Muscle Amino Acid and Adenine Nucleotide Metabolism during Exercise and in Liver Cirrhosis: Speculations on How to Reduce the Harmful Effects of Ammonia

. 2022 Oct 13 ; 12 (10) : . [epub] 20221013

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36295872

Grantová podpora
N.A. Charles University

Studies from the last decades indicate that increased levels of ammonia contribute to muscle wasting in critically ill patients. The aim of the article is to examine the effects of two different causes of hyperammonemia-increased ATP degradation in muscles during strenuous exercise and impaired ammonia detoxification to urea due to liver cirrhosis. During exercise, glycolysis, citric acid cycle (CAC) activity, and ATP synthesis in muscles increase. In cirrhosis, due to insulin resistance and mitochondrial dysfunction, glycolysis, CAC activity, and ATP synthesis in muscles are impaired. Both during exercise and in liver cirrhosis, there is increased ammonia detoxification to glutamine (Glu + NH3 + ATP → Gln + ADP + Pi), increased drain of ketoglutarate (α-KG) from CAC for glutamate synthesis by α-KG-linked aminotransferases, glutamate, aspartate, and α-KG deficiency, increased oxidation of branched-chain amino acids (BCAA; valine, leucine, and isoleucine), and protein-energy wasting in muscles. It is concluded that ammonia can contribute to muscle wasting regardless of the cause of its increased levels and that similar strategies can be designed to increase muscle performance in athletes and reduce muscle loss in patients with hyperammonemia. The pros and cons of glutamate, α-KG, aspartate, BCAA, and branched-chain keto acid supplementation are discussed.

Zobrazit více v PubMed

Walker V. Ammonia metabolism and hyperammonemic disorders. Adv. Clin. Chem. 2014;67:73–150. PubMed

Walker V. Severe hyperammonaemia in adults not explained by liver disease. Ann. Clin. Biochem. 2012;49:214–228. doi: 10.1258/acb.2011.011206. PubMed DOI

Yao Z.P., Li Y., Liu Y., Wang H.L. Relationship between the incidence of non-hepatic hyperammonemia and the prognosis of patients in the intensive care unit. World J. Gastroenterol. 2020;26:7222–7231. doi: 10.3748/wjg.v26.i45.7222. PubMed DOI PMC

Balcerac A., Bihan K., Lebrun-Vignes B., Thabut D., Salem J.E., Weiss N. Drug-associated hyperammonaemia: A Bayesian analysis of the WHO Pharmacovigilance Database. Ann. Intensive Care. 2022;12:55. doi: 10.1186/s13613-022-01026-4. PubMed DOI PMC

McDaniel J., Davuluri G., Hill E.A., Moyer M., Runkana A., Prayson R., van Lunteren E., Dasarathy S. Hyperammonemia results in reduced muscle function independent of muscle mass. Am. J. Physiol. 2016;310:G163–G170. doi: 10.1152/ajpgi.00322.2015. PubMed DOI PMC

Leweling H., Breitkreutz R., Behne F., Staedt U., Striebel J.P., Holm E. Hyperammonemia-induced depletion of glutamate and branched-chain amino acids in muscle and plasma. J. Hepatol. 1996;25:756–762. doi: 10.1016/S0168-8278(96)80249-2. PubMed DOI

Kumar A., Davuluri G., Silva R.N.E., Engelen M.P.K.J., Ten Have G.A.M., Prayson R., Deutz N.E.P., Dasarathy S. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology. 2017;65:2045–2058. doi: 10.1002/hep.29107. PubMed DOI PMC

Holecek M., Sprongl L., Tichý M. Effect of hyperammonemia on leucine and protein metabolism in rats. Metabolism. 2000;49:1330–1334. doi: 10.1053/meta.2000.9531. PubMed DOI

Holecek M., Kandar R., Sispera L., Kovarik M. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: Different sensitivity of red and white muscle. Amino Acids. 2011;40:575–584. doi: 10.1007/s00726-010-0679-z. PubMed DOI

