A consensus guide to preclinical indirect calorimetry experiments
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
P30 DK116074
NIDDK NIH HHS - United States
R01 DK125260
NIDDK NIH HHS - United States
PubMed
40993210
DOI
10.1038/s42255-025-01360-4
PII: 10.1038/s42255-025-01360-4
Knihovny.cz E-zdroje
- MeSH
- energetický metabolismus MeSH
- konsensus MeSH
- lidé MeSH
- nepřímá kalorimetrie * normy metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Understanding the complex factors influencing mammalian metabolism and body weight homeostasis is a long-standing challenge requiring knowledge of energy intake, absorption and expenditure. Using measurements of respiratory gas exchange, indirect calorimetry can provide non-invasive estimates of whole-body energy expenditure. However, inconsistent measurement units and flawed data normalization methods have slowed progress in this field. This guide aims to establish consensus standards to unify indirect calorimetry experiments and their analysis for more consistent, meaningful and reproducible results. By establishing community-driven standards, we hope to facilitate data comparison across research datasets. This advance will allow the creation of an in-depth, machine-readable data repository built on shared standards. This overdue initiative stands to markedly improve the accuracy and depth of efforts to interrogate mammalian metabolism. Data sharing according to established best practices will also accelerate the translation of basic findings into clinical applications for metabolic diseases afflicting global populations.
American Federation for Aging Research New York NY USA
Broad Institute of Harvard and MIT Cambridge MA USA
Cambridge Heart and Lung Research Institute Cambridge UK
Cambridge University Nanjing Centre of Technology and Innovation Nanjing PR China
Cardiovascular Center Medical College of Wisconsin Milwaukee WI USA
Cardiovascular Research Institute Weill Cornell Medicine New York NY USA
Center for Genomic Medicine Massachusetts General Hospital Harvard Medical School Boston MA USA
Centre de Recherche du Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada
Centre for Experimental Medicine Institute for Clinical and Experimental Medicine Prague Czechia
Centre for Metabolism Obesity and Diabetes Research McMaster University Hamilton Ontario Canada
Centro de Investigacion Principe Felipe Valencia Spain
Centro de Investigación Principe Felipe Valencia Spain
Comprehensive Rodent Metabolic Phenotyping Core Medical College of Wisconsin Milwaukee WI USA
Department of Anatomy University of California San Francisco San Francisco CA USA
Department of Biochemistry and Microbiology University of Chemistry and Technology Prague Czechia
Department of Biochemistry and Molecular Biology Monash University Clayton Victoria Australia
Department of Biochemistry McGill University Montreal Quebec Canada
Department of Biology University of Alabama at Birmingham Birmingham AL USA
Department of Biomedical Engineering Medical College of Wisconsin Milwaukee WI USA
Department of Cancer Biology Dana Farber Cancer Institute Boston MA USA
Department of Cell Biology and Physiology University of Kansas Medical Center Kansas City KS USA
Department of Cell Biology Harvard University Medical School Boston MA USA
Department of Cellular and Molecular Physiology Yale School of Medicine New Haven CT USA
Department of Health Sciences and Technology ETH Zurich Zurich Switzerland
Department of Integrative Physiology Baylor College of Medicine Houston TX USA
Department of Medicine Albert Einstein College of Medicine Bronx NY USA
Department of Medicine Baylor College of Medicine Houston TX USA
Department of Medicine The University of Chicago Chicago IL USA
Department of Medicine Université de Montréal Montreal Quebec Canada
Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX USA
Department of Molecular and Integrative Physiology University of Michigan Ann Arbor MI USA
Department of Molecular Biosciences University of California Davis Davis CA USA
Department of Neuroscience Albert Einstein College of Medicine Bronx NY USA
Department of Obstetrics and Gynecology University of Michigan Ann Arbor MI USA
Department of Pathology Stanford University School of Medicine Stanford CA USA
Department of Physiology Medical College of Wisconsin Milwaukee WI USA
Department of Physiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
Department of Surgery School of Medicine University of California Davis Davis CA USA
Diabetes Center University of California San Francisco San Francisco CA USA
Division of Cardiology Department of Medicine Weill Cornell Medicine New York NY USA
