Muscle Amino Acid and Adenine Nucleotide Metabolism during Exercise and in Liver Cirrhosis: Speculations on How to Reduce the Harmful Effects of Ammonia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
N.A.
Charles University
PubMed
36295872
PubMed Central
PMC9611132
DOI
10.3390/metabo12100971
PII: metabo12100971
Knihovny.cz E-zdroje
- Klíčová slova
- branched-chain amino acids, glutamic acid, glutamine, hyperammonemia,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Studies from the last decades indicate that increased levels of ammonia contribute to muscle wasting in critically ill patients. The aim of the article is to examine the effects of two different causes of hyperammonemia-increased ATP degradation in muscles during strenuous exercise and impaired ammonia detoxification to urea due to liver cirrhosis. During exercise, glycolysis, citric acid cycle (CAC) activity, and ATP synthesis in muscles increase. In cirrhosis, due to insulin resistance and mitochondrial dysfunction, glycolysis, CAC activity, and ATP synthesis in muscles are impaired. Both during exercise and in liver cirrhosis, there is increased ammonia detoxification to glutamine (Glu + NH3 + ATP → Gln + ADP + Pi), increased drain of ketoglutarate (α-KG) from CAC for glutamate synthesis by α-KG-linked aminotransferases, glutamate, aspartate, and α-KG deficiency, increased oxidation of branched-chain amino acids (BCAA; valine, leucine, and isoleucine), and protein-energy wasting in muscles. It is concluded that ammonia can contribute to muscle wasting regardless of the cause of its increased levels and that similar strategies can be designed to increase muscle performance in athletes and reduce muscle loss in patients with hyperammonemia. The pros and cons of glutamate, α-KG, aspartate, BCAA, and branched-chain keto acid supplementation are discussed.
Department of Physiology Faculty of Medicine Charles University 500 03 Hradec Kralove Czech Republic
Zobrazit více v PubMed
Walker V. Ammonia metabolism and hyperammonemic disorders. Adv. Clin. Chem. 2014;67:73–150. PubMed
Walker V. Severe hyperammonaemia in adults not explained by liver disease. Ann. Clin. Biochem. 2012;49:214–228. doi: 10.1258/acb.2011.011206. PubMed DOI
Yao Z.P., Li Y., Liu Y., Wang H.L. Relationship between the incidence of non-hepatic hyperammonemia and the prognosis of patients in the intensive care unit. World J. Gastroenterol. 2020;26:7222–7231. doi: 10.3748/wjg.v26.i45.7222. PubMed DOI PMC
Balcerac A., Bihan K., Lebrun-Vignes B., Thabut D., Salem J.E., Weiss N. Drug-associated hyperammonaemia: A Bayesian analysis of the WHO Pharmacovigilance Database. Ann. Intensive Care. 2022;12:55. doi: 10.1186/s13613-022-01026-4. PubMed DOI PMC
McDaniel J., Davuluri G., Hill E.A., Moyer M., Runkana A., Prayson R., van Lunteren E., Dasarathy S. Hyperammonemia results in reduced muscle function independent of muscle mass. Am. J. Physiol. 2016;310:G163–G170. doi: 10.1152/ajpgi.00322.2015. PubMed DOI PMC
Leweling H., Breitkreutz R., Behne F., Staedt U., Striebel J.P., Holm E. Hyperammonemia-induced depletion of glutamate and branched-chain amino acids in muscle and plasma. J. Hepatol. 1996;25:756–762. doi: 10.1016/S0168-8278(96)80249-2. PubMed DOI
Kumar A., Davuluri G., Silva R.N.E., Engelen M.P.K.J., Ten Have G.A.M., Prayson R., Deutz N.E.P., Dasarathy S. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology. 2017;65:2045–2058. doi: 10.1002/hep.29107. PubMed DOI PMC
Holecek M., Sprongl L., Tichý M. Effect of hyperammonemia on leucine and protein metabolism in rats. Metabolism. 2000;49:1330–1334. doi: 10.1053/meta.2000.9531. PubMed DOI
Holecek M., Kandar R., Sispera L., Kovarik M. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: Different sensitivity of red and white muscle. Amino Acids. 2011;40:575–584. doi: 10.1007/s00726-010-0679-z. PubMed DOI