Holeček M., Vodeničarovová M. Muscle wasting and branched-chain amino acid, alpha-ketoglutarate, and ATP depletion in a rat model of liver cirrhosis. Int. J. Exp. Pathol. 2018;99:274–281. doi: 10.1111/iep.12299. PubMed DOI PMC

Lowenstein J.M. Ammonia production in muscle and other tissues: The purine nucleotide cycle. Physiol. Rev. 1972;52:382–414. doi: 10.1152/physrev.1972.52.2.382. PubMed DOI

Mavrothalassitis G., Tzimagiorgis G., Mitsialis A., Zannis V., Plaitakis A., Papamatheakis J., Moschonas N. Isolation and characterization of cDNA clones encoding human liver glutamate dehydrogenase: Evidence for a small gene family. Proc. Natl. Acad. Sci. USA. 1988;85:3494–3498. doi: 10.1073/pnas.85.10.3494. PubMed DOI PMC

Wiechetek M., Breves G., Höller H. Effects of increased blood ammonia concentrations on the concentrations of some metabolites in rat tissues. Q. J. Exp. Physiol. 1981;66:423–429. doi: 10.1113/expphysiol.1981.sp002584. PubMed DOI

Van Hall G., van der Vusse G.J., Söderlund K., Wagenmakers A.J. Deamination of amino acids as a source for ammonia production in human skeletal muscle during prolonged exercise. J. Physiol. 1995;489:251–261. doi: 10.1113/jphysiol.1995.sp021047. PubMed DOI PMC

Adeva M.M., Souto G., Blanco N., Donapetry C. Ammonium metabolism in humans. Metabolism. 2012;61:1495–1511. doi: 10.1016/j.metabol.2012.07.007. PubMed DOI

Harper A.E., Miller R.H., Block K.P. Branched-chain amino acid metabolism. Annu. Rev. Nutr. 1984;4:409–454. doi: 10.1146/annurev.nu.04.070184.002205. PubMed DOI

Shimomura Y., Fujii H., Suzuki M., Murakami T., Fujitsuka N., Nakai N. Branched-chain alpha-keto acid dehydrogenase complex in rat skeletal muscle: Regulation of the activity and gene expression by nutrition and physical exercise. J. Nutr. 1995;125:1762S–1765S. PubMed

Yoneshiro T., Wang Q., Tajima K., Matsushita M., Maki H., Igarashi K., Dai Z., White P.J., McGarrah R.W., Ilkayeva O.R., et al. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature. 2019;572:614–619. doi: 10.1038/s41586-019-1503-x. PubMed DOI PMC

Cooper A.J., Jeitner T.M. Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain. Biomolecules. 2016;6:16. doi: 10.3390/biom6020016. PubMed DOI PMC

Abrahams S.L., Younathan E.S. Modulation of the kinetic properties of phosphofructokinase by ammonium ions. J. Biol. Chem. 1971;246:2464–2467. doi: 10.1016/S0021-9258(18)62310-5. PubMed DOI

Holeček M. The role of skeletal muscle in the pathogenesis of altered concentrations of branched-chain amino acids (valine, leucine, and isoleucine) in liver cirrhosis, diabetes, and other diseases. Physiol. Res. 2021;70:293–305. doi: 10.33549/physiolres.934648. PubMed DOI PMC

Wagenmakers A.J. Amino acid metabolism, muscular fatigue and muscle wasting. Speculations on adaptations at high altitude. Int. J. Sports Med. 1992;13:S110–S113. doi: 10.1055/s-2007-1024611. PubMed DOI

Wagenmakers A.J., Coakley J.H., Edwards R.H. Metabolism of branched-chain amino acids and ammonia during exercise: Clues from McArdle’s disease. Int. J. Sports Med. 1990;11:S101–S113. doi: 10.1055/s-2007-1024861. PubMed DOI

Tornheim K., Lowenstein J.M. The purine nucleotide cycle. The production of ammonia from aspartate by extracts of rat skeletal muscle. J. Biol. Chem. 1972;247:162–169. doi: 10.1016/S0021-9258(19)45770-0. PubMed DOI

