A consensus guide to preclinical indirect calorimetry experiments

. 2025 Sep ; 7 (9) : 1765-1780. [epub] 20250924

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40993210

Grantová podpora
P30 DK116074 NIDDK NIH HHS - United States
R01 DK125260 NIDDK NIH HHS - United States

Odkazy

PubMed 40993210
DOI 10.1038/s42255-025-01360-4
PII: 10.1038/s42255-025-01360-4
Knihovny.cz E-zdroje

Understanding the complex factors influencing mammalian metabolism and body weight homeostasis is a long-standing challenge requiring knowledge of energy intake, absorption and expenditure. Using measurements of respiratory gas exchange, indirect calorimetry can provide non-invasive estimates of whole-body energy expenditure. However, inconsistent measurement units and flawed data normalization methods have slowed progress in this field. This guide aims to establish consensus standards to unify indirect calorimetry experiments and their analysis for more consistent, meaningful and reproducible results. By establishing community-driven standards, we hope to facilitate data comparison across research datasets. This advance will allow the creation of an in-depth, machine-readable data repository built on shared standards. This overdue initiative stands to markedly improve the accuracy and depth of efforts to interrogate mammalian metabolism. Data sharing according to established best practices will also accelerate the translation of basic findings into clinical applications for metabolic diseases afflicting global populations.

American Federation for Aging Research New York NY USA

Área de Bioquímica y Biología Molecular Departamento de Ciencias Básicas de la Salud Facultad de Ciencias de la Salud Universidad Rey Juan Carlos Madrid Spain

Broad Institute of Harvard and MIT Cambridge MA USA

Cambridge Heart and Lung Research Institute Cambridge UK

Cambridge Su Genomic Resource Center The 4th Affiliated Hospital Medical School of Soochow University Suzhou China

Cambridge University Nanjing Centre of Technology and Innovation Nanjing PR China

Cardiovascular Center Medical College of Wisconsin Milwaukee WI USA

Cardiovascular Research Institute Weill Cornell Medicine New York NY USA

Center for Adipocyte Structure and Function Institute of Molecular Biology and Genetics School of Biological Sciences Seoul National University Seoul Republic of Korea

Center for Genomic Medicine Massachusetts General Hospital Harvard Medical School Boston MA USA

Center for Human Nutrition Division of Nutritional Sciences and Obesity Medicine Washington University School of Medicine St Louis MO USA

Centre de Recherche du Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada

Centre for Experimental Medicine Institute for Clinical and Experimental Medicine Prague Czechia

Centre for Metabolism Obesity and Diabetes Research McMaster University Hamilton Ontario Canada

Centro de Investigacion Principe Felipe Valencia Spain

Centro de Investigación Principe Felipe Valencia Spain

Comprehensive Rodent Metabolic Phenotyping Core Medical College of Wisconsin Milwaukee WI USA

Czech Centre for Phenogenomics Institute of Molecular Genetics of the Czech Academy of Sciences Vestec Czechia

Departamento de Nutrición Diabetes y Metabolismo Facultad de Medicina Pontificia Universidad Católica de Chile Santiago Chile

Departamento de Nutrición y Dietética Escuela de Ciencias de la Salud Facultad de Medicina Pontificia Universidad Católica de Chile Santiago Chile

Department of Anatomy University of California San Francisco San Francisco CA USA

Department of Biochemistry and Microbiology University of Chemistry and Technology Prague Czechia

Department of Biochemistry and Molecular Biology Monash University Clayton Victoria Australia

Department of Biochemistry and Physiology University of Oklahoma Health Sciences Oklahoma City OK USA

Department of Biochemistry McGill University Montreal Quebec Canada

Department of Biology University of Alabama at Birmingham Birmingham AL USA

Department of Biomedical Engineering Medical College of Wisconsin Milwaukee WI USA

Department of Cancer Biology Dana Farber Cancer Institute Boston MA USA

Department of Cell Biology and Physiology University of Kansas Medical Center Kansas City KS USA

Department of Cell Biology Harvard University Medical School Boston MA USA

Department of Cellular and Molecular Physiology Yale School of Medicine New Haven CT USA

Department of Epidemiology and Biostatistics School of Public Health Indiana University Bloomington Bloomington IN USA

Department of Health Sciences and Technology ETH Zurich Zurich Switzerland

Department of Integrative Physiology Baylor College of Medicine Houston TX USA

Department of Internal Medicine Division of Endocrinology University of Kansas Medical Center Kansas City KS USA

Department of Medicine Albert Einstein College of Medicine Bronx NY USA

Department of Medicine and Bioregulatory Science Graduate School of Medical Sciences Kyushu University Fukuoka Japan

Department of Medicine Baylor College of Medicine Houston TX USA

Department of Medicine Division of Endocrinology Diabetes and Metabolism University of Alabama at Birmingham Birmingham AL USA

Department of Medicine Institute of Human Nutrition Naomi Berrie Diabetes Center Columbia University New York NY USA

Department of Medicine The University of Chicago Chicago IL USA

Department of Medicine Université de Montréal Montreal Quebec Canada

Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX USA

Department of Molecular and Integrative Physiology University of Michigan Ann Arbor MI USA