Holeček M., Vodeničarovová M. Muscle wasting and branched-chain amino acid, alpha-ketoglutarate, and ATP depletion in a rat model of liver cirrhosis. Int. J. Exp. Pathol. 2018;99:274–281. doi: 10.1111/iep.12299. PubMed DOI PMC
Lowenstein J.M. Ammonia production in muscle and other tissues: The purine nucleotide cycle. Physiol. Rev. 1972;52:382–414. doi: 10.1152/physrev.1972.52.2.382. PubMed DOI
Mavrothalassitis G., Tzimagiorgis G., Mitsialis A., Zannis V., Plaitakis A., Papamatheakis J., Moschonas N. Isolation and characterization of cDNA clones encoding human liver glutamate dehydrogenase: Evidence for a small gene family. Proc. Natl. Acad. Sci. USA. 1988;85:3494–3498. doi: 10.1073/pnas.85.10.3494. PubMed DOI PMC
Wiechetek M., Breves G., Höller H. Effects of increased blood ammonia concentrations on the concentrations of some metabolites in rat tissues. Q. J. Exp. Physiol. 1981;66:423–429. doi: 10.1113/expphysiol.1981.sp002584. PubMed DOI
Van Hall G., van der Vusse G.J., Söderlund K., Wagenmakers A.J. Deamination of amino acids as a source for ammonia production in human skeletal muscle during prolonged exercise. J. Physiol. 1995;489:251–261. doi: 10.1113/jphysiol.1995.sp021047. PubMed DOI PMC
Adeva M.M., Souto G., Blanco N., Donapetry C. Ammonium metabolism in humans. Metabolism. 2012;61:1495–1511. doi: 10.1016/j.metabol.2012.07.007. PubMed DOI
Harper A.E., Miller R.H., Block K.P. Branched-chain amino acid metabolism. Annu. Rev. Nutr. 1984;4:409–454. doi: 10.1146/annurev.nu.04.070184.002205. PubMed DOI
Shimomura Y., Fujii H., Suzuki M., Murakami T., Fujitsuka N., Nakai N. Branched-chain alpha-keto acid dehydrogenase complex in rat skeletal muscle: Regulation of the activity and gene expression by nutrition and physical exercise. J. Nutr. 1995;125:1762S–1765S. PubMed
Yoneshiro T., Wang Q., Tajima K., Matsushita M., Maki H., Igarashi K., Dai Z., White P.J., McGarrah R.W., Ilkayeva O.R., et al. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature. 2019;572:614–619. doi: 10.1038/s41586-019-1503-x. PubMed DOI PMC
Cooper A.J., Jeitner T.M. Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain. Biomolecules. 2016;6:16. doi: 10.3390/biom6020016. PubMed DOI PMC
Abrahams S.L., Younathan E.S. Modulation of the kinetic properties of phosphofructokinase by ammonium ions. J. Biol. Chem. 1971;246:2464–2467. doi: 10.1016/S0021-9258(18)62310-5. PubMed DOI
Holeček M. The role of skeletal muscle in the pathogenesis of altered concentrations of branched-chain amino acids (valine, leucine, and isoleucine) in liver cirrhosis, diabetes, and other diseases. Physiol. Res. 2021;70:293–305. doi: 10.33549/physiolres.934648. PubMed DOI PMC
Wagenmakers A.J. Amino acid metabolism, muscular fatigue and muscle wasting. Speculations on adaptations at high altitude. Int. J. Sports Med. 1992;13:S110–S113. doi: 10.1055/s-2007-1024611. PubMed DOI
Wagenmakers A.J., Coakley J.H., Edwards R.H. Metabolism of branched-chain amino acids and ammonia during exercise: Clues from McArdle’s disease. Int. J. Sports Med. 1990;11:S101–S113. doi: 10.1055/s-2007-1024861. PubMed DOI
Tornheim K., Lowenstein J.M. The purine nucleotide cycle. The production of ammonia from aspartate by extracts of rat skeletal muscle. J. Biol. Chem. 1972;247:162–169. doi: 10.1016/S0021-9258(19)45770-0. PubMed DOI
Graham T.E., MacLean D.A. Ammonia and amino acid metabolism in human skeletal muscle during exercise. Can. J. Physiol. Pharmacol. 1992;70:132–141. doi: 10.1139/y92-020. PubMed DOI
Meyer R.A., Terjung R.L. AMP deamination and IMP reamination in working skeletal muscle. Am. J. Physiol. 1980;239:C32–C38. doi: 10.1152/ajpcell.1980.239.1.C32. PubMed DOI