Graham T.E., MacLean D.A. Ammonia and amino acid metabolism in human skeletal muscle during exercise. Can. J. Physiol. Pharmacol. 1992;70:132–141. doi: 10.1139/y92-020. PubMed DOI

Meyer R.A., Terjung R.L. AMP deamination and IMP reamination in working skeletal muscle. Am. J. Physiol. 1980;239:C32–C38. doi: 10.1152/ajpcell.1980.239.1.C32. PubMed DOI

Katz A., Broberg S., Sahlin K., Wahren J. Muscle ammonia and amino acid metabolism during dynamic exercise in man. Clin. Physiol. 1986;6:365–379. doi: 10.1111/j.1475-097X.1986.tb00242.x. PubMed DOI

Aragón J.J., Lowenstein J.M. The purine-nucleotide cycle. Comparison of the levels of citric acid cycle intermediates with the operation of the purine nucleotide cycle in rat skeletal muscle during exercise and recovery from exercise. Eur. J. Biochem. 1980;110:371–377. doi: 10.1111/j.1432-1033.1980.tb04877.x. PubMed DOI

Banister E.W., Cameron B.J. Exercise-induced hyperammonemia: Peripheral and central effects. Int. J. Sports Med. 1990;S2:S129–S142. doi: 10.1055/s-2007-1024864. PubMed DOI

Gibala M.J., MacLean D.A., Graham T.E., Saltin B. Anaplerotic processes in human skeletal muscle during brief dynamic exercise. J. Physiol. 1997;502:703–713. doi: 10.1111/j.1469-7793.1997.703bj.x. PubMed DOI PMC

Dos Santos R.V., Caperuto E.C., de Mello M.T., Batista M.L., Rosa L.F. Effect of exercise on glutamine synthesis and transport in skeletal muscle from rats. Clin. Exp. Pharmacol. Physiol. 2009;36:770–775. doi: 10.1111/j.1440-1681.2009.05146.x. PubMed DOI

Henriksson J. Effect of exercise on amino acid concentrations in skeletal muscle and plasma. J. Exp. Biol. 1991;160:149–165. doi: 10.1242/jeb.160.1.149. PubMed DOI

Rowbottom D.G., Keast D., Morton A.R. The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Med. 1996;21:80–97. doi: 10.2165/00007256-199621020-00002. PubMed DOI

Bergström J., Fürst P., Hultman E. Free amino acids in muscle tissue and plasma during exercise in man. Clin. Physiol. 1985;5:155–160. doi: 10.1111/j.1475-097X.1985.tb00591.x. PubMed DOI

Poortmans J.R., Siest G., Galteau M.M., Houot O. Distribution of plasma amino acids in humans during submaximal prolonged exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1974;32:143–147. doi: 10.1007/BF00421572. PubMed DOI

Okamura K., Matsubara F., Yoshioka Y., Kikuchi N., Kikuchi Y., Kohri H. Exercise-induced changes in branched chain amino acid/aromatic amino acid ratio in the rat brain and plasma. Jpn. J. Pharmacol. 1987;45:243–248. doi: 10.1016/S0021-5198(19)43417-3. PubMed DOI

Kasperek G.J., Dohm G.L., Snider R.D. Activation of branched-chain keto acid dehydrogenase by exercise. Am. J. Physiol. 1985;248:R166–R171. doi: 10.1152/ajpregu.1985.248.2.R166. PubMed DOI

Wolfe R.R., Goodenough R.D., Wolfe M.H., Royle G.T., Nadel E.R. Isotopic analysis of leucine and urea metabolism in exercising humans. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1982;52:458–466. doi: 10.1152/jappl.1982.52.2.458. PubMed DOI

Knapik J., Meredith C., Jones B., Fielding R., Young V., Evans W. Leucine metabolism during fasting and exercise. J. Appl. Physiol. 1991;70:43–47. doi: 10.1152/jappl.1991.70.1.43. PubMed DOI

Wagenmakers A.J., Brookes J.H., Coakley J.H., Reilly T., Edwards R.H. Exercise-induced activation of the branched-chain 2-oxo acid dehydrogenase in human muscle. Eur. J. Appl. Physiol. Occup. Physiol. 1989;59:159–167. doi: 10.1007/BF02386181. PubMed DOI

