Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media print-electronic
Document type Journal Article
Grant support
U01 HL098163
NHLBI NIH HHS - United States
U01 HL098188
NHLBI NIH HHS - United States
U01 HL098162
NHLBI NIH HHS - United States
MR/M009203/1
Medical Research Council - United Kingdom
UM1 OD023221
NIH HHS - United States
MC_EX_MR/M009203/1
Medical Research Council - United Kingdom
UM1 HG006370
NHGRI NIH HHS - United States
U01 HL098123
NHLBI NIH HHS - United States
U42 OD011175
NIH HHS - United States
U01 HL098147
NHLBI NIH HHS - United States
MC_UP_1502/1
Medical Research Council - United Kingdom
UM1 OD023222
NIH HHS - United States
U01 HL098153
NHLBI NIH HHS - United States
MC_PC_14089
Medical Research Council - United Kingdom
U54 HG006364
NHGRI NIH HHS - United States
UM1 HG006348
NHGRI NIH HHS - United States
PubMed
39195995
PubMed Central
PMC11358025
DOI
10.1038/s44161-022-00018-8
PII: 10.1038/s44161-022-00018-8
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Clinical presentation of congenital heart disease is heterogeneous, making identification of the disease-causing genes and their genetic pathways and mechanisms of action challenging. By using in vivo electrocardiography, transthoracic echocardiography and microcomputed tomography imaging to screen 3,894 single-gene-null mouse lines for structural and functional cardiac abnormalities, here we identify 705 lines with cardiac arrhythmia, myocardial hypertrophy and/or ventricular dilation. Among these 705 genes, 486 have not been previously associated with cardiac dysfunction in humans, and some of them represent variants of unknown relevance (VUR). Mice with mutations in Casz1, Dnajc18, Pde4dip, Rnf38 or Tmem161b genes show developmental cardiac structural abnormalities, with their human orthologs being categorized as VUR. Using UK Biobank data, we validate the importance of the DNAJC18 gene for cardiac homeostasis by showing that its loss of function is associated with altered left ventricular systolic function. Our results identify hundreds of previously unappreciated genes with potential function in congenital heart disease and suggest causal function of five VUR in congenital heart disease.
Cambridge Suda Genomic Research Center Soochow University Suzhou China
CNR Institute of Biochemistry and Cell Biology Monterotondo Rome Italy
Department of Molecular Physiology and Biophysics Baylor College of Medicine Houston TX USA
Department of Surgery School of Medicine University of California Davis Davis CA USA
Deutsches Institut für Neurodegenerative Erkrankungen Site Munich Munich Germany
DZHK partner site Munich Heart Alliance Munich Germany
DZHK partner site Munich Munich Germany
German Center for Cardiovascular Research Kiel Germany
German Center for Diabetes Research Neuherberg Germany
Institut für Humangenetik Technische Universität Munich Munich Germany
Lunenfeld Tanenbaum Research Institute Sinai Health System Toronto Ontario Canada
Mammalian Genetics Unit and Mary Lyon Centre Medical Research Council Harwell Institute Harwell UK
Mouse Biology Program University of California Davis Davis CA USA
RIKEN BioResource Center Tsukuba Japan
The Centre for Phenogenomics Toronto Ontario Canada
The Hospital for Sick Children Toronto Ontario Canada
The Jackson Laboratory Bar Harbor ME USA
TUM School of Medicine Technical University of Munich and Klinikum Rechts der Isar Munich Germany
Wellcome Centre for Human Genetics Nuffield Department of Medicine University of Oxford Oxford UK
See more in PubMed
Watkins, W. S. et al. De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes. Nat. Commun.10, 4722 (2019). 10.1038/s41467-019-12582-y PubMed DOI PMC
Landstrom, A. P., Dobrev, D. & Wehrens, X. H. T. Calcium signaling and cardiac arrhythmias. Circ. Res.120, 1969–1993 (2017). 10.1161/CIRCRESAHA.117.310083 PubMed DOI PMC
Liu, Y. et al. Global birth prevalence of congenital heart defects 1970–2017: updated systematic review and meta-analysis of 260 studies. Int. J. Epidemiol.48, 455–463 (2019). 10.1093/ije/dyz009 PubMed DOI PMC
Penny, D. J. & Vick, G. W. III Ventricular septal defect. Lancet377, 1103–1112 (2011). 10.1016/S0140-6736(10)61339-6 PubMed DOI
Dakkak, W. & Oliver, T. I. Ventricular septal defect. in StatPearlshttps://www.ncbi.nlm.nih.gov/books/NBK470330/ (StatPearls, 2019). PubMed
Williams, K., Carson, J. & Lo, C. Genetics of congenital heart disease. Biomolecules9, 879 (2019). PubMed PMC
Zu, B., Zheng, Z. & Fu, Q. Molecular diagnostics for congenital heart disease: a narrative review of the current technologies and applications. J. BioX Res.3, 92–96 (2020).