Katz A., Broberg S., Sahlin K., Wahren J. Muscle ammonia and amino acid metabolism during dynamic exercise in man. Clin. Physiol. 1986;6:365–379. doi: 10.1111/j.1475-097X.1986.tb00242.x. PubMed DOI
Aragón J.J., Lowenstein J.M. The purine-nucleotide cycle. Comparison of the levels of citric acid cycle intermediates with the operation of the purine nucleotide cycle in rat skeletal muscle during exercise and recovery from exercise. Eur. J. Biochem. 1980;110:371–377. doi: 10.1111/j.1432-1033.1980.tb04877.x. PubMed DOI
Banister E.W., Cameron B.J. Exercise-induced hyperammonemia: Peripheral and central effects. Int. J. Sports Med. 1990;S2:S129–S142. doi: 10.1055/s-2007-1024864. PubMed DOI
Gibala M.J., MacLean D.A., Graham T.E., Saltin B. Anaplerotic processes in human skeletal muscle during brief dynamic exercise. J. Physiol. 1997;502:703–713. doi: 10.1111/j.1469-7793.1997.703bj.x. PubMed DOI PMC
Dos Santos R.V., Caperuto E.C., de Mello M.T., Batista M.L., Rosa L.F. Effect of exercise on glutamine synthesis and transport in skeletal muscle from rats. Clin. Exp. Pharmacol. Physiol. 2009;36:770–775. doi: 10.1111/j.1440-1681.2009.05146.x. PubMed DOI
Henriksson J. Effect of exercise on amino acid concentrations in skeletal muscle and plasma. J. Exp. Biol. 1991;160:149–165. doi: 10.1242/jeb.160.1.149. PubMed DOI
Rowbottom D.G., Keast D., Morton A.R. The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Med. 1996;21:80–97. doi: 10.2165/00007256-199621020-00002. PubMed DOI
Bergström J., Fürst P., Hultman E. Free amino acids in muscle tissue and plasma during exercise in man. Clin. Physiol. 1985;5:155–160. doi: 10.1111/j.1475-097X.1985.tb00591.x. PubMed DOI
Poortmans J.R., Siest G., Galteau M.M., Houot O. Distribution of plasma amino acids in humans during submaximal prolonged exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1974;32:143–147. doi: 10.1007/BF00421572. PubMed DOI
Okamura K., Matsubara F., Yoshioka Y., Kikuchi N., Kikuchi Y., Kohri H. Exercise-induced changes in branched chain amino acid/aromatic amino acid ratio in the rat brain and plasma. Jpn. J. Pharmacol. 1987;45:243–248. doi: 10.1016/S0021-5198(19)43417-3. PubMed DOI
Kasperek G.J., Dohm G.L., Snider R.D. Activation of branched-chain keto acid dehydrogenase by exercise. Am. J. Physiol. 1985;248:R166–R171. doi: 10.1152/ajpregu.1985.248.2.R166. PubMed DOI
Wolfe R.R., Goodenough R.D., Wolfe M.H., Royle G.T., Nadel E.R. Isotopic analysis of leucine and urea metabolism in exercising humans. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1982;52:458–466. doi: 10.1152/jappl.1982.52.2.458. PubMed DOI
Knapik J., Meredith C., Jones B., Fielding R., Young V., Evans W. Leucine metabolism during fasting and exercise. J. Appl. Physiol. 1991;70:43–47. doi: 10.1152/jappl.1991.70.1.43. PubMed DOI
Wagenmakers A.J., Brookes J.H., Coakley J.H., Reilly T., Edwards R.H. Exercise-induced activation of the branched-chain 2-oxo acid dehydrogenase in human muscle. Eur. J. Appl. Physiol. Occup. Physiol. 1989;59:159–167. doi: 10.1007/BF02386181. PubMed DOI
Ramaiah A. Regulation of glycolysis in skeletal muscle. Life Sci. 1976;19:455–465. doi: 10.1016/0024-3205(76)90223-X. PubMed DOI
Lancha A.H., Recco M.B., Curi R. Pyruvate carboxylase activity in the heart and skeletal muscles of the rat. Evidence for a stimulating effect of exercise. Biochem. Mol. Biol. Int. 1994;32:483–489. PubMed
Gibala M.J., MacLean D.A., Graham T.E., Saltin B. Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise. Am. J. Physiol. 1998;275:E235–E242. doi: 10.1152/ajpendo.1998.275.2.E235. PubMed DOI
Galassetti P., Gibbons F.K., Hamilton K.S., Lacy D.B., Cherrington A.D., Wasserman D.H. Enhanced muscle glucose uptake facilitates nitrogen efflux from exercised muscle. J. Appl. Physiol. 1998;84:1952–1959. doi: 10.1152/jappl.1998.84.6.1952. PubMed DOI