Division of Diabetes Endocrinology and Metabolism Baylor College of Medicine Houston TX USA
Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia
German Center for Diabetes Research Neuherberg Germany
Harold Hamm Diabetes Center University of Oklahoma Health Sciences Oklahoma City OK USA
Institute for Diabetes and Obesity Helmholtz Munich Munich Germany
Institute of Experimental Genetics German Mouse Clinic Helmholtz Zentrum Munich Germany
Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
Institute of Health Sciences China Medical University Shenyang China
KU Diabetes Institute Kansas City KS USA
Luxembourg Centre for Systems Biomedicine University of Luxembourg Luxembourg Luxembourg
Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia
Mouse Biology Program University of California Davis Davis CA USA
MRC Institute of Metabolic Science and Medical Research Council Cambridge UK
Obesity and Comorbidities Research Center University of Campinas Campinas Brazil
Pennington Biomedical Research Center Louisiana State University Baton Rouge LA USA
Pennington Biomedical Research Center LSU System Baton Rouge LA USA
Rosalind and Morris Goodman Cancer Institute McGill University Montreal Quebec Canada
School of Biological Sciences University of Aberdeen Aberdeen UK
School of Life and Environmental Sciences The University of Sydney Sydney New South Wales Australia
School of Life Sciences Fudan University Shanghai China
School of Medical Sciences The University of Sydney Sydney New South Wales Australia
Stanford Cardiovascular Institute Stanford University School of Medicine Stanford CA USA
Stanford Diabetes Research Center Stanford University School of Medicine Stanford CA USA
The Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
The Jackson Laboratory Bar Harbor ME USA
Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
Translational Gerontology Branch National Institute on Aging NIH Baltimore MD USA
University of Washington Medicine Diabetes Institute Department of Medicine Seattle WA USA
VA Greater Los Angeles Healthcare System GRECC Los Angeles CA USA
Vanderbilt Mouse Metabolic Phenotyping Center Vanderbilt University Nashville TN USA
Victor Chang Cardiac Research Institute Darlinghurst New South Wales Australia
Weill Center for Metabolic Health Weill Cornell Medicine New York NY USA
Zobrazit více v PubMed
Lavoisier, A. L. & Marquis de Laplace, P. S. Mémoire sur la chaleur: Lû à'Académie royale des sciences, le 28 juin 1783. (De l’Imprimerie royale, 1783).
Shechtman, O. & Talan, M. I. Effect of exercise on cold tolerance and metabolic heat production in adult and aged C57BL/6J mice. J. Appl. Physiol. 77, 2214–2218 (1994). PubMed DOI
Susulic, V. S. et al. Targeted disruption of the β3-adrenergic receptor gene. J. Biol. Chem. 270, 29483–29492 (1995). PubMed DOI
Pelleymounter, M. A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995). PubMed DOI
Speakman, J. R. & McQueenie, J. Limits to sustained metabolic rate: the link between food intake, basal metabolic rate, and morphology in reproducing mice, Mus musculus. Physiological Zool. 69, 746–769 (1996). DOI
Ravussin, E., Burnand, B., Schutz, Y. & Jequier, E. Twenty-four-hour energy expenditure and resting metabolic rate in obese, moderately obese, and control subjects. Am. J. Clin. Nutr. 35, 566–573 (1982). PubMed DOI
Brychta, R. & Chen, K. Cold-induced thermogenesis in humans. Eur. J. Clin. Nutr. 71, 345–352 (2017). PubMed DOI
Achamrah, N., Delsoglio, M., De Waele, E., Berger, M. M. & Pichard, C. Indirect calorimetry: the 6 main issues. Clin. Nutr. 40, 4–14 (2021). PubMed DOI
Duivenvoorde, L. P., van Schothorst, E. M., Swarts, H. J. & Keijer, J. Assessment of metabolic flexibility of old and adult mice using three noninvasive, indirect calorimetry-based treatments. J. Gerontol. A Biol. Sci. Med Sci. 70, 282–293 (2015). PubMed DOI
Houtkooper, R. H. et al. The metabolic footprint of aging in mice. Sci. Rep. 1, 134 (2011). PubMed DOI PMC
Schefer, V. & Talan, M. I. Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity. Exp. Gerontol. 31, 387–392 (1996). PubMed DOI
Petr, M. A. et al. A cross-sectional study of functional and metabolic changes during aging through the lifespan in male mice. eLife 10, e62952 (2021). PubMed DOI PMC
Ellacott, K. L., Morton, G. J., Woods, S. C., Tso, P. & Schwartz, M. W. Assessment of feeding behavior in laboratory mice. Cell Metab. 12, 10–17 (2010). PubMed DOI PMC
Martin, R. E. et al. Maternal oxycodone treatment results in neurobehavioral disruptions in mice offspring. eNeuro 8, ENEURO.0150–21.2021 (2021). PubMed DOI
Sanchez-Alavez, M., Bortell, N., Galmozzi, A., Conti, B. & Marcondes, M. C. G. Reactive oxygen species scavenger N-acetyl cysteine reduces methamphetamine-induced hyperthermia without affecting motor activity in mice. Temperature 1, 227–241 (2014). DOI