Ramaiah A. Regulation of glycolysis in skeletal muscle. Life Sci. 1976;19:455–465. doi: 10.1016/0024-3205(76)90223-X. PubMed DOI

Lancha A.H., Recco M.B., Curi R. Pyruvate carboxylase activity in the heart and skeletal muscles of the rat. Evidence for a stimulating effect of exercise. Biochem. Mol. Biol. Int. 1994;32:483–489. PubMed

Gibala M.J., MacLean D.A., Graham T.E., Saltin B. Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise. Am. J. Physiol. 1998;275:E235–E242. doi: 10.1152/ajpendo.1998.275.2.E235. PubMed DOI

Galassetti P., Gibbons F.K., Hamilton K.S., Lacy D.B., Cherrington A.D., Wasserman D.H. Enhanced muscle glucose uptake facilitates nitrogen efflux from exercised muscle. J. Appl. Physiol. 1998;84:1952–1959. doi: 10.1152/jappl.1998.84.6.1952. PubMed DOI

Sahlin K., Katz A., Broberg S. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am. J. Physiol. 1990;259:C834–C841. doi: 10.1152/ajpcell.1990.259.5.C834. PubMed DOI

Bowtell J.L., Marwood S., Bruce M., Constantin-Teodosiu D., Greenhaff P.L. Tricarboxylic acid cycle intermediate pool size: Functional importance for oxidative metabolism in exercising human skeletal muscle. Sports Med. 2007;37:1071–1088. doi: 10.2165/00007256-200737120-00005. PubMed DOI

Dohm G.L., Puente F.R., Smith C.P., Edge A. Changes in tissue protein levels as a result of endurance exercise. Life Sci. 1978;23:845–849. doi: 10.1016/0024-3205(78)90519-2. PubMed DOI

Refsum H.E., Gjessing L.R., Strømme S.B. Changes in plasma amino acid distribution and urine amino acids excretion during prolonged heavy exercise. Scand. J. Clin. Lab. Investig. 1979;39:407–413. doi: 10.3109/00365517909106125. PubMed DOI

Dohm G.L., Kasperek G.J., Tapscott E.B., Barakat H.A. Protein metabolism during endurance exercise. Fed. Proc. 1985;44:348–352. PubMed

Young V.R., Torún B. Physical activity: Impact on protein and amino acid metabolism and implications for nutritional requirements. Prog. Clin. Biol. Res. 1981;77:57–85. PubMed

Bodine S.C., Stitt T.N., Gonzalez M., Kline W.O., Stover G.L., Bauerlein R., Zlotchenko E., Scrimgeour A., Lawrence J.C., Glass D.J., et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 2001;3:1014–1019. doi: 10.1038/ncb1101-1014. PubMed DOI

Kwon J.H., Moon K.M., Min K.W. Exercise-induced myokines can explain the importance of physical activity in the elderly: An overview. Healthcare. 2020;8:378. doi: 10.3390/healthcare8040378. PubMed DOI PMC

Holeček M., Mráz J., Tilšer I. Plasma amino acids in four models of experimental liver injury in rats. Amino Acids. 1996;10:229–241. doi: 10.1007/BF00807325. PubMed DOI

Meyer H.P., Chamuleau R.A., Legemate D.A., Mol J.A., Rothuizen J. Effects of a branched-chain amino acid-enriched diet on chronic hepatic encephalopathy in dogs. Metab. Brain Dis. 1999;14:103–115. doi: 10.1023/A:1020757730386. PubMed DOI

Watanabe A., Hayashi S., Higashi T., Obata T., Sakata T., Takei N., Shiota T., Nagashima H. Characteristics change in serum amino acid levels in different types of hepatic encephalopathy. Gastroenterol. Jpn. 1982;17:218–223. doi: 10.1007/BF02775999. PubMed DOI

Morrison W.L., Bouchier I.A., Gibson J.N., Rennie M.J. Skeletal muscle and whole-body protein turnover in cirrhosis. Clin. Sci. 1990;78:613–619. doi: 10.1042/cs0780613. PubMed DOI