Sahlin K., Katz A., Broberg S. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am. J. Physiol. 1990;259:C834–C841. doi: 10.1152/ajpcell.1990.259.5.C834. PubMed DOI
Bowtell J.L., Marwood S., Bruce M., Constantin-Teodosiu D., Greenhaff P.L. Tricarboxylic acid cycle intermediate pool size: Functional importance for oxidative metabolism in exercising human skeletal muscle. Sports Med. 2007;37:1071–1088. doi: 10.2165/00007256-200737120-00005. PubMed DOI
Dohm G.L., Puente F.R., Smith C.P., Edge A. Changes in tissue protein levels as a result of endurance exercise. Life Sci. 1978;23:845–849. doi: 10.1016/0024-3205(78)90519-2. PubMed DOI
Refsum H.E., Gjessing L.R., Strømme S.B. Changes in plasma amino acid distribution and urine amino acids excretion during prolonged heavy exercise. Scand. J. Clin. Lab. Investig. 1979;39:407–413. doi: 10.3109/00365517909106125. PubMed DOI
Dohm G.L., Kasperek G.J., Tapscott E.B., Barakat H.A. Protein metabolism during endurance exercise. Fed. Proc. 1985;44:348–352. PubMed
Young V.R., Torún B. Physical activity: Impact on protein and amino acid metabolism and implications for nutritional requirements. Prog. Clin. Biol. Res. 1981;77:57–85. PubMed
Bodine S.C., Stitt T.N., Gonzalez M., Kline W.O., Stover G.L., Bauerlein R., Zlotchenko E., Scrimgeour A., Lawrence J.C., Glass D.J., et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 2001;3:1014–1019. doi: 10.1038/ncb1101-1014. PubMed DOI
Kwon J.H., Moon K.M., Min K.W. Exercise-induced myokines can explain the importance of physical activity in the elderly: An overview. Healthcare. 2020;8:378. doi: 10.3390/healthcare8040378. PubMed DOI PMC
Holeček M., Mráz J., Tilšer I. Plasma amino acids in four models of experimental liver injury in rats. Amino Acids. 1996;10:229–241. doi: 10.1007/BF00807325. PubMed DOI
Meyer H.P., Chamuleau R.A., Legemate D.A., Mol J.A., Rothuizen J. Effects of a branched-chain amino acid-enriched diet on chronic hepatic encephalopathy in dogs. Metab. Brain Dis. 1999;14:103–115. doi: 10.1023/A:1020757730386. PubMed DOI
Watanabe A., Hayashi S., Higashi T., Obata T., Sakata T., Takei N., Shiota T., Nagashima H. Characteristics change in serum amino acid levels in different types of hepatic encephalopathy. Gastroenterol. Jpn. 1982;17:218–223. doi: 10.1007/BF02775999. PubMed DOI
Morrison W.L., Bouchier I.A., Gibson J.N., Rennie M.J. Skeletal muscle and whole-body protein turnover in cirrhosis. Clin. Sci. 1990;78:613–619. doi: 10.1042/cs0780613. PubMed DOI
Jacobsen E.B., Hamberg O., Quistorff B., Ott P. Reduced mitochondrial adenosine triphosphate synthesis in skeletal muscle in patients with Child-Pugh class B and C cirrhosis. Hepatology. 2001;34:7–12. doi: 10.1053/jhep.2001.25451. PubMed DOI
Möller P., Bergström J., Fürst P., Hellström K. Muscle biopsy studies in patients with moderate liver cirrhosis with special reference to energy-rich phosphagens and electrolytes. Scand. J. Gastroenterol. 1984;19:267–272. doi: 10.1080/00365521.1984.12005719. PubMed DOI
Davuluri G., Allawy A., Thapaliya S., Rennison J.H., Singh D., Kumar A., Sandlers Y., Van Wagoner D.R., Flask C.A., Hoppel C., et al. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress. J. Physiol. 2016;594:7341–7360. doi: 10.1113/JP272796. PubMed DOI PMC
Holeček M. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives. Metab. Brain Dis. 2014;29:9–17. doi: 10.1007/s11011-013-9428-9. PubMed DOI PMC
Holecek M., Tilser I., Skopec F., Sprongl L. Leucine metabolism in rats with cirrhosis. J. Hepatol. 1996;24:209–216. doi: 10.1016/S0168-8278(96)80031-6. PubMed DOI