Rupprecht, L. E. et al. Self-administered nicotine increases fat metabolism and suppresses weight gain in male rats. Psychopharmacology 235, 1131–1140 (2018). PubMed DOI PMC
Addolorato, G., Capristo, E., Greco, A., Stefanini, G. & Gasbarrini, G. Influence of chronic alcohol abuse on body weight and energy metabolism: is excess ethanol consumption a risk factor for obesity or malnutrition? J. Intern. Med. 244, 387–395 (1998). PubMed DOI
Levine, J. A., Harris, M. M. & Morgan, M. Y. Energy expenditure in chronic alcohol abuse. Eur. J. Clin. Invest 30, 779–786 (2000). PubMed DOI
Schwindinger, W. F., Borrell, B. M., Waldman, L. C. & Robishaw, J. D. Mice lacking the G protein γ3-subunit show resistance to opioids and diet induced obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1494–R1502 (2009). PubMed DOI PMC
Bonasera, S. J., Chaudoin, T. R., Goulding, E. H., Mittek, M. & Dunaevsky, A. Decreased home cage movement and oromotor impairments in adult Fmr1‐KO mice. Genes Brain Behav. 16, 564–573 (2017). PubMed DOI
Gremminger, V. L. et al. Skeletal muscle specific mitochondrial dysfunction and altered energy metabolism in a murine model (oim/oim) of severe osteogenesis imperfecta. Mol. Genet Metab. 132, 244–253 (2021). PubMed DOI PMC
Nandy, A. et al. Lipolysis supports bone formation by providing osteoblasts with endogenous fatty acid substrates to maintain bioenergetic status. Bone Res. 11, 62 (2023). PubMed DOI PMC
Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 13, 195–204 (2011). PubMed DOI PMC
Zhang, J., Chen, D., Sweeney, P. & Yang, Y. An excitatory ventromedial hypothalamus to paraventricular thalamus circuit that suppresses food intake. Nat. Commun. 11, 6326 (2020). PubMed DOI PMC
Piñol, R. A. et al. Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways. Cell Metab. 33, 1389–1403 (2021).
Cavalcanti-de-Albuquerque, J. P., Bober, J., Zimmer, M. R. & Dietrich, M. O. Regulation of substrate utilization and adiposity by Agrp neurons. Nat. Commun. 10, 311 (2019). PubMed DOI PMC
Lerner, L. et al. MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J. Cachexia Sarcopenia Muscle 7, 467–482 (2016). PubMed DOI
Falconer, J. S., Fearon, K. C., Plester, C. E., Ross, J. A. & Carter, D. C. Cytokines, the acute-phase response, and resting energy expenditure in cachectic patients with pancreatic cancer. Ann. Surg. 219, 325–331 (1994). PubMed DOI PMC
Suriben, R. et al. Antibody-mediated inhibition of GDF15–GFRAL activity reverses cancer cachexia in mice. Nat. Med. 26, 1264–1270 (2020). PubMed DOI
Kliewer, K. L. et al. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice. Cancer Biol. Ther. 16, 886–897 (2015). PubMed DOI
Tsoli, M. et al. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res. 72, 4372–4382 (2012). PubMed DOI
Kir, S. et al. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab. 23, 315–323 (2016). PubMed DOI
Desai, M. S. et al. Hypertrophic cardiomyopathy and dysregulation of cardiac energetics in a mouse model of biliary fibrosis. Hepatology 51, 2097–2107 (2010). PubMed DOI
Darrah, R. J. et al. Ventilatory pattern and energy expenditure are altered in cystic fibrosis mice. J. Cyst. Fibros. 12, 345–351 (2013). PubMed DOI PMC
Yang, J. N., Wang, Y., Garcia-Roves, P. M., Bjornholm, M. & Fredholm, B. B. Adenosine A(3) receptors regulate heart rate, motor activity and body temperature. Acta Physiol. 199, 221–230 (2010). DOI
Lakin, R. et al. Changes in heart rate and its regulation by the autonomic nervous system do not differ between forced and voluntary exercise in mice. Front. Physiol. 9, 841 (2018). PubMed DOI PMC
Roy, A. et al. Cardiomyocyte‐secreted acetylcholine is required for maintenance of homeostasis in the heart. FASEB J. 27, 5072–5082 (2013). PubMed DOI PMC
Tang, K. et al. Impaired exercise capacity and skeletal muscle function in a mouse model of pulmonary inflammation. J. Appl. Physiol. 114, 1340–1350 (2013). PubMed DOI PMC
Van Remoortel, H. et al. Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PloS ONE 7, e39198 (2012). PubMed DOI PMC
West, J. et al. A potential role for insulin resistance in experimental pulmonary hypertension. Eur. Respir. J. 41, 861–871 (2013). PubMed DOI
Swoap, S. J. et al. Vagal tone dominates autonomic control of mouse heart rate at thermoneutrality. Am. J. Physiol. Heart Circ. Physiol. 294, H1581–H1588 (2008). PubMed DOI
Lowell, B. B. & Bachman, E. S. Beta-adrenergic receptors, diet-induced thermogenesis, and obesity. J. Biol. Chem. 278, 29385–29388 (2003). PubMed DOI
Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015). PubMed DOI PMC
Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Investig. 121, 96–105 (2011). PubMed DOI
Sass, F. et al. NK2R control of energy expenditure and feeding to treat metabolic diseases. Nature 635, 987–1000 (2024). PubMed DOI PMC
Clapham, J. C. & Arch, J. R. Targeting thermogenesis and related pathways in anti-obesity drug discovery. Pharmacol. Ther. 131, 295–308 (2011). PubMed DOI
Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 127, 546–558 (2004). PubMed DOI
Schreiber, R. et al. Hypophagia and metabolic adaptations in mice with defective ATGL-mediated lipolysis cause resistance to HFD-induced obesity. Proc. Natl Acad. Sci. USA 112, 13850–13855 (2015). PubMed DOI PMC
Shin, H. et al. Lipolysis in brown adipocytes is not essential for cold-induced thermogenesis in mice. Cell Metab. 26, 764–777 (2017). PubMed DOI PMC
Gavrilova, O. et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J. Clin. Invest. 105, 271–278 (2000). PubMed DOI PMC
Marcaletti, S., Thomas, C. & Feige, J. N. Exercise performance tests in mice. Curr. Protoc. Mouse Biol. 1, 141–154 (2011). PubMed DOI
Scott, C. B. & Kemp, R. B. Direct and indirect calorimetry of lactate oxidation: implications for whole-body energy expenditure. J. Sports Sci. 23, 15–19 (2005). PubMed DOI
Flynn, J. M., Meadows, E., Fiorotto, M. & Klein, W. H. Myogenin regulates exercise capacity and skeletal muscle metabolism in the adult mouse. PloS ONE 5, e13535 (2010). PubMed DOI PMC
Virtue, S., Even, P. & Vidal-Puig, A. Below thermoneutrality, changes in activity do not drive changes in total daily energy expenditure between groups of mice. Cell Metab. 16, 665–671 (2012). PubMed DOI PMC
De Siqueira, M. K. et al. Infection-elicited microbiota promotes host adaptation to nutrient restriction. Proc. Natl Acad. Sci. USA 120, e2214484120 (2023). PubMed DOI PMC
van der Zande, H. J. P. et al. The helminth glycoprotein omega-1 improves metabolic homeostasis in obese mice through type 2 immunity-independent inhibition of food intake. FASEB J. 35, e21331 (2021). PubMed DOI
Nolan, K. E. et al. Metabolic shifts modulate lung injury caused by infection with H1N1 influenza A virus. Virology 559, 111–119 (2021). PubMed DOI
Melchor, S. J. et al. T. gondii infection induces IL-1R dependent chronic cachexia and perivascular fibrosis in the liver and skeletal muscle. Sci. Rep. 10, 15724 (2020). PubMed DOI PMC
Kohlgruber, A. C. et al. γ∆ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat. Immunol. 19, 464–474 (2018). PubMed DOI PMC
Hu, B. et al. γ∆ T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature 578, 610–614 (2020). PubMed DOI PMC
Kong, X. et al. IRF4 is a key thermogenic transcriptional partner of PGC-1α. Cell 158, 69–83 (2014). PubMed DOI PMC
Lai, N., Kummitha, C., Drumm, M. & Hoppel, C. Alterations of skeletal muscle bioenergetics in a mouse with F508del mutation leading to a cystic fibrosis-like condition. Am. J. Physiol.-Endocrinol. Metab. 317, E327–E336 (2019). PubMed DOI PMC
Pant, M. et al. Metabolic dysfunction and altered mitochondrial dynamics in the utrophin-dystrophin deficient mouse model of duchenne muscular dystrophy. PloS ONE 10, e0123875 (2015). PubMed DOI PMC
Rocco, A. B., Levalley, J. C., Eldridge, J. A., Marsh, S. A. & Rodgers, B. D. A novel protocol for assessing exercise performance and dystropathophysiology in the mdx mouse. Muscle Nerve 50, 541–548 (2014). PubMed DOI
Maricelli, J. W. et al. Sexually dimorphic skeletal muscle and cardiac dysfunction in a mouse model of limb girdle muscular dystrophy 2i. J. Appl. Physiol. 123, 1126–1138 (2017). PubMed DOI
Meng, X. et al. Manipulations of MeCP2 in glutamatergic neurons highlight their contributions to Rett and other neurological disorders. eLife 5, e14199 (2016). PubMed DOI PMC
Stojakovic, A. et al. Partial inhibition of mitochondrial complex I ameliorates Alzheimer’s disease pathology and cognition in APP/PS1 female mice. Commun. Biol. 4, 61 (2021). PubMed DOI PMC
Dufour, B. D. & McBride, J. L. Normalizing glucocorticoid levels attenuates metabolic and neuropathological symptoms in the R6/2 mouse model of Huntington’s disease. Neurobiol. Dis. 121, 214–229 (2019). PubMed DOI
Speakman, J. R., Selman, C., McLaren, J. S. & Harper, E. J. Living fast, dying when? The link between aging and energetics. J. Nutr. 132, 1583S–1597S (2002). PubMed DOI
Nicholls, H. T., Krisko, T. I., LeClair, K. B., Banks, A. S. & Cohen, D. E. Regulation of adaptive thermogenesis by the gut microbiome. FASEB J. 30, 854.852 (2016). DOI
López, P. et al. Long‐term genistein consumption modifies gut microbiota, improving glucose metabolism, metabolic endotoxemia, and cognitive function in mice fed a high‐fat diet. Mol. Nutr. Food Res. 62, 1800313 (2018).