Haselimashhadi, H. et al. Soft windowing application to improve analysis of high-throughput phenotyping data. Bioinformatics36, 1492–1500 (2019).10.1093/bioinformatics/btz744 PubMed DOI PMC
Gelb, B. et al. The Congenital Heart Disease Genetic Network Study: rationale, design, and early results. Circ. Res.112, 698–706 (2013). 10.1161/CIRCRESAHA.111.300297 PubMed DOI PMC
Sandell, L. L., Guan, X. J., Ingram, R. & Tilghman, S. M. Gatm, a creatine synthesis enzyme, is imprinted in mouse placenta. Proc. Natl Acad. Sci. USA100, 4622–4627 (2003). 10.1073/pnas.0230424100 PubMed DOI PMC
Pan, Y. H. et al. Crystal structure of human group X secreted phospholipase A2. Electrostatically neutral interfacial surface targets zwitterionic membranes. J. Biol. Chem.277, 29086–29093 (2002). 10.1074/jbc.M202531200 PubMed DOI
Johnson, K. R., Longo-Guess, C. M. & Gagnon, L. H. Mutations of the mouse ELMO domain containing 1 gene (Elmod1) link small GTPase signaling to actin cytoskeleton dynamics in hair cell stereocilia. PLoS ONE7, e36074 (2012). 10.1371/journal.pone.0036074 PubMed DOI PMC
Sekine, H., Takahashi, M., Iwaki, D. & Fujita, T. The role of MASP-1/3 in complement activation. Adv. Exp. Med. Biol.735, 41–53 (2013). 10.1007/978-1-4614-4118-2_3 PubMed DOI
Jansen, S., Collins, A., Golden, L., Sokolova, O. & Goode, B. L. Structure and mechanism of mouse cyclase-associated protein (CAP1) in regulating actin dynamics. J. Biol. Chem.289, 30732–30742 (2014). 10.1074/jbc.M114.601765 PubMed DOI PMC
Bergmann, M. W. WNT signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development. Circ. Res.107, 1198–1208 (2010). 10.1161/CIRCRESAHA.110.223768 PubMed DOI
Touvier, T. et al. LEPROT and LEPROTL1 cooperatively decrease hepatic growth hormone action in mice. J. Clin. Invest.119, 3830–3838 (2009). 10.1172/JCI34997 PubMed DOI PMC
Al Senaidi, K. et al. Phenotypic spectrum of ALPK3-related cardiomyopathy. Am. J. Med. Genet.179, 1235–1240 (2019). PubMed
Van Sligtenhorst, I. et al. Cardiomyopathy in α-kinase 3 (ALPK3)-deficient mice. Vet. Pathol.49, 131–141 (2012). 10.1177/0300985811402841 PubMed DOI
Linton, M. F., Tao, H., Linton, E. F. & Yancey, P. G. SR-BI: a multifunctional receptor in cholesterol homeostasis and atherosclerosis. Trends Endocrinol. Metab.28, 461–472 (2017). 10.1016/j.tem.2017.02.001 PubMed DOI PMC
Muthuramu, I. et al. Hepatocyte-specific SR-BI gene transfer corrects cardiac dysfunction in Scarb1-deficient mice and improves pressure overload-induced cardiomyopathy. Arterioscler. Thromb. Vasc. Biol.38, 2028–2040 (2018). 10.1161/ATVBAHA.118.310946 PubMed DOI
Zhou, R. et al. Endocrine role of bone in the regulation of energy metabolism. Bone Res.9, 25 (2021). 10.1038/s41413-021-00142-4 PubMed DOI PMC
Tang, C. M. et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci. Rep.7, 40342 (2017). 10.1038/srep40342 PubMed DOI PMC