McCullough A.J., Mullen K.D., Kalhan S.C. Body cell mass and leucine metabolism in cirrhosis. Pt 1Gastroenterology. 1992;102:1325–1333. doi: 10.1016/0016-5085(92)90772-Q. PubMed DOI
Peng S., Plank L.D., McCall J.L., Gillanders L.K., McIlroy K., Gane E.J. Body composition, muscle function, and energy expenditure in patients with liver cirrhosis: A comprehensive study. Am. J. Clin. Nutr. 2007;85:1257–1266. doi: 10.1093/ajcn/85.5.1257. PubMed DOI
Holecek M., Sispera L. Glutamine deficiency in extracellular fluid exerts adverse effects on protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats. Amino Acids. 2014;46:1377–1384. doi: 10.1007/s00726-014-1701-7. PubMed DOI
Mourtzakis M., Graham T.E. Glutamate ingestion and its effects at rest and during exercise in humans. J. Appl. Physiol. 2002;93:1251–1259. doi: 10.1152/japplphysiol.00111.2002. PubMed DOI
Graham T.E., Sgro V., Friars D., Gibala M.J. Glutamate ingestion: The plasma and muscle free amino acid pools of resting humans. Am. J. Physiol. 2000;278:E83–E89. doi: 10.1152/ajpendo.2000.278.1.E83. PubMed DOI
Stegink L.D., Filer L.J., Baker G.L. Effect of aspartame plus monosodium L-glutamate ingestion on plasma and erythrocyte amino acid levels in normal adult subjects fed a high protein meal. Am. J. Clin. Nutr. 1982;36:1145–1152. doi: 10.1093/ajcn/36.6.1145. PubMed DOI
Thomassen A., Bøtker H.E., Nielsen T.T., Thygesen K., Henningsen P. Effects of glutamate on exercise tolerance and circulating substrate levels in stable angina pectoris. Am. J. Cardiol. 1990;65:173–178. doi: 10.1016/0002-9149(90)90080-K. PubMed DOI
Alexander J.W., Porter C.E. The treatment of a patient in hepatic coma with intravenous sodium glutamate and ACTH. Gastroenterology. 1954;26:926–929. doi: 10.1016/S0016-5085(54)80011-4. PubMed DOI
Schwartz I.R., Lehman E., Hammond J., Seibel J.M., Goldson F. The failure of monosodium glutamate in the treatment of hepatic coma. Gastroenterology. 1956;30:869–881. doi: 10.1016/S0016-5085(56)80084-X. PubMed DOI
Webster L.T., Jr., Davidson C.S. The effect of sodium glutamate on hepatic coma. J. Clin. Investig. 1956;35:191–199. doi: 10.1172/JCI103263. PubMed DOI PMC
McDermott W.V., Jr., Wareham J., Riddell A.G. Treatment of hepatic coma with L-glutamic acid. N. Engl. J. Med. 1955;253:1093–1102. doi: 10.1056/NEJM195512222532501. PubMed DOI
Janeczko M.J., Stoll B., Chang X., Guan X., Burrin D.G. Extensive gut metabolism limits the intestinal absorption of excessive supplemental dietary glutamate loads in infant pigs. J. Nutr. 2007;137:2384–2390. doi: 10.1093/jn/137.11.2384. PubMed DOI
Windmueller H.G., Spaeth A.E. Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch. Biochem. Biophys. 1975;171:662–672. doi: 10.1016/0003-9861(75)90078-8. PubMed DOI
Yao K., Yin Y., Li X., Xi P., Wang J., Lei J., Hou Y., Wu G. Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids. 2012;42:2491–2500. doi: 10.1007/s00726-011-1060-6. PubMed DOI
Tischler M.E., Desautels M., Goldberg A.L. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J. Biol. Chem. 1982;257:1613–1621. doi: 10.1016/S0021-9258(19)68081-6. PubMed DOI
Holecek M., Muthny T., Kovarik M., Sispera L. Effect of beta-hydroxy-beta-methylbutyrate (HMB) on protein metabolism in whole body and in selected tissues. Food Chem. Toxicol. 2009;47:255–259. doi: 10.1016/j.fct.2008.11.021. PubMed DOI
Kovarik M., Muthny T., Sispera L., Holecek M. Effects of β-hydroxy-β-methylbutyrate treatment in different types of skeletal muscle of intact and septic rats. J. Physiol. Biochem. 2010;66:311–319. doi: 10.1007/s13105-010-0037-3. PubMed DOI
Blomstrand E., Hassmén P., Ekblom B., Newsholme E.A. Administration of branched-chain amino acids during sustained exercise—Effects on performance and on plasma concentration of some amino acids. Eur. J. Appl. Physiol. Occup. Physiol. 1991;63:83–88. doi: 10.1007/BF00235174. PubMed DOI