Sharma, V. et al. Mannose alters gut microbiome, prevents diet-induced obesity, and improves host metabolism. Cell Rep. 24, 3087–3098 (2018). PubMed DOI PMC
Hansotia, T. et al. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J. Clin. Invest 117, 143–152 (2007). PubMed DOI
Škop, V. et al. Beyond day and night: the importance of ultradian rhythms in mouse physiology. Mol. Metab. 84, 101946 (2024). PubMed DOI PMC
Brager, A. J. et al. Homeostatic effects of exercise and sleep on metabolic processes in mice with an overexpressed skeletal muscle clock. Biochimie 132, 161–165 (2017). PubMed DOI
Yajima, K. et al. Effects of nutrient composition of dinner on sleep architecture and energy metabolism during sleep. J. Nutr. Sci. Vitaminol. 60, 114–121 (2014). PubMed DOI
Wang, Y. et al. Chronic sleep fragmentation promotes obesity in young adult mice. Obesity 22, 758–762 (2014). PubMed DOI
Nestoridi, E., Kvas, S., Kucharczyk, J. & Stylopoulos, N. Resting energy expenditure and energetic cost of feeding are augmented after Roux-en-Y gastric bypass in obese mice. Endocrinology 153, 2234–2244 (2012). PubMed DOI
Harris, D. A. et al. Sleeve gastrectomy enhances glucose utilization and remodels adipose tissue independent of weight loss. Am. J. Physiol. Endocrinol. Metab. 318, E678–E688 (2020). PubMed DOI PMC
Tran, T. T., Yamamoto, Y., Gesta, S. & Kahn, C. R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7, 410–420 (2008). PubMed DOI PMC
McLean, J. & Tobin, G. Animal and Human Calorimetry (Cambridge University Press, 1987).
Gavrilova, O. et al. Torpor in mice is induced by both leptin-dependent and-independent mechanisms. Proc. Natl Acad. Sci. USA 96, 14623–14628 (1999). PubMed DOI PMC
Gilbert, R. E. et al. SIRT1 activation ameliorates hyperglycaemia by inducing a torpor-like state in an obese mouse model of type 2 diabetes. Diabetologia 58, 819–827 (2015). PubMed DOI
Wahlang, B. et al. A compromised liver alters polychlorinated biphenyl-mediated toxicity. Toxicology 380, 11–22 (2017). PubMed DOI
Somani, S. M., Husain, K., Asha, T. & Helfert, R. Interactive and delayed effects of pyridostigmine and physical stress on biochemical and histological changes in peripheral tissues of mice. J. Appl. Toxicol. 20, 327–334 (2000). PubMed DOI
Field, D. et al. The Genomic Standards Consortium. PLoS Biol. 9, e1001088 (2011). PubMed DOI PMC
Alseekh, S. et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat. Methods 18, 747–756 (2021). PubMed DOI PMC
Even, P. C. & Nadkarni, N. A. Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R459–476 (2012). PubMed DOI
Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932). DOI
White, C. R. & Seymour, R. S. Allometric scaling of mammalian metabolism. J. Exp. Biol. 208, 1611–1619 (2005). PubMed DOI
Heusner, A. A. Size and power in mammals. J. Exp. Biol. 160, 25–54 (1991). PubMed DOI
Speakman, J. R. et al. The international atomic energy agency international doubly labelled water database: aims, scope and procedures. Ann. Nutr. Metab. 75, 114–118 (2019). PubMed DOI
Pontzer, H. et al. Daily energy expenditure through the human life course. Science 373, 808–812 (2021). PubMed DOI PMC
McPherron, A. C. & Lee, S.-J. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Investig. 109, 595–601 (2002). PubMed DOI PMC
Westbrook, R., Bonkowski, M. S., Strader, A. D. & Bartke, A. Alterations in oxygen consumption, respiratory quotient, and heat production in long-lived GHRKO and Ames dwarf mice, and short-lived bGH transgenic mice. J. Gerontol. A Biol. Sci. Med Sci. 64, 443–451 (2009). PubMed DOI
