64(1):37–44. PubMed