Holeček M., Vodeničarovová M. Effects of branched-chain amino acids on muscles under hyperammonemic conditions. J. Physiol. Biochem. 2018;74:523–530. doi: 10.1007/s13105-018-0646-9. PubMed DOI
Parry-Billings M., Budgett R., Koutedakis Y., Blomstrand E., Brooks S., Williams C., Calder P.C., Pilling S., Baigrie R., Newsholme E.A. Plasma amino acid concentrations in the overtraining syndrome: Possible effects on the immune system. Med. Sci. Sports Exerc. 1992;24:1353–1358. doi: 10.1249/00005768-199212000-00008. PubMed DOI
Gleeson M. Interrelationship between physical activity and branched-chain amino acids. J. Nutr. 2005;135:1591S–1595S. doi: 10.1093/jn/135.6.1591S. PubMed DOI
Watson P., Shirreffs S.M., Maughan R.J. The effect of acute branched-chain amino acid supplementation on prolonged exercise capacity in a warm environment. Eur. J. Appl. Physiol. 2004;93:306–314. doi: 10.1007/s00421-004-1206-2. PubMed DOI
MacLean D.A., Graham T.E. Branched-chain amino acid supplementation augments plasma ammonia responses during exercise in humans. J. Appl. Physiol. 1993;74:2711–2717. doi: 10.1152/jappl.1993.74.6.2711. PubMed DOI
Falavigna G., Alves de Araújo J., Jr., Rogero M.M., Pires I.S., Pedrosa R.G., Martins E., Jr., Alves de Castro I., Tirapegui J. Effects of diets supplemented with branched-chain amino acids on the performance and fatigue mechanisms of rats submitted to prolonged physical exercise. Nutrients. 2012;4:1767–1780. doi: 10.3390/nu4111767. PubMed DOI PMC
Als-Nielsen B., Koretz R.L., Kjaergard L.L., Gluud C. Branched-chain amino acids for hepatic encephalopathy. Cochrane Database Syst. Rev. 2003;2:CD001939. PubMed
Gluud L.L., Dam G., Les I., Córdoba J., Marchesini G., Borre M., Aagaard N.K., Vilstrup H. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst. Rev. 2015;9:CD001939. PubMed
Calders P., Pannier J.L., Matthys D.M., Lacroix E.M. Pre-exercise branched-chain amino acid administration increases endurance performance in rats. Med. Sci. Sports Exerc. 1997;29:1182–1186. doi: 10.1097/00005768-199709000-00010. PubMed DOI
Holecek M., Siman P., Vodenicarovova M., Kandar R. Alterations in protein and amino acid metabolism in rats fed a branched-chain amino acid- or leucine-enriched diet during postprandial and postabsorptive states. Nutr. Metab. 2016;13:12. doi: 10.1186/s12986-016-0072-3. PubMed DOI PMC
Yagi M., Matthews D.E., Walser M. Nitrogen sparing by 2-ketoisocaproate in parenterally fed rats. Am. J. Physiol. 1990;259:E633–E638. doi: 10.1152/ajpendo.1990.259.5.E633. PubMed DOI
Mitch W.E., Walser M., Sapir D.G. Nitrogen sparing induced by leucine compared with that induced by its keto analogue, alpha-ketoisocaproate, in fasting obese man. J. Clin. Investig. 1981;67:553–562. doi: 10.1172/JCI110066. PubMed DOI PMC
Stewart P.M., Walser M., Drachman D.B. Branched-chain ketoacids reduce muscle protein degradation in Duchenne muscular dystrophy. Muscle Nerve. 1982;5:197–201. doi: 10.1002/mus.880050304. PubMed DOI
Sapir D.G., Stewart P.M., Walser M., Moreadith C., Moyer E.D., Imbembo A.L., Rosenshein N.B., Munoz S. Effects of alpha-ketoisocaproate and of leucine on nitrogen metabolism in postoperative patients. Lancet. 1983;1:1010–1014. doi: 10.1016/S0140-6736(83)92643-0. PubMed DOI
Imura K., Shiota T., Swain L.M., Walser M. Utilization for protein synthesis of 2-ketoisocaproate relative to utilization of leucine, as estimated from exhalation of labelled CO2. Clin. Sci. 1988;75:301–307. doi: 10.1042/cs0750301. PubMed DOI
Jungers P., Chauveau P. Amino acids and keto acids in the treatment of chronic renal failure. Blood Purif. 1988;6:299–314. doi: 10.1159/000169557. PubMed DOI