Longo, K. A. et al. Daily energy balance in growth hormone receptor/binding protein (GHR PubMed DOI
Meyer, C. W., Klingenspor, M., Rozman, J. & Heldmaier, G. Gene or size: metabolic rate and body temperature in obese growth hormone-deficient dwarf mice. Obes. Res. 12, 1509–1518 (2004). PubMed DOI
Himms-Hagen, J. On raising energy expenditure in ob/ob mice. Science 276, 1132–1133 (1997). PubMed DOI
Krashes, M. J., Lowell, B. B. & Garfield, A. S. Melanocortin-4 receptor-regulated energy homeostasis. Nat. Neurosci. 19, 206–219 (2016). PubMed DOI PMC
Rajbhandari, P. et al. IL-10 signaling remodels adipose chromatin architecture to limit thermogenesis and energy expenditure. Cell 172, 218–233 (2018). PubMed DOI
Westbrook, R. M. et al. Aged interleukin-10tm1Cgn chronically inflamed mice have substantially reduced fat mass, metabolic rate, and adipokines. PloS ONE 12, e0186811 (2017). PubMed DOI PMC
Mina, A. I. et al. CalR: a web-based analysis tool for indirect calorimetry experiments. Cell Metab. 28, 656–666 (2018). PubMed DOI PMC
El-Haschimi, K., Pierroz, D. D., Hileman, S. M., Bjørbæk, C. & Flier, J. S. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Investig. 105, 1827–1832 (2000). PubMed DOI PMC
Corrigan, J. K. et al. A big-data approach to understanding metabolic rate and response to obesity in laboratory mice. eLife 9, e53560 (2020).
Taicher, G. Z., Tinsley, F. C., Reiderman, A. & Heiman, M. L. Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal. Bioanal. Chem. 377, 990–1002 (2003). PubMed DOI
Packard, G. C. & Boardman, T. J. The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort? Comp. Biochem. Physiol. A Mol. Integr. Physiol. 122, 37–44 (1999). DOI
Grobe, J. L. in The Renin-Angiotensin-Aldosterone System: Methods and Protocols (ed Sean E. Thatcher) 123–146 (Springer, 2017).
Kaiyala, K. J. & Schwartz, M. W. Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes 60, 17–23 (2011). PubMed DOI PMC
Licholai, J. A. et al. Why do mice overeat high-fat diets? How high-fat diet alters the regulation of daily caloric intake in mice. Obesity 26, 1026–1033 (2018). PubMed DOI
Rubio, W. B., Cortopassi, M. D. & Banks, A. S. Indirect calorimetry to assess energy balance in mice: measurement and data analysis. Methods Mol. Biol. 2662, 103–115 (2023). PubMed DOI
Rubio, W. B. et al. Not so fast: paradoxically increased variability in the glucose tolerance test due to food withdrawal in continuous glucose-monitored mice. Mol. Metab. 77, 101795 (2023). PubMed DOI PMC
Schipper, L. et al. Grain versus AIN: common rodent diets differentially affect health outcomes in adult C57BL/6j mice. PloS ONE 19, e0293487 (2024). PubMed DOI PMC
Glendinning, J. I. et al. Differential effects of sucrose and fructose on dietary obesity in four mouse strains. Physiol. Behav. 101, 331–343 (2010). PubMed DOI
Kim, A. K., Hamadani, C., Zeidel, M. L. & Hill, W. G. Urological complications of obesity and diabetes in males and females of three mouse models: temporal manifestations. Am. J. Physiol. Ren. Physiol. 318, F160–F174 (2020). DOI
Bertaggia, E. et al. Cyp8b1 ablation prevents Western diet-induced weight gain and hepatic steatosis because of impaired fat absorption. Am. J. Physiol. Endocrinol. Metab. 313, E121–E133 (2017). PubMed DOI PMC
Weir, J. B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 109, 1–9 (1949). PubMed DOI PMC
Lighton, J. R. B. Measuring Metabolic Rates: A Manual for Scientists. (Oxford University Press, 2019).