Department of Molecular Biosciences University of California Davis Davis CA USA

Department of Molecular Physiology and Biophysics Vanderbilt University School of Medicine Nashville TN USA

Department of Neuroscience Albert Einstein College of Medicine Bronx NY USA

Department of Nutrition Gillings School of Global Public Health and School of Medicine University of North Carolina at Chapel Hill Chapel Hill NC USA

Department of Obstetrics and Gynecology University of Michigan Ann Arbor MI USA

Department of Pathology Stanford University School of Medicine Stanford CA USA

Department of Physiology and Biophysics Institute of Biomedical Sciences University of São Paulo São Paulo Brazil

Department of Physiology Medical College of Wisconsin Milwaukee WI USA

Department of Physiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA

Department of Surgery School of Medicine University of California Davis Davis CA USA

Diabetes Center University of California San Francisco San Francisco CA USA

Diabetes Endocrinology and Obesity Branch National Institute of Diabetes and Digestive and Kidney Diseases NIH Bethesda MD USA

Division of Cardiology Department of Medicine Weill Cornell Medicine New York NY USA

Division of Diabetes Endocrinology and Metabolism Baylor College of Medicine Houston TX USA

Division of Endocrinology and Metabolism Department of Medicine McMaster University Hamilton Ontario Canada

Division of Endocrinology Department of Medicine Duke Molecular Physiology Institute Duke University Durham NC USA

Division of Endocrinology Department of Medicine Leiden University Medical Center Leiden The Netherlands

Division of Endocrinology Diabetes and Metabolism Beth Israel Deaconess Medical Center and Harvard Medical School Boston MA USA

Division of Endocrinology Diabetes and Metabolism Department of Medicine University of California Los Angeles CA USA

Division of Endocrinology Metabolism and Diabetes School of Medicine University of Colorado Anschutz Medical Campus Colorado CO USA

Division of Endocrinology Metabolism and Lipid Research Department of Medicine Washington University School of Medicine Saint Louis MO USA

Einthoven Laboratory for Experimental Vascular Medicine Leiden University Medical Center Leiden The Netherlands

Faculty of Medicine and Health UNSW Sydney Sydney New South Wales Australia

German Center for Diabetes Research Neuherberg Germany

Harold Hamm Diabetes Center University of Oklahoma Health Sciences Oklahoma City OK USA

Institute for Diabetes and Obesity Helmholtz Munich Munich Germany

Institute for Diabetes Obesity and Metabolism Perelman School of Medicine University of Pennsylvania Philadelphia PA USA

Institute of Experimental Genetics German Mouse Clinic Helmholtz Zentrum Munich Germany

Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China

Institute of Health Sciences China Medical University Shenyang China

KU Diabetes Institute Kansas City KS USA

Laboratory of Integrative Systems Physiology Institute of Bioengineering École Polytechnique Fédérale de Lausanne Lausanne Switzerland

Luxembourg Centre for Systems Biomedicine University of Luxembourg Luxembourg Luxembourg

Ministry of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center Medical School Nanjing University Nanjing China

Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia

Mouse Biology Program University of California Davis Davis CA USA

MRC Institute of Metabolic Science and Medical Research Council Cambridge UK

Novo Nordisk Foundation Center for Basic Metabolic Research University of Copenhagen Copenhagen Denmark

Obesity and Comorbidities Research Center University of Campinas Campinas Brazil

Pennington Biomedical Research Center Louisiana State University Baton Rouge LA USA

Pennington Biomedical Research Center LSU System Baton Rouge LA USA

Rosalind and Morris Goodman Cancer Institute McGill University Montreal Quebec Canada

School of Biological Sciences University of Aberdeen Aberdeen UK

School of Life and Environmental Sciences The University of Sydney Sydney New South Wales Australia

School of Life Sciences Else Kröner Fresenius Center for Nutritional Medicine ZIEL Institute for Food and Health Technical University of Munich Freising Germany

School of Life Sciences Fudan University Shanghai China

School of Medical Sciences The University of Sydney Sydney New South Wales Australia

Section of Integrative Physiology Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden

Section of Integrative Physiology Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden

Section on Integrative Physiology and Metabolism Joslin Diabetes Center Harvard Medical School Boston MA USA

Shenzhen Key Laboratory of Metabolic Health Center for Energy Metabolism and Reproduction Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China

Stanford Cardiovascular Institute Stanford University School of Medicine Stanford CA USA

Stanford Diabetes Research Center Stanford University School of Medicine Stanford CA USA

State Key Laboratory of Pharmaceutical Biotechnology Model Animal Research Center Medical School Nanjing University Nanjing China

The Charles Perkins Centre The University of Sydney Sydney New South Wales Australia

The Jackson Laboratory Bar Harbor ME USA

Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA

Translational Gerontology Branch National Institute on Aging NIH Baltimore MD USA

Université de Strasbourg CNRS INSERM CELPHEDIA PHENOMIN Institut Clinique de la Souris Illkirch France

University of Washington Medicine Diabetes Institute Department of Medicine Seattle WA USA

VA Greater Los Angeles Healthcare System GRECC Los Angeles CA USA

Vanderbilt Mouse Metabolic Phenotyping Center Vanderbilt University Nashville TN USA

Victor Chang Cardiac Research Institute Darlinghurst New South Wales Australia

Walther Straub Institute for Pharmacology and Toxicology Ludwig Maximilians University Munich Munich Germany

Weill Center for Metabolic Health Weill Cornell Medicine New York NY USA

Zobrazit více v PubMed

Lavoisier, A. L. & Marquis de Laplace, P. S. Mémoire sur la chaleur: Lû à'Académie royale des sciences, le 28 juin 1783. (De l’Imprimerie royale, 1783).