Walser M., Mitch W.E., Abras E. Supplements containing amino acids and keto acids in the treatment of chronic uremia. Kidney Int. 1983;16:S285–S289. PubMed
Teplan V., Schück O., Horácková M., Skibová J., Holecek M. Effect of a keto acid-amino acid supplement on the metabolism and renal elimination of branched-chain amino acids in patients with chronic renal insufficiency on a low protein diet. Wien. Klin. Wochenschr. 2000;112:876–881. PubMed
Muñoz S., Walser M. Effect of experimental liver disease on the utilization for protein synthesis of orally administered alpha-ketoisocaproate. Hepatology. 1986;6:472–476. doi: 10.1002/hep.1840060325. PubMed DOI
De Almeida R.D., Prado E.S., Llosa C.D., Magalhães-Neto A., Cameron L.C. Acute supplementation with keto analogues and amino acids in rats during resistance exercise. Br. J. Nutr. 2010;104:1438–1442. doi: 10.1017/S0007114510002321. PubMed DOI
Prado E.S., de Rezende Neto J.M., de Almeida R.D., Dória de Melo M.G., Cameron L.C. Keto analogue and amino acid supplementation affects the ammonaemia response during exercise under ketogenic conditions. Br. J. Nutr. 2011;105:1729–1733. doi: 10.1017/S000711451000557X. PubMed DOI
Camerino S.R., Lima R.C., França T.C., Herculano Ede A., Rodrigues D.S., Gouveia M.G., Cameron L.C., Prado E.S. Keto analogue and amino acid supplementation and its effects on ammonemia and performance under thermoneutral conditions. Food Funct. 2016;7:872–880. doi: 10.1039/C5FO01054C. PubMed DOI
Ferreira R.T., Gonçalves S.C., Pedrosa M.L., Silva M.E., Bassini A., Coelho W.S., de Magalhães-Neto A.M., Prado E.S., Cameron L.C. Keto analogues and amino acid supplementation and its effects on ammonaemia during extenuating endurance exercise in ketogenic diet-fed rats. Br. J. Nutr. 2018;120:732–739. doi: 10.1017/S0007114518001770. PubMed DOI
Herlong H.F., Maddrey W.C., Walser M. The use of ornithine salts of branched-chain ketoacids in portal-systemic encephalopathy. Ann. Intern. Med. 1980;93:545–550. doi: 10.7326/0003-4819-93-4-545. PubMed DOI
Maddrey W.C., Weber F.L., Jr., Coulter A.W., Chura C.M., Chapanis N.P., Walser M. Effects of keto analogues of essential amino acids in portal-systemic encephalopathy. Gastroenterology. 1976;71:190–195. doi: 10.1016/S0016-5085(76)80185-0. PubMed DOI
Batshaw M.L., Brusilow S., Walser M. Long-term management of a case of carbamyl phosphate synthetase deficiency using ketanalogues and hydroxyanalogues of essential amino acids. Pediatrics. 1976;58:227–235. PubMed
Thoene J., Batshaw M., Spector E., Kulovich S., Brusilow S., Walser M., Nyhan W. Neonatal citrllinemia: Treatment with keto-analogues of essential amino acids. J. Pediatr. 1977;90:218–224. doi: 10.1016/S0022-3476(77)80633-1. PubMed DOI
McReynolds J.W., Mantagos S., Brusilow S., Rosenberg L.E. Treatment of complete ornithine transcarbamylase deficiency with nitrogen-free analogues of essential amino acids. J. Pediatr. 1978;93:421–427. doi: 10.1016/S0022-3476(78)81149-4. PubMed DOI
Ji L.L., Miller R.H., Nagle F.J., Lardy H.A., Stratman F.W. Amino acid metabolism during exercise in trained rats: The potential role of carnitine in the metabolic fate of branched-chain amino acids. Metabolism. 1987;36:748–752. doi: 10.1016/0026-0495(87)90111-9. PubMed DOI
Adán C., Ardévol A., Rafecas I., Remesar X., Alemany M., Fernández-López J.A. Amino acid nitrogen handling by hind leg muscle of the rat during exercise. Arch. Physiol. Biochem. 1997;105:478–486. doi: 10.1076/apab.105.5.478.3284. PubMed DOI
Trudeau F. Aspartate as an ergogenic supplement. Sports Med. 2008;38:9–16. doi: 10.2165/00007256-200838010-00002. PubMed DOI
Lancha A.H., Jr., Recco M.B., Abdalla D.S., Curi R. Effect of aspartate, asparagine, and carnitine supplementation in the diet on metabolism of skeletal muscle during a moderate exercise. Physiol. Behav. 1995;57:367–371. doi: 10.1016/0031-9384(94)00243-X. PubMed DOI