Boraschi-Diaz, I. et al. Metabolic phenotype in the mouse model of osteogenesis imperfecta. J. Endocrinol.234, 279–289 (2017). 10.1530/JOE-17-0335 PubMed DOI
De Pace, R. et al. Altered distribution of ATG9A and accumulation of axonal aggregates in neurons from a mouse model of AP-4 deficiency syndrome. PLoS Genet.14, e1007363 (2018). 10.1371/journal.pgen.1007363 PubMed DOI PMC
Lechner, M. et al. CIDeR: multifactorial interaction networks in human diseases. Genome Biol.13, R62 (2012). 10.1186/gb-2012-13-7-r62 PubMed DOI PMC
Lachmann, A. et al. Geneshot: search engine for ranking genes from arbitrary text queries. Nucleic Acids Res.47, W571–W577 (2019). 10.1093/nar/gkz393 PubMed DOI PMC
Shan, J. et al. Genetic analysis of the SIRT1 gene promoter in ventricular septal defects. Biochem. Biophys. Res. Commun.425, 741–745 (2012). 10.1016/j.bbrc.2012.07.145 PubMed DOI
Cohen, I. et al. A novel homozygous SLC25A1 mutation with impaired mitochondrial complex V: possible phenotypic expansion. Am. J. Med. Genet.176, 330–336 (2018). 10.1002/ajmg.a.38574 PubMed DOI
Nakaya, T. et al. p600 plays essential roles in fetal development. PLoS ONE8, e66269 (2013). 10.1371/journal.pone.0066269 PubMed DOI PMC
Anderson, R. H., Brown, N. A. & Mohun, T. J. Insights regarding the normal and abnormal formation of the atrial and ventricular septal structures. Clin. Anat.29, 290–304 (2016). 10.1002/ca.22627 PubMed DOI
Faqeih, E. A. et al. Novel STAMBP mutation and additional findings in an Arabic family. Am. J. Med. Genet.167a, 805–809 (2015). 10.1002/ajmg.a.36782 PubMed DOI
Zhu, C. et al. Screening for differential methylation status in fetal myocardial tissue samples with ventricular septal defects by promoter methylation microarrays. Mol. Med. Rep.4, 137–143 (2011). 10.3892/mmr.2011.434 PubMed DOI
Duncan, E. L. et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet.7, e1001372 (2011). 10.1371/journal.pgen.1001372 PubMed DOI PMC
Nielsen, J. B. et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat. Genet.50, 1234–1239 (2018). 10.1038/s41588-018-0171-3 PubMed DOI PMC
Ananth, A. L. et al. Clinical course of six children with GNAO1 mutations causing a severe and distinctive movement disorder. Pediatr. Neurol.59, 81–84 (2016). 10.1016/j.pediatrneurol.2016.02.018 PubMed DOI
Vatta, M. et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J. Am. Coll. Cardiol.42, 2014–2027 (2003). 10.1016/j.jacc.2003.10.021 PubMed DOI
Huang, J. et al. Myocardin regulates BMP10 expression and is required for heart development. J. Clin. Invest.122, 3678–3691 (2012). 10.1172/JCI63635 PubMed DOI PMC
Soldatov, N. M. CACNB2: an emerging pharmacological target for hypertension, heart failure, arrhythmia and mental disorders. Curr. Mol. Pharmacol.8, 32–42 (2015). 10.2174/1874467208666150507093258 PubMed DOI
Rasmussen, T. B. et al. Mutated desmoglein-2 proteins are incorporated into desmosomes and exhibit dominant-negative effects in arrhythmogenic right ventricular cardiomyopathy. Hum. Mutat.34, 697–705 (2013). 10.1002/humu.22289 PubMed DOI