Raubenheimer, D. & Simpson, S. Analysis of covariance: an alternative to nutritional indices. Entomol. Exp. Appl. 62, 221–231 (1992). DOI
Kronmal, R. A. Spurious correlation and the fallacy of the ratio standard revisited. J. R. Stat. Soc. 156, 379–392 (1993). DOI
Albrecht, G. H., Gelvin, B. R. & Hartman, S. E. Ratios as a size adjustment in morphometrics. Am. J. Phys. Anthropol. 91, 441–468 (1993). PubMed DOI
Allison, D., Paultre, F., Goran, M., Poehlman, E. & Heymsfield, S. Statistical considerations regarding the use of ratios to adjust data. Int. J. Obes. Relat. Metab. Disord. 19, 644–652 (1995). PubMed
Raubenheimer, D. Problems with ratio analysis in nutritional studies. Funct. Ecol. 9, 21–29 (1995). DOI
Speakman, J. R., Fletcher, Q. & Vaanholt, L. The ‘39 steps’: an algorithm for performing statistical analysis of data on energy intake and expenditure. Dis. Model. Mech. 6, 293–301 (2013). PubMed DOI PMC
Arch, J., Hislop, D., Wang, S. & Speakman, J. Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals. Int. J. Obes. 30, 1322–1331 (2006). DOI
Packard, G. C. & Boardman, T. J. The misuse of ratios, indices, and percentages in ecophysiological research. Physiol. Zool. 61, 1–9 (1988). DOI
Kaiyala, K. J. et al. Identification of body fat mass as a major determinant of metabolic rate in mice. Diabetes 59, 1657–1666 (2010). PubMed DOI PMC
Kaiyala, K. J. Mathematical model for the contribution of individual organs to non-zero y-intercepts in single and multi-compartment linear models of whole-body energy expenditure. PloS ONE 9, e103301 (2014). PubMed DOI PMC
Poehlman, E. T. & Toth, M. J. Mathematical ratios lead to spurious conclusions regarding age-and sex-related differences in resting metabolic rate. Am. J. Clin. Nutr. 61, 482–485 (1995). PubMed DOI
Tschöp, M. H. et al. A guide to analysis of mouse energy metabolism. Nat. Methods 9, 57–63 (2012). DOI
Fernandez-Verdejo, R., Ravussin, E., Speakman, J. R. & Galgani, J. E. Progress and challenges in analyzing rodent energy expenditure. Nat. Methods 16, 797–799 (2019). PubMed DOI
Muller, T. D., Klingenspor, M. & Tschop, M. H. Revisiting energy expenditure: how to correct mouse metabolic rate for body mass. Nat. Metab. 3, 1134–1136 (2021). PubMed DOI
D’Alonzo, K. T. The Johnson–Neyman procedure as an alternative to ANCOVA. West. J. Nurs. Res. 26, 804–812 (2004). PubMed DOI PMC
Toyama, K. S. J. Nplots: an R package to visualize outputs from the Johnson–Neyman technique for categorical and continuous moderators, including options for phylogenetic regressions. Evolut. Ecol. 38, 371–385 (2024). DOI
Virtue, S., Lelliott, C. J. & Vidal-Puig, A. What is the most appropriate covariate in ANCOVA when analysing metabolic rate? Nat. Metab. 3, 1585–1585 (2021). PubMed DOI
Selman, C., Lumsden, S., Bünger, L., Hill, W. G. & Speakman, J. R. Resting metabolic rate and morphology in mice (Mus musculus) selected for high and low food intake. J. Exp. Biol. 204, 777–784 (2001). PubMed DOI
Drucker, D. J. Never waste a good crisis: confronting reproducibility in translational research. Cell Metab. 24, 348–360 (2016). PubMed DOI
Cobey, K. D. et al. Biomedical researchers’ perspectives on the reproducibility of research. PLoS Biol. 22, e3002870 (2024). PubMed DOI PMC
Sciences, N. A. o. et al. Reproducibility and Replicability in Science. (National Academies Press, 2019).