Shechtman, O. & Talan, M. I. Effect of exercise on cold tolerance and metabolic heat production in adult and aged C57BL/6J mice. J. Appl. Physiol. 77, 2214–2218 (1994). PubMed DOI

Susulic, V. S. et al. Targeted disruption of the β3-adrenergic receptor gene. J. Biol. Chem. 270, 29483–29492 (1995). PubMed DOI

Pelleymounter, M. A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540–543 (1995). PubMed DOI

Speakman, J. R. & McQueenie, J. Limits to sustained metabolic rate: the link between food intake, basal metabolic rate, and morphology in reproducing mice, Mus musculus. Physiological Zool. 69, 746–769 (1996). DOI

Ravussin, E., Burnand, B., Schutz, Y. & Jequier, E. Twenty-four-hour energy expenditure and resting metabolic rate in obese, moderately obese, and control subjects. Am. J. Clin. Nutr. 35, 566–573 (1982). PubMed DOI

Brychta, R. & Chen, K. Cold-induced thermogenesis in humans. Eur. J. Clin. Nutr. 71, 345–352 (2017). PubMed DOI

Achamrah, N., Delsoglio, M., De Waele, E., Berger, M. M. & Pichard, C. Indirect calorimetry: the 6 main issues. Clin. Nutr. 40, 4–14 (2021). PubMed DOI

Duivenvoorde, L. P., van Schothorst, E. M., Swarts, H. J. & Keijer, J. Assessment of metabolic flexibility of old and adult mice using three noninvasive, indirect calorimetry-based treatments. J. Gerontol. A Biol. Sci. Med Sci. 70, 282–293 (2015). PubMed DOI

Houtkooper, R. H. et al. The metabolic footprint of aging in mice. Sci. Rep. 1, 134 (2011). PubMed DOI PMC

Schefer, V. & Talan, M. I. Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise of different intensity. Exp. Gerontol. 31, 387–392 (1996). PubMed DOI

Petr, M. A. et al. A cross-sectional study of functional and metabolic changes during aging through the lifespan in male mice. eLife 10, e62952 (2021). PubMed DOI PMC

Ellacott, K. L., Morton, G. J., Woods, S. C., Tso, P. & Schwartz, M. W. Assessment of feeding behavior in laboratory mice. Cell Metab. 12, 10–17 (2010). PubMed DOI PMC

Martin, R. E. et al. Maternal oxycodone treatment results in neurobehavioral disruptions in mice offspring. eNeuro 8, ENEURO.0150–21.2021 (2021). PubMed DOI

Sanchez-Alavez, M., Bortell, N., Galmozzi, A., Conti, B. & Marcondes, M. C. G. Reactive oxygen species scavenger N-acetyl cysteine reduces methamphetamine-induced hyperthermia without affecting motor activity in mice. Temperature 1, 227–241 (2014). DOI

Rupprecht, L. E. et al. Self-administered nicotine increases fat metabolism and suppresses weight gain in male rats. Psychopharmacology 235, 1131–1140 (2018). PubMed DOI PMC

Addolorato, G., Capristo, E., Greco, A., Stefanini, G. & Gasbarrini, G. Influence of chronic alcohol abuse on body weight and energy metabolism: is excess ethanol consumption a risk factor for obesity or malnutrition? J. Intern. Med. 244, 387–395 (1998). PubMed DOI

Levine, J. A., Harris, M. M. & Morgan, M. Y. Energy expenditure in chronic alcohol abuse. Eur. J. Clin. Invest 30, 779–786 (2000). PubMed DOI

Schwindinger, W. F., Borrell, B. M., Waldman, L. C. & Robishaw, J. D. Mice lacking the G protein γ3-subunit show resistance to opioids and diet induced obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R1494–R1502 (2009). PubMed DOI PMC

Bonasera, S. J., Chaudoin, T. R., Goulding, E. H., Mittek, M. & Dunaevsky, A. Decreased home cage movement and oromotor impairments in adult Fmr1‐KO mice. Genes Brain Behav. 16, 564–573 (2017). PubMed DOI

Gremminger, V. L. et al. Skeletal muscle specific mitochondrial dysfunction and altered energy metabolism in a murine model (oim/oim) of severe osteogenesis imperfecta. Mol. Genet Metab. 132, 244–253 (2021). PubMed DOI PMC

Nandy, A. et al. Lipolysis supports bone formation by providing osteoblasts with endogenous fatty acid substrates to maintain bioenergetic status. Bone Res. 11, 62 (2023). PubMed DOI PMC

Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 13, 195–204 (2011). PubMed DOI PMC

Zhang, J., Chen, D., Sweeney, P. & Yang, Y. An excitatory ventromedial hypothalamus to paraventricular thalamus circuit that suppresses food intake. Nat. Commun. 11, 6326 (2020). PubMed DOI PMC

Piñol, R. A. et al. Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways. Cell Metab. 33, 1389–1403 (2021).