Amin, A. S., Asghari-Roodsari, A. & Tan, H. L. Cardiac sodium channelopathies. Pflugers Arch. Eur. J. Physiol.460, 223–237 (2010). 10.1007/s00424-009-0761-0 PubMed DOI PMC
Rani, D. S. et al. A complete absence of missense mutation in myosin regulatory and essential light chain genes of south Indian hypertrophic and dilated cardiomyopathies. Cardiology141, 156–166 (2018). 10.1159/000495027 PubMed DOI
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res.44, W90–W97 (2016). 10.1093/nar/gkw377 PubMed DOI PMC
Hoang, T. T. et al. The Congenital Heart Disease Genetic Network Study: cohort description. PLoS ONE13, e0191319 (2018). 10.1371/journal.pone.0191319 PubMed DOI PMC
Moss, C. & Wernham, A. The 100 000 Genomes Project: feeding back to patients. BMJ361, k2441 (2018). 10.1136/bmj.k2441 PubMed DOI
Turnbull, C. et al. The 100 000 Genomes Project: bringing whole genome sequencing to the NHS. BMJ361, k1687 (2018). 10.1136/bmj.k1687 PubMed DOI
Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet.43, 333–338 (2011). 10.1038/ng.784 PubMed DOI PMC
Hou, Y. et al. A preliminary study on RCN3 protein expression in non-small cell lung cancer. Clin. Lab.62, 293–300 (2016). 10.7754/Clin.Lab.2015.150411 PubMed DOI
Gijsbers, A. C. et al. Additional cryptic CNVs in mentally retarded patients with apparently balanced karyotypes. Eur. J. Med. Genet.53, 227–233 (2010). 10.1016/j.ejmg.2010.06.003 PubMed DOI
Goodwin, E. C. et al. BiP and multiple DNAJ molecular chaperones in the endoplasmic reticulum are required for efficient simian virus 40 infection. mBio2, e00101–e00111 (2011). 10.1128/mBio.00101-11 PubMed DOI PMC
Groenendyk, J., Sreenivasaiah, P. K., Kim, D. H., Agellon, L. B. & Michalak, M. Biology of endoplasmic reticulum stress in the heart. Circ. Res.107, 1185–1197 (2010). 10.1161/CIRCRESAHA.110.227033 PubMed DOI
Dickinson, M. E. et al. High-throughput discovery of novel developmental phenotypes. Nature537, 508–514 (2016). 10.1038/nature19356 PubMed DOI PMC
Aung, N. et al. Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development. Circulation140, 1318–1330 (2019). 10.1161/CIRCULATIONAHA.119.041161 PubMed DOI PMC
Herman, D. S. et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med.366, 619–628 (2012). 10.1056/NEJMoa1110186 PubMed DOI PMC
Derangeon, M., Montnach, J., Baró, I. & Charpentier, F. Mouse models of SCN5A-related cardiac arrhythmias. Front. Physiol.3, 210 (2012). 10.3389/fphys.2012.00210 PubMed DOI PMC
Zervou, S., Whittington, H. J., Russell, A. J. & Lygate, C. A. Augmentation of creatine in the heart. Mini Rev. Med. Chem.16, 19–28 (2016). 10.2174/1389557515666150722102151 PubMed DOI PMC
Sequeira, V., Nijenkamp, L. L., Regan, J. A. & van der Velden, J. The physiological role of cardiac cytoskeleton and its alterations in heart failure. Biochim. Biophys. Acta1838, 700–722 (2014). 10.1016/j.bbamem.2013.07.011 PubMed DOI