Jacobsen E.B., Hamberg O., Quistorff B., Ott P. Reduced mitochondrial adenosine triphosphate synthesis in skeletal muscle in patients with Child-Pugh class B and C cirrhosis. Hepatology. 2001;34:7–12. doi: 10.1053/jhep.2001.25451. PubMed DOI

Möller P., Bergström J., Fürst P., Hellström K. Muscle biopsy studies in patients with moderate liver cirrhosis with special reference to energy-rich phosphagens and electrolytes. Scand. J. Gastroenterol. 1984;19:267–272. doi: 10.1080/00365521.1984.12005719. PubMed DOI

Davuluri G., Allawy A., Thapaliya S., Rennison J.H., Singh D., Kumar A., Sandlers Y., Van Wagoner D.R., Flask C.A., Hoppel C., et al. Hyperammonaemia-induced skeletal muscle mitochondrial dysfunction results in cataplerosis and oxidative stress. J. Physiol. 2016;594:7341–7360. doi: 10.1113/JP272796. PubMed DOI PMC

Holeček M. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives. Metab. Brain Dis. 2014;29:9–17. doi: 10.1007/s11011-013-9428-9. PubMed DOI PMC

Holecek M., Tilser I., Skopec F., Sprongl L. Leucine metabolism in rats with cirrhosis. J. Hepatol. 1996;24:209–216. doi: 10.1016/S0168-8278(96)80031-6. PubMed DOI

McCullough A.J., Mullen K.D., Kalhan S.C. Body cell mass and leucine metabolism in cirrhosis. Pt 1Gastroenterology. 1992;102:1325–1333. doi: 10.1016/0016-5085(92)90772-Q. PubMed DOI

Peng S., Plank L.D., McCall J.L., Gillanders L.K., McIlroy K., Gane E.J. Body composition, muscle function, and energy expenditure in patients with liver cirrhosis: A comprehensive study. Am. J. Clin. Nutr. 2007;85:1257–1266. doi: 10.1093/ajcn/85.5.1257. PubMed DOI

Holecek M., Sispera L. Glutamine deficiency in extracellular fluid exerts adverse effects on protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats. Amino Acids. 2014;46:1377–1384. doi: 10.1007/s00726-014-1701-7. PubMed DOI

Mourtzakis M., Graham T.E. Glutamate ingestion and its effects at rest and during exercise in humans. J. Appl. Physiol. 2002;93:1251–1259. doi: 10.1152/japplphysiol.00111.2002. PubMed DOI

Graham T.E., Sgro V., Friars D., Gibala M.J. Glutamate ingestion: The plasma and muscle free amino acid pools of resting humans. Am. J. Physiol. 2000;278:E83–E89. doi: 10.1152/ajpendo.2000.278.1.E83. PubMed DOI

Stegink L.D., Filer L.J., Baker G.L. Effect of aspartame plus monosodium L-glutamate ingestion on plasma and erythrocyte amino acid levels in normal adult subjects fed a high protein meal. Am. J. Clin. Nutr. 1982;36:1145–1152. doi: 10.1093/ajcn/36.6.1145. PubMed DOI

Thomassen A., Bøtker H.E., Nielsen T.T., Thygesen K., Henningsen P. Effects of glutamate on exercise tolerance and circulating substrate levels in stable angina pectoris. Am. J. Cardiol. 1990;65:173–178. doi: 10.1016/0002-9149(90)90080-K. PubMed DOI

Alexander J.W., Porter C.E. The treatment of a patient in hepatic coma with intravenous sodium glutamate and ACTH. Gastroenterology. 1954;26:926–929. doi: 10.1016/S0016-5085(54)80011-4. PubMed DOI

Schwartz I.R., Lehman E., Hammond J., Seibel J.M., Goldson F. The failure of monosodium glutamate in the treatment of hepatic coma. Gastroenterology. 1956;30:869–881. doi: 10.1016/S0016-5085(56)80084-X. PubMed DOI

