Identification of genetic elements in metabolism by high-throughput mouse phenotyping
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
U54 HG006332
NHGRI NIH HHS - United States
UM1 OD023221
NIH HHS - United States
MC_U142684171
Medical Research Council - United Kingdom
R24 OD011883
NIH HHS - United States
U42 OD012210
NIH HHS - United States
UM1 HG006370
NHGRI NIH HHS - United States
U54 HG006348
NHGRI NIH HHS - United States
U54 HG006370
NHGRI NIH HHS - United States
MC_UP_1502/3
Medical Research Council - United Kingdom
G0300212
Medical Research Council - United Kingdom
K08 EY027463
NEI NIH HHS - United States
U42 RR024244
NCRR NIH HHS - United States
U24 DK092993
NIDDK NIH HHS - United States
MC_QA137918
Medical Research Council - United Kingdom
U42 RR033193
NCRR NIH HHS - United States
UM1 OD023222
NIH HHS - United States
MR/N012119/1
Medical Research Council - United Kingdom
U54 HG006364
NHGRI NIH HHS - United States
MC_U142684172
Medical Research Council - United Kingdom
UM1 HG006348
NHGRI NIH HHS - United States
U42 OD011174
NIH HHS - United States
U42 OD011175
NIH HHS - United States
Wellcome Trust - United Kingdom
U42 OD011185
NIH HHS - United States
U2C DK092993
NIDDK NIH HHS - United States
PubMed
29348434
PubMed Central
PMC5773596
DOI
10.1038/s41467-017-01995-2
PII: 10.1038/s41467-017-01995-2
Knihovny.cz E-zdroje
- MeSH
- bazální metabolismus genetika MeSH
- celogenomová asociační studie MeSH
- diabetes mellitus 2. typu genetika MeSH
- fenotyp MeSH
- genové regulační sítě MeSH
- krevní glukóza metabolismus MeSH
- lidé MeSH
- metabolické nemoci genetika MeSH
- myši knockoutované MeSH
- myši MeSH
- obezita genetika MeSH
- plocha pod křivkou MeSH
- rychlé screeningové testy MeSH
- spotřeba kyslíku genetika MeSH
- tělesná hmotnost genetika MeSH
- triglyceridy metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- krevní glukóza MeSH
- triglyceridy MeSH
Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.
Centre National de la Recherche Scientifique UMR7104 67404 Illkirch France
Children's Hospital Oakland Research Institute 5700 Martin Luther King Jr Way Oakland CA 94609 USA
German Center for Diabetes Research Ingolstädter Landstr 1 85764 Neuherberg Germany
Institut National de la Santé et de la Recherche Médicale U964 67404 Illkirch France
Medical Research Council Harwell Oxfordshire OX11 0RD UK
Mouse Biology Program University of California One Shields Avenue Davis CA 95616 USA
RIKEN BioResource Center 3 1 1 Koyadai Tsukuba Ibaraki 305 0074 Japan
The Centre for Phenogenomics 25 Orde St Toronto M5T 3H7 ON Canada
The Hospital for Sick Children 600 University Avenue Toronto ON M5G 1X5 Canada
The Jackson Laboratory 600 Main Street Bar Harbor ME 04609 USA
The Wellcome Trust Sanger Institute Wellcome Genome Campus Hinxton Cambridge CB10 1SA UK
Université de Strasbourg 67404 Illkirch France
ZIEL Institute for Food and Health Technical University of Munich 85354 Freising Germany
Zobrazit více v PubMed
Ahmed M. Non-alcoholic fatty liver disease in 2015. World J. Hepatol. 2015;7:1450–1459. doi: 10.4254/wjh.v7.i11.1450. PubMed DOI PMC
Boehme MW, et al. Prevalence, incidence and concomitant co-morbidities of type 2 diabetes mellitus in South Western Germany–a retrospective cohort and case control study in claims data of a large statutory health insurance. BMC Public Health. 2015;15:855. doi: 10.1186/s12889-015-2188-1. PubMed DOI PMC
Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine. 2014;42:698–702. doi: 10.1016/j.mpmed.2014.09.007. PubMed DOI PMC
Kharroubi AT, Darwish HM. Diabetes mellitus: the epidemic of the century. World J. Diabetes. 2015;6:850–867. doi: 10.4239/wjd.v6.i6.850. PubMed DOI PMC