Rooryck, C. et al. Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome. Nat. Genet.43, 197–203 (2011). 10.1038/ng.757 PubMed DOI PMC
Long, J. Z. et al. Metabolomics annotates ABHD3 as a physiologic regulator of medium-chain phospholipids. Nat. Chem. Biol.7, 763–765 (2011). 10.1038/nchembio.659 PubMed DOI PMC
Deshpande, I. et al. Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature571, 284–288 (2019). 10.1038/s41586-019-1355-4 PubMed DOI PMC
McCulley, D. J. & Black, B. L. Transcription factor pathways and congenital heart disease. Curr. Top. Dev. Biol.100, 253–277 (2012). 10.1016/B978-0-12-387786-4.00008-7 PubMed DOI PMC
Fu, K. et al. A temporal transcriptome and methylome in human embryonic stem cell-derived cardiomyocytes identifies novel regulators of early cardiac development. Epigenetics13, 1013–1026 (2018). 10.1080/15592294.2018.1526029 PubMed DOI PMC
Cui, M., Wang, Z., Bassel-Duby, R. & Olson, E. N. Genetic and epigenetic regulation of cardiomyocytes in development, regeneration and disease. Development145, dev171983 (2018). PubMed PMC
Wiegering, A., Rüther, U. & Gerhardt, C. The role of Hedgehog signalling in the formation of the ventricular septum. J. Dev. Biol.5, 17 (2017). PubMed PMC
Valenzuela, D. et al. Gαo is necessary for muscarinic regulation of Ca2+ channels in mouse heart. Proc. Natl Acad. Sci. USA94, 1727–1732 (1997). 10.1073/pnas.94.5.1727 PubMed DOI PMC
Cai, X. et al. Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis. Development140, 3176–3187 (2013). 10.1242/dev.092502 PubMed DOI PMC
Boogerd, C. J. et al. Tbx20 is required in mid-gestation cardiomyocytes and plays a central role in atrial development. Circ. Res.123, 428–442 (2018). 10.1161/CIRCRESAHA.118.311339 PubMed DOI PMC
Witzel, H. R., Cheedipudi, S., Gao, R., Stainier, D. Y. & Dobreva, G. D. Isl2b regulates anterior second heart field development in zebrafish. Sci. Rep.7, 41043 (2017). 10.1038/srep41043 PubMed DOI PMC
Vasilescu, C. et al. Genetic basis of severe childhood-onset cardiomyopathies. J. Am. Coll. Cardiol.72, 2324–2338 (2018). 10.1016/j.jacc.2018.08.2171 PubMed DOI
Jin, S. C. et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet.49, 1593–1601 (2017). 10.1038/ng.3970 PubMed DOI PMC
Yang, X. F. et al. Relationship between TBX20 gene polymorphism and congenital heart disease. Genet. Mol. Res.15, gmr7374 (2016). PubMed
Huang, R. T. et al. CASZ1 loss-of-function mutation associated with congenital heart disease. Gene595, 62–68 (2016). 10.1016/j.gene.2016.09.044 PubMed DOI
Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol.186, 1026–1034 (2017). 10.1093/aje/kwx246 PubMed DOI PMC
Karczewski, K. J. et al. Systematic single-variant and gene-based association testing of 3,700 phenotypes in 281,850 UK Biobank exomes. Preprint at medRxiv10.1101/2021.06.19.21259117 (2021).