Gabelica, M., Bojčić, R. & Puljak, L. Many researchers were not compliant with their published data sharing statement: a mixed-methods study. J. Clin. Epidemiol. 150, 33–41 (2022). PubMed DOI
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016). PubMed DOI PMC
Rozman, J. et al. Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nat. Commun. 9, 288 (2018). PubMed DOI PMC
Gailus-Durner, V. et al. Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nat. Methods 2, 403–404 (2005). PubMed DOI
Bogue, M. A., Churchill, G. A. & Chesler, E. J. Collaborative cross and diversity outbred data resources in the mouse phenome database. Mamm. Genome 26, 511–520 (2015). PubMed DOI PMC
Ayala, J. E. et al. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis. Model. Mech. 3, 525–534 (2010). PubMed DOI PMC
Bachmann, A. M. et al. Genetic background and sex control the outcome of high-fat diet feeding in mice. iScience 25, 104468 (2022). PubMed DOI PMC
Vitaterna, M. H. et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719–725 (1994). PubMed DOI PMC
Blessing, W. & Ootsuka, Y. Timing of activities of daily life is jaggy: how episodic ultradian changes in body and brain temperature are integrated into this process. Temperature 3, 371–383 (2016). DOI
Deaton, A. M. et al. Rare loss of function variants in the hepatokine gene INHBE protect from abdominal obesity. Nat. Commun. 13, 4319 (2022). PubMed DOI PMC
Howard-Hill, T. H. Early modern printers and the standardization of english spelling. Mod. Lang. Rev. 101, 16–29 (2006). DOI
Loipfinger, S. et al. Calopy — an advanced framework for the integration and analysis of indirect calorimetry data. Nat. Metab. 7, 1093–1095 (2025). PubMed DOI
Grein, S. et al. Shiny-Calorie: a context-aware application for indirect calorimetry data analysis and visualization using R. Preprint at bioRxiv https://doi.org/10.1101/2025.04.24.648116 (2025).
Hashimoto, O. et al. Activin E controls energy homeostasis in both brown and white adipose tissues as a hepatokine. Cell Rep. 25, 1193–1203 (2018). PubMed DOI
Koncarevic, A. et al. A novel therapeutic approach to treating obesity through modulation of TGFβ signaling. Endocrinology 153, 3133–3146 (2012). PubMed DOI PMC
Yadav, H. et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 14, 67–79 (2011). PubMed DOI PMC
Wilkes, J. J., Lloyd, D. J. & Gekakis, N. Loss-of-function mutation in myostatin reduces tumor necrosis factor α production and protects liver against obesity-induced insulin resistance. Diabetes 58, 1133–1143 (2009). PubMed DOI PMC
Shen, J. J. et al. Deficiency of growth differentiation factor 3 protects against diet-induced obesity by selectively acting on white adipose. Mol. Endocrinol. 23, 113–123 (2009). PubMed DOI
Yogosawa, S., Mizutani, S., Ogawa, Y. & Izumi, T. Activin receptor-like kinase 7 suppresses lipolysis to accumulate fat in obesity through downregulation of peroxisome proliferator-activated receptor gamma and C/EBPalpha. Diabetes 62, 115–123 (2013). PubMed DOI
Tangseefa, P., Jin, H., Zhang, H., Xie, M. & Ibáñez, C. F. Human ACVR1C missense variants that correlate with altered body fat distribution produce metabolic alterations of graded severity in knock-in mutant mice. Mol. Metab. 81, 101890 (2024). PubMed DOI PMC
Kumari, R. Role of SMAD2 and SMAD3 on Adipose Tissue Development and Function. (The University of Tennessee Health Science Center, 2021).
Kumari, R. et al. SMAD2 and SMAD3 differentially regulate adiposity and the growth of subcutaneous white adipose tissue. FASEB J. 35, e22018 (2021). PubMed DOI
Zhao, M. et al. Targeting activin receptor–like kinase 7 ameliorates adiposity and associated metabolic disorders. JCI Insight 8, e161229 (2023). PubMed DOI PMC
Srivastava, R. K., Lee, E. S., Sim, E., Sheng, N. C. & Ibáñez, C. F. Sustained anti-obesity effects of life-style change and anti-inflammatory interventions after conditional inactivation of the activin receptor ALK7. FASEB J. 35, e21759 (2021). PubMed DOI
Guo, T. et al. Adipocyte ALK7 links nutrient overload to catecholamine resistance in obesity. eLife 3, e03245 (2014). PubMed DOI PMC
Choi, S. J. et al. Increased energy expenditure and leptin sensitivity account for low fat mass in myostatin-deficient mice. Am. J. Physiol. Endocrinol. Metab. 300, E1031–E1037 (2011). PubMed DOI PMC
Wang, H. et al. Myostatin regulates energy homeostasis through autocrine- and paracrine-mediated microenvironment communication. J. Clin. Invest. 134, e178303 (2024).
Akpan, I. et al. The effects of a soluble activin type IIB receptor on obesity and insulin sensitivity. Int. J. Obes. 33, 1265–1273 (2009). DOI
Abreu-Vieira, G., Xiao, C., Gavrilova, O. & Reitman, M. L. Integration of body temperature into the analysis of energy expenditure in the mouse. Mol. Metab. 4, 461–470 (2015). PubMed DOI PMC
Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020). PubMed DOI PMC