Webster L.T., Jr., Davidson C.S. The effect of sodium glutamate on hepatic coma. J. Clin. Investig. 1956;35:191–199. doi: 10.1172/JCI103263. PubMed DOI PMC

McDermott W.V., Jr., Wareham J., Riddell A.G. Treatment of hepatic coma with L-glutamic acid. N. Engl. J. Med. 1955;253:1093–1102. doi: 10.1056/NEJM195512222532501. PubMed DOI

Janeczko M.J., Stoll B., Chang X., Guan X., Burrin D.G. Extensive gut metabolism limits the intestinal absorption of excessive supplemental dietary glutamate loads in infant pigs. J. Nutr. 2007;137:2384–2390. doi: 10.1093/jn/137.11.2384. PubMed DOI

Windmueller H.G., Spaeth A.E. Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch. Biochem. Biophys. 1975;171:662–672. doi: 10.1016/0003-9861(75)90078-8. PubMed DOI

Yao K., Yin Y., Li X., Xi P., Wang J., Lei J., Hou Y., Wu G. Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids. 2012;42:2491–2500. doi: 10.1007/s00726-011-1060-6. PubMed DOI

Tischler M.E., Desautels M., Goldberg A.L. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J. Biol. Chem. 1982;257:1613–1621. doi: 10.1016/S0021-9258(19)68081-6. PubMed DOI

Holecek M., Muthny T., Kovarik M., Sispera L. Effect of beta-hydroxy-beta-methylbutyrate (HMB) on protein metabolism in whole body and in selected tissues. Food Chem. Toxicol. 2009;47:255–259. doi: 10.1016/j.fct.2008.11.021. PubMed DOI

Kovarik M., Muthny T., Sispera L., Holecek M. Effects of β-hydroxy-β-methylbutyrate treatment in different types of skeletal muscle of intact and septic rats. J. Physiol. Biochem. 2010;66:311–319. doi: 10.1007/s13105-010-0037-3. PubMed DOI

Blomstrand E., Hassmén P., Ekblom B., Newsholme E.A. Administration of branched-chain amino acids during sustained exercise—Effects on performance and on plasma concentration of some amino acids. Eur. J. Appl. Physiol. Occup. Physiol. 1991;63:83–88. doi: 10.1007/BF00235174. PubMed DOI

Holeček M., Vodeničarovová M. Effects of branched-chain amino acids on muscles under hyperammonemic conditions. J. Physiol. Biochem. 2018;74:523–530. doi: 10.1007/s13105-018-0646-9. PubMed DOI

Parry-Billings M., Budgett R., Koutedakis Y., Blomstrand E., Brooks S., Williams C., Calder P.C., Pilling S., Baigrie R., Newsholme E.A. Plasma amino acid concentrations in the overtraining syndrome: Possible effects on the immune system. Med. Sci. Sports Exerc. 1992;24:1353–1358. doi: 10.1249/00005768-199212000-00008. PubMed DOI

Gleeson M. Interrelationship between physical activity and branched-chain amino acids. J. Nutr. 2005;135:1591S–1595S. doi: 10.1093/jn/135.6.1591S. PubMed DOI

Watson P., Shirreffs S.M., Maughan R.J. The effect of acute branched-chain amino acid supplementation on prolonged exercise capacity in a warm environment. Eur. J. Appl. Physiol. 2004;93:306–314. doi: 10.1007/s00421-004-1206-2. PubMed DOI

MacLean D.A., Graham T.E. Branched-chain amino acid supplementation augments plasma ammonia responses during exercise in humans. J. Appl. Physiol. 1993;74:2711–2717. doi: 10.1152/jappl.1993.74.6.2711. PubMed DOI

Falavigna G., Alves de Araújo J., Jr., Rogero M.M., Pires I.S., Pedrosa R.G., Martins E., Jr., Alves de Castro I., Tirapegui J. Effects of diets supplemented with branched-chain amino acids on the performance and fatigue mechanisms of rats submitted to prolonged physical exercise. Nutrients. 2012;4:1767–1780. doi: 10.3390/nu4111767. PubMed DOI PMC