Lipshultz, S. E. et al. Cardiomyopathy in children: classification and diagnosis: a scientific statement from the American Heart Association. Circulation140, e9–e68 (2019). 10.1161/CIR.0000000000000682 PubMed DOI
Isbister, J. & Semsarian, C. Sudden cardiac death: an update. Intern. Med. J.49, 826–833 (2019). 10.1111/imj.14359 PubMed DOI
Sifrim, A. et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat. Genet.48, 1060–1065 (2016). 10.1038/ng.3627 PubMed DOI PMC
Brown, S. D. M. et al. High-throughput mouse phenomics for characterizing mammalian gene function. Nat. Rev. Genet.19, 357–370 (2018). 10.1038/s41576-018-0005-2 PubMed DOI PMC
Hrabe de Angelis, M. et al. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nat. Genet.47, 969–978 (2015). 10.1038/ng.3360 PubMed DOI PMC
Bowl, M. R. et al. A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction. Nat. Commun.8, 886 (2017). 10.1038/s41467-017-00595-4 PubMed DOI PMC
Brown, S. D. & Moore, M. W. The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm. Genome23, 632–640 (2012). 10.1007/s00335-012-9427-x PubMed DOI PMC
Gailus-Durner, V. et al. Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nat. Methods2, 403–404 (2005). 10.1038/nmeth0605-403 PubMed DOI
Mallon, A. M., Blake, A. & Hancock, J. M. EuroPhenome and EMPReSS: online mouse phenotyping resource. Nucleic Acids Res.36, D715–D718 (2008). 10.1093/nar/gkm728 PubMed DOI PMC
Rozman, J. et al. Identification of genetic elements in metabolism by high-throughput mouse phenotyping. Nat. Commun.9, 288 (2018). 10.1038/s41467-017-01995-2 PubMed DOI PMC
Meehan, T. F. et al. Disease model discovery from 3,328 gene knockouts by the International Mouse Phenotyping Consortium. Nat. Genet.49, 1231–1238 (2017). 10.1038/ng.3901 PubMed DOI PMC
Swan, A. L. et al. Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genet.16, e1009190 (2020). 10.1371/journal.pgen.1009190 PubMed DOI PMC
Desai, K. H. et al. Cardiovascular indexes in the mouse at rest and with exercise: new tools to study models of cardiac disease. Am. J. Physiol.272, H1053–H1061 (1997). PubMed
Wehrens, X. H., Kirchhoff, S. & Doevendans, P. A. Mouse electrocardiography: an interval of thirty years. Cardiovasc. Res.45, 231–237 (2000). 10.1016/S0008-6363(99)00335-1 PubMed DOI
Mitchell, G. F., Jeron, A. & Koren, G. Measurement of heart rate and Q–T interval in the conscious mouse. Am. J. Physiol.274, H747–H751 (1998). PubMed
Sahn, D. J., DeMaria, A., Kisslo, J. & Weyman, A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation58, 1072–1083 (1978). 10.1161/01.CIR.58.6.1072 PubMed DOI
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Haselimashhadi, H. et al. OpenStats: a robust and scalable software package for reproducible analysis of high-throughput phenotypic data. PLoS ONE15, e0242933 (2020). 10.1371/journal.pone.0242933 PubMed DOI PMC
Karp, N. A. et al. Applying the ARRIVE Guidelines to an in vivo database. PLoS Biol.13, e1002151 (2015). 10.1371/journal.pbio.1002151 PubMed DOI PMC
Kurbatova, N., Karp, N. & Mason, J. PhenStat: Statistical Analysis of Phenotypic Datahttps://bioc.ism.ac.jp/ (2016).
Kurbatova, N., Karp, N., Mason, J. & Haselimashhadi, H. PhenStat: statistical analysis of phenotypic data. R package version 2.30.0 (2021).
Wong, M. D., Spring, S. & Henkelman, R. M. Structural stabilization of tissue for embryo phenotyping using micro-CT with iodine staining. PLoS ONE8, e84321 (2013). 10.1371/journal.pone.0084321 PubMed DOI PMC
Kemp, J. P. et al. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. PLoS Genet.10, e1004423 (2014). 10.1371/journal.pgen.1004423 PubMed DOI PMC
Li, H. Z. et al. Study on the contribution rate of follow-up formula to the nutrient intake of infants and young children aged 7–24 months in China. Zhonghua Yu Fang Yi Xue Za Zhi51, 65–69 (2017). PubMed
Xu, J.-H. et al. Prevalence and spectrum of NKX2-5 mutations associated with sporadic adult-onset dilated cardiomyopathy. Int. J. Heart58, 521–529 (2017).10.1536/ihj.16-440 PubMed DOI
Zhou, Y.-M. A novel TBX20 loss‑of‑function mutation contributes to adult‑onset dilated cardiomyopathy or congenital atrial septal defect. Mol. Med. Rep.14, 3307–3314 (2016). 10.3892/mmr.2016.5609 PubMed DOI
Zhou, G. et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res.47, W234–W241 (2019). 10.1093/nar/gkz240 PubMed DOI PMC