Cavalcanti-de-Albuquerque, J. P., Bober, J., Zimmer, M. R. & Dietrich, M. O. Regulation of substrate utilization and adiposity by Agrp neurons. Nat. Commun. 10, 311 (2019). PubMed DOI PMC

Lerner, L. et al. MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J. Cachexia Sarcopenia Muscle 7, 467–482 (2016). PubMed DOI

Falconer, J. S., Fearon, K. C., Plester, C. E., Ross, J. A. & Carter, D. C. Cytokines, the acute-phase response, and resting energy expenditure in cachectic patients with pancreatic cancer. Ann. Surg. 219, 325–331 (1994). PubMed DOI PMC

Suriben, R. et al. Antibody-mediated inhibition of GDF15–GFRAL activity reverses cancer cachexia in mice. Nat. Med. 26, 1264–1270 (2020). PubMed DOI

Kliewer, K. L. et al. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice. Cancer Biol. Ther. 16, 886–897 (2015). PubMed DOI

Tsoli, M. et al. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res. 72, 4372–4382 (2012). PubMed DOI

Kir, S. et al. PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer. Cell Metab. 23, 315–323 (2016). PubMed DOI

Desai, M. S. et al. Hypertrophic cardiomyopathy and dysregulation of cardiac energetics in a mouse model of biliary fibrosis. Hepatology 51, 2097–2107 (2010). PubMed DOI

Darrah, R. J. et al. Ventilatory pattern and energy expenditure are altered in cystic fibrosis mice. J. Cyst. Fibros. 12, 345–351 (2013). PubMed DOI PMC

Yang, J. N., Wang, Y., Garcia-Roves, P. M., Bjornholm, M. & Fredholm, B. B. Adenosine A(3) receptors regulate heart rate, motor activity and body temperature. Acta Physiol. 199, 221–230 (2010). DOI

Lakin, R. et al. Changes in heart rate and its regulation by the autonomic nervous system do not differ between forced and voluntary exercise in mice. Front. Physiol. 9, 841 (2018). PubMed DOI PMC

Roy, A. et al. Cardiomyocyte‐secreted acetylcholine is required for maintenance of homeostasis in the heart. FASEB J. 27, 5072–5082 (2013). PubMed DOI PMC

Tang, K. et al. Impaired exercise capacity and skeletal muscle function in a mouse model of pulmonary inflammation. J. Appl. Physiol. 114, 1340–1350 (2013). PubMed DOI PMC

Van Remoortel, H. et al. Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PloS ONE 7, e39198 (2012). PubMed DOI PMC

West, J. et al. A potential role for insulin resistance in experimental pulmonary hypertension. Eur. Respir. J. 41, 861–871 (2013). PubMed DOI

Swoap, S. J. et al. Vagal tone dominates autonomic control of mouse heart rate at thermoneutrality. Am. J. Physiol. Heart Circ. Physiol. 294, H1581–H1588 (2008). PubMed DOI

Lowell, B. B. & Bachman, E. S. Beta-adrenergic receptors, diet-induced thermogenesis, and obesity. J. Biol. Chem. 278, 29385–29388 (2003). PubMed DOI

Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015). PubMed DOI PMC

Seale, P. et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Investig. 121, 96–105 (2011). PubMed DOI

Sass, F. et al. NK2R control of energy expenditure and feeding to treat metabolic diseases. Nature 635, 987–1000 (2024). PubMed DOI PMC

Clapham, J. C. & Arch, J. R. Targeting thermogenesis and related pathways in anti-obesity drug discovery. Pharmacol. Ther. 131, 295–308 (2011). PubMed DOI

Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 127, 546–558 (2004). PubMed DOI

Schreiber, R. et al. Hypophagia and metabolic adaptations in mice with defective ATGL-mediated lipolysis cause resistance to HFD-induced obesity. Proc. Natl Acad. Sci. USA 112, 13850–13855 (2015). PubMed DOI PMC

Shin, H. et al. Lipolysis in brown adipocytes is not essential for cold-induced thermogenesis in mice. Cell Metab. 26, 764–777 (2017). PubMed DOI PMC

Gavrilova, O. et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J. Clin. Invest. 105, 271–278 (2000). PubMed DOI PMC

Marcaletti, S., Thomas, C. & Feige, J. N. Exercise performance tests in mice. Curr. Protoc. Mouse Biol. 1, 141–154 (2011). PubMed DOI

Scott, C. B. & Kemp, R. B. Direct and indirect calorimetry of lactate oxidation: implications for whole-body energy expenditure. J. Sports Sci. 23, 15–19 (2005). PubMed DOI

Flynn, J. M., Meadows, E., Fiorotto, M. & Klein, W. H. Myogenin regulates exercise capacity and skeletal muscle metabolism in the adult mouse. PloS ONE 5, e13535 (2010). PubMed DOI PMC

Virtue, S., Even, P. & Vidal-Puig, A. Below thermoneutrality, changes in activity do not drive changes in total daily energy expenditure between groups of mice. Cell Metab. 16, 665–671 (2012). PubMed DOI PMC