Als-Nielsen B., Koretz R.L., Kjaergard L.L., Gluud C. Branched-chain amino acids for hepatic encephalopathy. Cochrane Database Syst. Rev. 2003;2:CD001939. PubMed

Gluud L.L., Dam G., Les I., Córdoba J., Marchesini G., Borre M., Aagaard N.K., Vilstrup H. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst. Rev. 2015;9:CD001939. PubMed

Calders P., Pannier J.L., Matthys D.M., Lacroix E.M. Pre-exercise branched-chain amino acid administration increases endurance performance in rats. Med. Sci. Sports Exerc. 1997;29:1182–1186. doi: 10.1097/00005768-199709000-00010. PubMed DOI

Holecek M., Siman P., Vodenicarovova M., Kandar R. Alterations in protein and amino acid metabolism in rats fed a branched-chain amino acid- or leucine-enriched diet during postprandial and postabsorptive states. Nutr. Metab. 2016;13:12. doi: 10.1186/s12986-016-0072-3. PubMed DOI PMC

Yagi M., Matthews D.E., Walser M. Nitrogen sparing by 2-ketoisocaproate in parenterally fed rats. Am. J. Physiol. 1990;259:E633–E638. doi: 10.1152/ajpendo.1990.259.5.E633. PubMed DOI

Mitch W.E., Walser M., Sapir D.G. Nitrogen sparing induced by leucine compared with that induced by its keto analogue, alpha-ketoisocaproate, in fasting obese man. J. Clin. Investig. 1981;67:553–562. doi: 10.1172/JCI110066. PubMed DOI PMC

Stewart P.M., Walser M., Drachman D.B. Branched-chain ketoacids reduce muscle protein degradation in Duchenne muscular dystrophy. Muscle Nerve. 1982;5:197–201. doi: 10.1002/mus.880050304. PubMed DOI

Sapir D.G., Stewart P.M., Walser M., Moreadith C., Moyer E.D., Imbembo A.L., Rosenshein N.B., Munoz S. Effects of alpha-ketoisocaproate and of leucine on nitrogen metabolism in postoperative patients. Lancet. 1983;1:1010–1014. doi: 10.1016/S0140-6736(83)92643-0. PubMed DOI

Imura K., Shiota T., Swain L.M., Walser M. Utilization for protein synthesis of 2-ketoisocaproate relative to utilization of leucine, as estimated from exhalation of labelled CO2. Clin. Sci. 1988;75:301–307. doi: 10.1042/cs0750301. PubMed DOI

Jungers P., Chauveau P. Amino acids and keto acids in the treatment of chronic renal failure. Blood Purif. 1988;6:299–314. doi: 10.1159/000169557. PubMed DOI

Walser M., Mitch W.E., Abras E. Supplements containing amino acids and keto acids in the treatment of chronic uremia. Kidney Int. 1983;16:S285–S289. PubMed

Teplan V., Schück O., Horácková M., Skibová J., Holecek M. Effect of a keto acid-amino acid supplement on the metabolism and renal elimination of branched-chain amino acids in patients with chronic renal insufficiency on a low protein diet. Wien. Klin. Wochenschr. 2000;112:876–881. PubMed

Muñoz S., Walser M. Effect of experimental liver disease on the utilization for protein synthesis of orally administered alpha-ketoisocaproate. Hepatology. 1986;6:472–476. doi: 10.1002/hep.1840060325. PubMed DOI

De Almeida R.D., Prado E.S., Llosa C.D., Magalhães-Neto A., Cameron L.C. Acute supplementation with keto analogues and amino acids in rats during resistance exercise. Br. J. Nutr. 2010;104:1438–1442. doi: 10.1017/S0007114510002321. PubMed DOI

Prado E.S., de Rezende Neto J.M., de Almeida R.D., Dória de Melo M.G., Cameron L.C. Keto analogue and amino acid supplementation affects the ammonaemia response during exercise under ketogenic conditions. Br. J. Nutr. 2011;105:1729–1733. doi: 10.1017/S000711451000557X. PubMed DOI