Stevens GA, et al. National, regional, and global trends in adult overweight and obesity prevalences. Popul. Health Metr. 2012;10:22. doi: 10.1186/1478-7954-10-22. PubMed DOI PMC
Fuchsberger C, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536:41–47. doi: 10.1038/nature18642. PubMed DOI PMC
Hattersley AT, Patel KA. Precision diabetes: learning from monogenic diabetes. Diabetologia. 2017;60:769–777. doi: 10.1007/s00125-017-4226-2. PubMed DOI PMC
Kraja AT, et al. Pleiotropic genes for metabolic syndrome and inflammation. Mol. Genet. Metab. 2014;112:317–338. doi: 10.1016/j.ymgme.2014.04.007. PubMed DOI PMC
Kunes J, et al. Epigenetics and a new look on metabolic syndrome. Physiol. Res. 2015;64:611–620. PubMed
Mamtani M, et al. Genome- and epigenome-wide association study of hypertriglyceridemic waist in Mexican American families. Clin. Epigenetics. 2016;8:6. doi: 10.1186/s13148-016-0173-x. PubMed DOI PMC
Somer RA, Thummel CS. Epigenetic inheritance of metabolic state. Curr. Opin. Genet. Dev. 2014;27:43–47. doi: 10.1016/j.gde.2014.03.008. PubMed DOI PMC
Pandey AK, et al. Functionally enigmatic genes: a case study of the brain ignorome. PLoS ONE. 2014;9:e88889. doi: 10.1371/journal.pone.0088889. PubMed DOI PMC
Sahni N, et al. Widespread macromolecular interaction perturbations in human genetic disorders. Cell. 2015;161:647–660. doi: 10.1016/j.cell.2015.04.013. PubMed DOI PMC
Steckler T, et al. The preclinical data forum network: a new ECNP initiative to improve data quality and robustness for (preclinical) neuroscience. Eur. Neuropsychopharmacol. 2015;25:1803–1807. doi: 10.1016/j.euroneuro.2015.05.011. PubMed DOI
Brown SD, Moore MW. The international mouse phenotyping consortium: past and future perspectives on mouse phenotyping. Mamm. Genome. 2012;23:632–640. doi: 10.1007/s00335-012-9427-x. PubMed DOI PMC
Ring N, et al. A mouse informatics platform for phenotypic and translational discovery. Mamm. Genome. 2015;26:413–421. doi: 10.1007/s00335-015-9599-2. PubMed DOI PMC
Gailus-Durner V, et al. Introducing the German mouse clinic: open access platform for standardized phenotyping. Nat. Methods. 2005;2:403–404. doi: 10.1038/nmeth0605-403. PubMed DOI
Mallon AM, Blake A, Hancock JM. EuroPhenome and EMPReSS: online mouse phenotyping resource. Nucleic Acids Res. 2008;36:D715–D718. doi: 10.1093/nar/gkm728. PubMed DOI PMC
Meehan TF, et al. Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nat. Genet. 2017;49:1231–1238. doi: 10.1038/ng.3901. PubMed DOI PMC
Bowl MR, et al. A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nat. Commun. 2017;8:886. doi: 10.1038/s41467-017-00595-4. PubMed DOI PMC
Hrabe de Angelis M, et al. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nat. Genet. 2015;47:969–978. doi: 10.1038/ng.3360. PubMed DOI PMC
Karp NA, et al. Applying the ARRIVE Guidelines to an in vivo database. PLoS Biol. 2015;13:e1002151. doi: 10.1371/journal.pbio.1002151. PubMed DOI PMC
Brommage R, et al. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Res. 2014;2:14034. doi: 10.1038/boneres.2014.34. PubMed DOI PMC
Karp NA, et al. Prevalence of sexual dimorphism in mammalian phenotypic traits. Nat. Commun. 2017;8:15475. doi: 10.1038/ncomms15475. PubMed DOI PMC
Ober C, Loisel DA, Gilad Y. Sex-specific genetic architecture of human disease. Nat. Rev. Genet. 2008;9:911–922. doi: 10.1038/nrg2415. PubMed DOI PMC
Bonnefond A, Froguel Rare and common genetic events in type 2 diabetes: what should biologists know? Cell Metab. 2015;21:357–368. doi: 10.1016/j.cmet.2014.12.020. PubMed DOI
Dauriz M, et al. Association of a 62 variants type 2 diabetes genetic risk score with markers of subclinical atherosclerosis: a transethnic, multicenter study. Circ. Cardiovasc. Genet. 2015;8:507–515. doi: 10.1161/CIRCGENETICS.114.000740. PubMed DOI PMC