De Siqueira, M. K. et al. Infection-elicited microbiota promotes host adaptation to nutrient restriction. Proc. Natl Acad. Sci. USA 120, e2214484120 (2023). PubMed DOI PMC

van der Zande, H. J. P. et al. The helminth glycoprotein omega-1 improves metabolic homeostasis in obese mice through type 2 immunity-independent inhibition of food intake. FASEB J. 35, e21331 (2021). PubMed DOI

Nolan, K. E. et al. Metabolic shifts modulate lung injury caused by infection with H1N1 influenza A virus. Virology 559, 111–119 (2021). PubMed DOI

Melchor, S. J. et al. T. gondii infection induces IL-1R dependent chronic cachexia and perivascular fibrosis in the liver and skeletal muscle. Sci. Rep. 10, 15724 (2020). PubMed DOI PMC

Kohlgruber, A. C. et al. γ∆ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat. Immunol. 19, 464–474 (2018). PubMed DOI PMC

Hu, B. et al. γ∆ T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature 578, 610–614 (2020). PubMed DOI PMC

Kong, X. et al. IRF4 is a key thermogenic transcriptional partner of PGC-1α. Cell 158, 69–83 (2014). PubMed DOI PMC

Lai, N., Kummitha, C., Drumm, M. & Hoppel, C. Alterations of skeletal muscle bioenergetics in a mouse with F508del mutation leading to a cystic fibrosis-like condition. Am. J. Physiol.-Endocrinol. Metab. 317, E327–E336 (2019). PubMed DOI PMC

Pant, M. et al. Metabolic dysfunction and altered mitochondrial dynamics in the utrophin-dystrophin deficient mouse model of duchenne muscular dystrophy. PloS ONE 10, e0123875 (2015). PubMed DOI PMC

Rocco, A. B., Levalley, J. C., Eldridge, J. A., Marsh, S. A. & Rodgers, B. D. A novel protocol for assessing exercise performance and dystropathophysiology in the mdx mouse. Muscle Nerve 50, 541–548 (2014). PubMed DOI

Maricelli, J. W. et al. Sexually dimorphic skeletal muscle and cardiac dysfunction in a mouse model of limb girdle muscular dystrophy 2i. J. Appl. Physiol. 123, 1126–1138 (2017). PubMed DOI

Meng, X. et al. Manipulations of MeCP2 in glutamatergic neurons highlight their contributions to Rett and other neurological disorders. eLife 5, e14199 (2016). PubMed DOI PMC

Stojakovic, A. et al. Partial inhibition of mitochondrial complex I ameliorates Alzheimer’s disease pathology and cognition in APP/PS1 female mice. Commun. Biol. 4, 61 (2021). PubMed DOI PMC

Dufour, B. D. & McBride, J. L. Normalizing glucocorticoid levels attenuates metabolic and neuropathological symptoms in the R6/2 mouse model of Huntington’s disease. Neurobiol. Dis. 121, 214–229 (2019). PubMed DOI

Speakman, J. R., Selman, C., McLaren, J. S. & Harper, E. J. Living fast, dying when? The link between aging and energetics. J. Nutr. 132, 1583S–1597S (2002). PubMed DOI

Nicholls, H. T., Krisko, T. I., LeClair, K. B., Banks, A. S. & Cohen, D. E. Regulation of adaptive thermogenesis by the gut microbiome. FASEB J. 30, 854.852 (2016). DOI

López, P. et al. Long‐term genistein consumption modifies gut microbiota, improving glucose metabolism, metabolic endotoxemia, and cognitive function in mice fed a high‐fat diet. Mol. Nutr. Food Res. 62, 1800313 (2018).

Sharma, V. et al. Mannose alters gut microbiome, prevents diet-induced obesity, and improves host metabolism. Cell Rep. 24, 3087–3098 (2018). PubMed DOI PMC

Hansotia, T. et al. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J. Clin. Invest 117, 143–152 (2007). PubMed DOI

Škop, V. et al. Beyond day and night: the importance of ultradian rhythms in mouse physiology. Mol. Metab. 84, 101946 (2024). PubMed DOI PMC

Brager, A. J. et al. Homeostatic effects of exercise and sleep on metabolic processes in mice with an overexpressed skeletal muscle clock. Biochimie 132, 161–165 (2017). PubMed DOI

Yajima, K. et al. Effects of nutrient composition of dinner on sleep architecture and energy metabolism during sleep. J. Nutr. Sci. Vitaminol. 60, 114–121 (2014). PubMed DOI

Wang, Y. et al. Chronic sleep fragmentation promotes obesity in young adult mice. Obesity 22, 758–762 (2014). PubMed DOI

Nestoridi, E., Kvas, S., Kucharczyk, J. & Stylopoulos, N. Resting energy expenditure and energetic cost of feeding are augmented after Roux-en-Y gastric bypass in obese mice. Endocrinology 153, 2234–2244 (2012). PubMed DOI

Harris, D. A. et al. Sleeve gastrectomy enhances glucose utilization and remodels adipose tissue independent of weight loss. Am. J. Physiol. Endocrinol. Metab. 318, E678–E688 (2020). PubMed DOI PMC

Tran, T. T., Yamamoto, Y., Gesta, S. & Kahn, C. R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7, 410–420 (2008). PubMed DOI PMC

McLean, J. & Tobin, G. Animal and Human Calorimetry (Cambridge University Press, 1987).