Marquezi M.L., Roschel H.A., dos Santa Costa A., Sawada L.A., Lancha A.H., Jr. Effect of aspartate and asparagine supplementation on fatigue determinants in intense exercise. Int. J. Sport Nutr. Exerc. Metab. 2003;13:65–75. doi: 10.1123/ijsnem.13.1.65. PubMed DOI
Butterworth R.F. Ammonia removal by metabolic scavengers for the prevention and treatment of hepatic encephalopathy in cirrhosis. Drugs R D. 2021;21:123–132. doi: 10.1007/s40268-021-00345-4. PubMed DOI PMC
Hammarqvist F., Wernerman J., Ali R., von der Decken A., Vinnars E. Addition of glutamine to total parenteral nutrition after elective abdominal surgery spares free glutamine in muscle, counteracts the fall in muscle protein synthesis, and improves nitrogen balance. Ann. Surg. 1989;209:455–461. doi: 10.1097/00000658-198904000-00011. PubMed DOI PMC
Hardy G., Hardy I.J. Can glutamine enable the critically ill to cope better with infection? JPEN J. Parenter. Enter. Nutr. 2008;32:489–491. doi: 10.1177/0148607108319796. PubMed DOI
Legault Z., Bagnall N., Kimmerly D.S. The influence of oral L-glutamine supplementation on muscle strength recovery and soreness following unilateral knee extension eccentric exercise. Int. J. Sport Nutr. Exerc. Metab. 2015;25:417–426. doi: 10.1123/ijsnem.2014-0209. PubMed DOI
Castell L.M. Can glutamine modify the apparent immunodepression observed after prolonged, exhaustive exercise? Nutrition. 2002;18:371–375. doi: 10.1016/S0899-9007(02)00754-2. PubMed DOI
Córdova-Martínez A., Caballero-García A., Bello H.J., Pérez-Valdecantos D., Roche E. Effect of glutamine supplementation on muscular damage biomarkers in professional basketball players. Nutrients. 2021;13:2073. doi: 10.3390/nu13062073. PubMed DOI PMC
Phongsamran P.V., Kimm J.W., Cupo Abbottm J., Rosenblatt A. Pharmacotherapy for hepatic encephalopathy. Drugs. 2010;70:1131–1148. doi: 10.2165/10898630-000000000-00000. PubMed DOI
Shih V.E. Alternative-pathway therapy for hyperammonemia. N. Engl. J. Med. 2007;356:2321–2322. doi: 10.1056/NEJMe078075. PubMed DOI
Van Straten G., van Dalen D., Mesu S.J., Rothuizen J., Teske E., Spee B., Favier R.P., van Geijlswijk I.M. Efficacy of orally administered sodium benzoate and sodium phenylbutyrate in dogs with congenital portosystemic shunts. J. Vet. Intern. Med. 2019;33:1331–1335. doi: 10.1111/jvim.15477. PubMed DOI PMC
Zacharias H.D., Zacharias A.P., Gluud L.L., Morgan M.Y. Pharmacotherapies that specifically target ammonia for the prevention and treatment of hepatic encephalopathy in adults with cirrhosis. Cochrane Database Syst. Rev. 2019;6:CD012334. doi: 10.1002/14651858.CD012334.pub2. PubMed DOI PMC
Holecek M., Vodenicarovova M., Siman P. Acute effects of phenylbutyrate on glutamine, branched-chain amino acid and protein metabolism in skeletal muscles of rats. Int. J. Exp. Pathol. 2017;98:127–133. doi: 10.1111/iep.12231. PubMed DOI PMC
Holecek M., Vodenicarovova M. Phenylbutyrate exerts adverse effects on liver regeneration and amino acid concentrations in partially hepatectomized rats. Int. J. Exp. Pathol. 2016;97:278–284. doi: 10.1111/iep.12190. PubMed DOI PMC
Dam G., Ott P., Aagaard N.K., Vilstrup H. Branched-chain amino acids and muscle ammonia detoxification in cirrhosis. Metab. Brain Dis. 2013;28:217–220. doi: 10.1007/s11011-013-9377-3. PubMed DOI
Dam G., Keiding S., Munk O.L., Ott P., Buhl M., Vilstrup H., Bak L.K., Waagepetersen H.S., Schousboe A., Møller N., et al. Branched-chain amino acids increase arterial blood ammonia in spite of enhanced intrinsic muscle ammonia metabolism in patients with cirrhosis and healthy subjects. Am. J. Physiol. 2011;301:G269–G277. doi: 10.1152/ajpgi.00062.2011. PubMed DOI