Hara K, Kadowaki T, Odawara M. Genes associated with diabetes: potential for novel therapeutic targets? Expert. Opin. Ther. Targets. 2016;20:255–267. doi: 10.1517/14728222.2016.1098618. PubMed DOI
Vimaleswaran KS, et al. Candidate genes for obesity-susceptibility show enriched association within a large genome-wide association study for BMI. Hum. Mol. Genet. 2012;21:4537–4542. doi: 10.1093/hmg/dds283. PubMed DOI PMC
Arnold M, et al. SNiPA: an interactive, genetic variant-centered annotation browser. Bioinformatics. 2015;31:1334–1336. doi: 10.1093/bioinformatics/btu779. PubMed DOI PMC
Cotsapas C, et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 2011;7:e1002254. doi: 10.1371/journal.pgen.1002254. PubMed DOI PMC
Ehret GB, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–109. doi: 10.1038/nature10405. PubMed DOI PMC
Locke AE, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206. doi: 10.1038/nature14177. PubMed DOI PMC
DIAGRAM Consortium et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat. Genet.46, 234–244 (2014). PubMed PMC
Manning AK, et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 2012;44:659–669. doi: 10.1038/ng.2274. PubMed DOI PMC
Manning AK, et al. Meta-analysis of gene-environment interaction: joint estimation of SNP and SNP x environment regression coefficients. Genet. Epidemiol. 2011;35:11–18. doi: 10.1002/gepi.20546. PubMed DOI PMC
Scott RA, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet. 2012;44:991–1005. doi: 10.1038/ng.2385. PubMed DOI PMC
Shungin D, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518:187–196. doi: 10.1038/nature14132. PubMed DOI PMC
Soranzo N, et al. Common variants at 10 genomic loci influence hemoglobin A(1)(C) levels via glycemic and nonglycemic pathways. Diabetes. 2010;59:3229–3239. doi: 10.2337/db10-0502. PubMed DOI PMC
Global Lipids Genetics C, et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013;45:1274–1283. doi: 10.1038/ng.2797. PubMed DOI PMC
Stefan N, et al. Polymorphisms in the gene encoding adiponectin receptor 1 are associated with insulin resistance and high liver fat. Diabetologia. 2005;48:2282–2291. doi: 10.1007/s00125-005-1948-3. PubMed DOI
Kanehisa M, et al. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–D462. doi: 10.1093/nar/gkv1070. PubMed DOI PMC
Carroll LS, et al. Evidence that putative ADHD low risk alleles at SNAP25 may increase the risk of schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2009;150B:893–899. doi: 10.1002/ajmg.b.30915. PubMed DOI
Cohen OS, et al. A splicing-regulatory polymorphism in DRD2 disrupts ZRANB2 binding, impairs cognitive functioning and increases risk for schizophrenia in six Han Chinese samples. Mol. Psychiatry. 2016;21:975–982. doi: 10.1038/mp.2015.137. PubMed DOI
Jia JM, et al. Age-dependent regulation of synaptic connections by dopamine D2 receptors. Nat. Neurosci. 2013;16:1627–1636. doi: 10.1038/nn.3542. PubMed DOI PMC
Karp NA, et al. Prevalence of sexual dimorphism in mammalian phenotypic traits. Nat. Commun. 2017;8:15475. doi: 10.1038/ncomms15475. PubMed DOI PMC
Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997;65:1220S–1228S. doi: 10.1093/ajcn/65.4.1220S. PubMed DOI
Frisch M, et al. LitInspector: literature and signal transduction pathway mining in PubMed abstracts. Nucleic Acids Res. 2009;37:W135–W140. doi: 10.1093/nar/gkp303. PubMed DOI PMC
Stelzer G, et al. The genecards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics. 2016;54:1 30 1–1 30 33. doi: 10.1002/cpbi.5. PubMed DOI
Yamada T, et al. iPath2.0: interactive pathway explorer. Nucleic Acids Res. 2011;39:W412–W415. doi: 10.1093/nar/gkr313. PubMed DOI PMC
Ashburner M, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
A resource of targeted mutant mouse lines for 5,061 genes
Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density