Gavrilova, O. et al. Torpor in mice is induced by both leptin-dependent and-independent mechanisms. Proc. Natl Acad. Sci. USA 96, 14623–14628 (1999). PubMed DOI PMC

Gilbert, R. E. et al. SIRT1 activation ameliorates hyperglycaemia by inducing a torpor-like state in an obese mouse model of type 2 diabetes. Diabetologia 58, 819–827 (2015). PubMed DOI

Wahlang, B. et al. A compromised liver alters polychlorinated biphenyl-mediated toxicity. Toxicology 380, 11–22 (2017). PubMed DOI

Somani, S. M., Husain, K., Asha, T. & Helfert, R. Interactive and delayed effects of pyridostigmine and physical stress on biochemical and histological changes in peripheral tissues of mice. J. Appl. Toxicol. 20, 327–334 (2000). PubMed DOI

Field, D. et al. The Genomic Standards Consortium. PLoS Biol. 9, e1001088 (2011). PubMed DOI PMC

Alseekh, S. et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat. Methods 18, 747–756 (2021). PubMed DOI PMC

Even, P. C. & Nadkarni, N. A. Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R459–476 (2012). PubMed DOI

Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932). DOI

White, C. R. & Seymour, R. S. Allometric scaling of mammalian metabolism. J. Exp. Biol. 208, 1611–1619 (2005). PubMed DOI

Heusner, A. A. Size and power in mammals. J. Exp. Biol. 160, 25–54 (1991). PubMed DOI

Speakman, J. R. et al. The international atomic energy agency international doubly labelled water database: aims, scope and procedures. Ann. Nutr. Metab. 75, 114–118 (2019). PubMed DOI

Pontzer, H. et al. Daily energy expenditure through the human life course. Science 373, 808–812 (2021). PubMed DOI PMC

McPherron, A. C. & Lee, S.-J. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Investig. 109, 595–601 (2002). PubMed DOI PMC

Westbrook, R., Bonkowski, M. S., Strader, A. D. & Bartke, A. Alterations in oxygen consumption, respiratory quotient, and heat production in long-lived GHRKO and Ames dwarf mice, and short-lived bGH transgenic mice. J. Gerontol. A Biol. Sci. Med Sci. 64, 443–451 (2009). PubMed DOI

Longo, K. A. et al. Daily energy balance in growth hormone receptor/binding protein (GHR PubMed DOI

Meyer, C. W., Klingenspor, M., Rozman, J. & Heldmaier, G. Gene or size: metabolic rate and body temperature in obese growth hormone-deficient dwarf mice. Obes. Res. 12, 1509–1518 (2004). PubMed DOI

Himms-Hagen, J. On raising energy expenditure in ob/ob mice. Science 276, 1132–1133 (1997). PubMed DOI

Krashes, M. J., Lowell, B. B. & Garfield, A. S. Melanocortin-4 receptor-regulated energy homeostasis. Nat. Neurosci. 19, 206–219 (2016). PubMed DOI PMC

Rajbhandari, P. et al. IL-10 signaling remodels adipose chromatin architecture to limit thermogenesis and energy expenditure. Cell 172, 218–233 (2018). PubMed DOI

Westbrook, R. M. et al. Aged interleukin-10tm1Cgn chronically inflamed mice have substantially reduced fat mass, metabolic rate, and adipokines. PloS ONE 12, e0186811 (2017). PubMed DOI PMC

Mina, A. I. et al. CalR: a web-based analysis tool for indirect calorimetry experiments. Cell Metab. 28, 656–666 (2018). PubMed DOI PMC

El-Haschimi, K., Pierroz, D. D., Hileman, S. M., Bjørbæk, C. & Flier, J. S. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Investig. 105, 1827–1832 (2000). PubMed DOI PMC

Corrigan, J. K. et al. A big-data approach to understanding metabolic rate and response to obesity in laboratory mice. eLife 9, e53560 (2020).

Taicher, G. Z., Tinsley, F. C., Reiderman, A. & Heiman, M. L. Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal. Bioanal. Chem. 377, 990–1002 (2003). PubMed DOI

Packard, G. C. & Boardman, T. J. The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort? Comp. Biochem. Physiol. A Mol. Integr. Physiol. 122, 37–44 (1999). DOI

Grobe, J. L. in The Renin-Angiotensin-Aldosterone System: Methods and Protocols (ed Sean E. Thatcher) 123–146 (Springer, 2017).

Kaiyala, K. J. & Schwartz, M. W. Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes 60, 17–23 (2011). PubMed DOI PMC

Licholai, J. A. et al. Why do mice overeat high-fat diets? How high-fat diet alters the regulation of daily caloric intake in mice. Obesity 26, 1026–1033 (2018). PubMed DOI

Rubio, W. B., Cortopassi, M. D. & Banks, A. S. Indirect calorimetry to assess energy balance in mice: measurement and data analysis. Methods Mol. Biol. 2662, 103–115 (2023). PubMed DOI

Rubio, W. B. et al. Not so fast: paradoxically increased variability in the glucose tolerance test due to food withdrawal in continuous glucose-monitored mice. Mol. Metab. 77, 101795 (2023). PubMed DOI PMC

Schipper, L. et al. Grain versus AIN: common rodent diets differentially affect health outcomes in adult C57BL/6j mice. PloS ONE 19, e0293487 (2024). PubMed DOI PMC

Glendinning, J. I. et al. Differential effects of sucrose and fructose on dietary obesity in four mouse strains. Physiol. Behav. 101, 331–343 (2010). PubMed DOI

Kim, A. K., Hamadani, C., Zeidel, M. L. & Hill, W. G. Urological complications of obesity and diabetes in males and females of three mouse models: temporal manifestations. Am. J. Physiol. Ren. Physiol. 318, F160–F174 (2020). DOI

Bertaggia, E. et al. Cyp8b1 ablation prevents Western diet-induced weight gain and hepatic steatosis because of impaired fat absorption. Am. J. Physiol. Endocrinol. Metab. 313, E121–E133 (2017). PubMed DOI PMC

Weir, J. B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 109, 1–9 (1949). PubMed DOI PMC

Lighton, J. R. B. Measuring Metabolic Rates: A Manual for Scientists. (Oxford University Press, 2019).

Raubenheimer, D. & Simpson, S. Analysis of covariance: an alternative to nutritional indices. Entomol. Exp. Appl. 62, 221–231 (1992). DOI

Kronmal, R. A. Spurious correlation and the fallacy of the ratio standard revisited. J. R. Stat. Soc. 156, 379–392 (1993). DOI

Albrecht, G. H., Gelvin, B. R. & Hartman, S. E. Ratios as a size adjustment in morphometrics. Am. J. Phys. Anthropol. 91, 441–468 (1993). PubMed DOI

Allison, D., Paultre, F., Goran, M., Poehlman, E. & Heymsfield, S. Statistical considerations regarding the use of ratios to adjust data. Int. J. Obes. Relat. Metab. Disord. 19, 644–652 (1995). PubMed

Raubenheimer, D. Problems with ratio analysis in nutritional studies. Funct. Ecol. 9, 21–29 (1995). DOI

Speakman, J. R., Fletcher, Q. & Vaanholt, L. The ‘39 steps’: an algorithm for performing statistical analysis of data on energy intake and expenditure. Dis. Model. Mech. 6, 293–301 (2013). PubMed DOI PMC

Arch, J., Hislop, D., Wang, S. & Speakman, J. Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals. Int. J. Obes. 30, 1322–1331 (2006). DOI

Packard, G. C. & Boardman, T. J. The misuse of ratios, indices, and percentages in ecophysiological research. Physiol. Zool. 61, 1–9 (1988). DOI

Kaiyala, K. J. et al. Identification of body fat mass as a major determinant of metabolic rate in mice. Diabetes 59, 1657–1666 (2010). PubMed DOI PMC

Kaiyala, K. J. Mathematical model for the contribution of individual organs to non-zero y-intercepts in single and multi-compartment linear models of whole-body energy expenditure. PloS ONE 9, e103301 (2014). PubMed DOI PMC

Poehlman, E. T. & Toth, M. J. Mathematical ratios lead to spurious conclusions regarding age-and sex-related differences in resting metabolic rate. Am. J. Clin. Nutr. 61, 482–485 (1995). PubMed DOI

Tschöp, M. H. et al. A guide to analysis of mouse energy metabolism. Nat. Methods 9, 57–63 (2012). DOI

Fernandez-Verdejo, R., Ravussin, E., Speakman, J. R. & Galgani, J. E. Progress and challenges in analyzing rodent energy expenditure. Nat. Methods 16, 797–799 (2019). PubMed DOI

Muller, T. D., Klingenspor, M. & Tschop, M. H. Revisiting energy expenditure: how to correct mouse metabolic rate for body mass. Nat. Metab. 3, 1134–1136 (2021). PubMed DOI

D’Alonzo, K. T. The Johnson–Neyman procedure as an alternative to ANCOVA. West. J. Nurs. Res. 26, 804–812 (2004). PubMed DOI PMC

Toyama, K. S. J. Nplots: an R package to visualize outputs from the Johnson–Neyman technique for categorical and continuous moderators, including options for phylogenetic regressions. Evolut. Ecol. 38, 371–385 (2024). DOI

Virtue, S., Lelliott, C. J. & Vidal-Puig, A. What is the most appropriate covariate in ANCOVA when analysing metabolic rate? Nat. Metab. 3, 1585–1585 (2021). PubMed DOI

Selman, C., Lumsden, S., Bünger, L., Hill, W. G. & Speakman, J. R. Resting metabolic rate and morphology in mice (Mus musculus) selected for high and low food intake. J. Exp. Biol. 204, 777–784 (2001). PubMed DOI

Drucker, D. J. Never waste a good crisis: confronting reproducibility in translational research. Cell Metab. 24, 348–360 (2016). PubMed DOI

Cobey, K. D. et al. Biomedical researchers’ perspectives on the reproducibility of research. PLoS Biol. 22, e3002870 (2024). PubMed DOI PMC

Sciences, N. A. o. et al. Reproducibility and Replicability in Science. (National Academies Press, 2019).

Gabelica, M., Bojčić, R. & Puljak, L. Many researchers were not compliant with their published data sharing statement: a mixed-methods study. J. Clin. Epidemiol. 150, 33–41 (2022). PubMed DOI

Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016). PubMed DOI PMC

Rozman, J. et al. Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nat. Commun. 9, 288 (2018). PubMed DOI PMC

Gailus-Durner, V. et al. Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nat. Methods 2, 403–404 (2005). PubMed DOI

Bogue, M. A., Churchill, G. A. & Chesler, E. J. Collaborative cross and diversity outbred data resources in the mouse phenome database. Mamm. Genome 26, 511–520 (2015). PubMed DOI PMC

Ayala, J. E. et al. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis. Model. Mech. 3, 525–534 (2010). PubMed DOI PMC

Bachmann, A. M. et al. Genetic background and sex control the outcome of high-fat diet feeding in mice. iScience 25, 104468 (2022). PubMed DOI PMC

Vitaterna, M. H. et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719–725 (1994). PubMed DOI PMC

Blessing, W. & Ootsuka, Y. Timing of activities of daily life is jaggy: how episodic ultradian changes in body and brain temperature are integrated into this process. Temperature 3, 371–383 (2016). DOI

Deaton, A. M. et al. Rare loss of function variants in the hepatokine gene INHBE protect from abdominal obesity. Nat. Commun. 13, 4319 (2022). PubMed DOI PMC

Howard-Hill, T. H. Early modern printers and the standardization of english spelling. Mod. Lang. Rev. 101, 16–29 (2006). DOI

Loipfinger, S. et al. Calopy — an advanced framework for the integration and analysis of indirect calorimetry data. Nat. Metab. 7, 1093–1095 (2025). PubMed DOI

Grein, S. et al. Shiny-Calorie: a context-aware application for indirect calorimetry data analysis and visualization using R. Preprint at bioRxiv https://doi.org/10.1101/2025.04.24.648116 (2025).

Hashimoto, O. et al. Activin E controls energy homeostasis in both brown and white adipose tissues as a hepatokine. Cell Rep. 25, 1193–1203 (2018). PubMed DOI

Koncarevic, A. et al. A novel therapeutic approach to treating obesity through modulation of TGFβ signaling. Endocrinology 153, 3133–3146 (2012). PubMed DOI PMC

Yadav, H. et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 14, 67–79 (2011). PubMed DOI PMC

Wilkes, J. J., Lloyd, D. J. & Gekakis, N. Loss-of-function mutation in myostatin reduces tumor necrosis factor α production and protects liver against obesity-induced insulin resistance. Diabetes 58, 1133–1143 (2009). PubMed DOI PMC

Shen, J. J. et al. Deficiency of growth differentiation factor 3 protects against diet-induced obesity by selectively acting on white adipose. Mol. Endocrinol. 23, 113–123 (2009). PubMed DOI

Yogosawa, S., Mizutani, S., Ogawa, Y. & Izumi, T. Activin receptor-like kinase 7 suppresses lipolysis to accumulate fat in obesity through downregulation of peroxisome proliferator-activated receptor gamma and C/EBPalpha. Diabetes 62, 115–123 (2013). PubMed DOI

Tangseefa, P., Jin, H., Zhang, H., Xie, M. & Ibáñez, C. F. Human ACVR1C missense variants that correlate with altered body fat distribution produce metabolic alterations of graded severity in knock-in mutant mice. Mol. Metab. 81, 101890 (2024). PubMed DOI PMC

Kumari, R. Role of SMAD2 and SMAD3 on Adipose Tissue Development and Function. (The University of Tennessee Health Science Center, 2021).

Kumari, R. et al. SMAD2 and SMAD3 differentially regulate adiposity and the growth of subcutaneous white adipose tissue. FASEB J. 35, e22018 (2021). PubMed DOI

Zhao, M. et al. Targeting activin receptor–like kinase 7 ameliorates adiposity and associated metabolic disorders. JCI Insight 8, e161229 (2023). PubMed DOI PMC

Srivastava, R. K., Lee, E. S., Sim, E., Sheng, N. C. & Ibáñez, C. F. Sustained anti-obesity effects of life-style change and anti-inflammatory interventions after conditional inactivation of the activin receptor ALK7. FASEB J. 35, e21759 (2021). PubMed DOI

Guo, T. et al. Adipocyte ALK7 links nutrient overload to catecholamine resistance in obesity. eLife 3, e03245 (2014). PubMed DOI PMC

Choi, S. J. et al. Increased energy expenditure and leptin sensitivity account for low fat mass in myostatin-deficient mice. Am. J. Physiol. Endocrinol. Metab. 300, E1031–E1037 (2011). PubMed DOI PMC

Wang, H. et al. Myostatin regulates energy homeostasis through autocrine- and paracrine-mediated microenvironment communication. J. Clin. Invest. 134, e178303 (2024).

Akpan, I. et al. The effects of a soluble activin type IIB receptor on obesity and insulin sensitivity. Int. J. Obes. 33, 1265–1273 (2009). DOI

Abreu-Vieira, G., Xiao, C., Gavrilova, O. & Reitman, M. L. Integration of body temperature into the analysis of energy expenditure in the mouse. Mol. Metab. 4, 461–470 (2015). PubMed DOI PMC

Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020). PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...