Camerino S.R., Lima R.C., França T.C., Herculano Ede A., Rodrigues D.S., Gouveia M.G., Cameron L.C., Prado E.S. Keto analogue and amino acid supplementation and its effects on ammonemia and performance under thermoneutral conditions. Food Funct. 2016;7:872–880. doi: 10.1039/C5FO01054C. PubMed DOI

Ferreira R.T., Gonçalves S.C., Pedrosa M.L., Silva M.E., Bassini A., Coelho W.S., de Magalhães-Neto A.M., Prado E.S., Cameron L.C. Keto analogues and amino acid supplementation and its effects on ammonaemia during extenuating endurance exercise in ketogenic diet-fed rats. Br. J. Nutr. 2018;120:732–739. doi: 10.1017/S0007114518001770. PubMed DOI

Herlong H.F., Maddrey W.C., Walser M. The use of ornithine salts of branched-chain ketoacids in portal-systemic encephalopathy. Ann. Intern. Med. 1980;93:545–550. doi: 10.7326/0003-4819-93-4-545. PubMed DOI

Maddrey W.C., Weber F.L., Jr., Coulter A.W., Chura C.M., Chapanis N.P., Walser M. Effects of keto analogues of essential amino acids in portal-systemic encephalopathy. Gastroenterology. 1976;71:190–195. doi: 10.1016/S0016-5085(76)80185-0. PubMed DOI

Batshaw M.L., Brusilow S., Walser M. Long-term management of a case of carbamyl phosphate synthetase deficiency using ketanalogues and hydroxyanalogues of essential amino acids. Pediatrics. 1976;58:227–235. PubMed

Thoene J., Batshaw M., Spector E., Kulovich S., Brusilow S., Walser M., Nyhan W. Neonatal citrllinemia: Treatment with keto-analogues of essential amino acids. J. Pediatr. 1977;90:218–224. doi: 10.1016/S0022-3476(77)80633-1. PubMed DOI

McReynolds J.W., Mantagos S., Brusilow S., Rosenberg L.E. Treatment of complete ornithine transcarbamylase deficiency with nitrogen-free analogues of essential amino acids. J. Pediatr. 1978;93:421–427. doi: 10.1016/S0022-3476(78)81149-4. PubMed DOI

Ji L.L., Miller R.H., Nagle F.J., Lardy H.A., Stratman F.W. Amino acid metabolism during exercise in trained rats: The potential role of carnitine in the metabolic fate of branched-chain amino acids. Metabolism. 1987;36:748–752. doi: 10.1016/0026-0495(87)90111-9. PubMed DOI

Adán C., Ardévol A., Rafecas I., Remesar X., Alemany M., Fernández-López J.A. Amino acid nitrogen handling by hind leg muscle of the rat during exercise. Arch. Physiol. Biochem. 1997;105:478–486. doi: 10.1076/apab.105.5.478.3284. PubMed DOI

Trudeau F. Aspartate as an ergogenic supplement. Sports Med. 2008;38:9–16. doi: 10.2165/00007256-200838010-00002. PubMed DOI

Lancha A.H., Jr., Recco M.B., Abdalla D.S., Curi R. Effect of aspartate, asparagine, and carnitine supplementation in the diet on metabolism of skeletal muscle during a moderate exercise. Physiol. Behav. 1995;57:367–371. doi: 10.1016/0031-9384(94)00243-X. PubMed DOI

Marquezi M.L., Roschel H.A., dos Santa Costa A., Sawada L.A., Lancha A.H., Jr. Effect of aspartate and asparagine supplementation on fatigue determinants in intense exercise. Int. J. Sport Nutr. Exerc. Metab. 2003;13:65–75. doi: 10.1123/ijsnem.13.1.65. PubMed DOI

Butterworth R.F. Ammonia removal by metabolic scavengers for the prevention and treatment of hepatic encephalopathy in cirrhosis. Drugs R D. 2021;21:123–132. doi: 10.1007/s40268-021-00345-4. PubMed DOI PMC

Hammarqvist F., Wernerman J., Ali R., von der Decken A., Vinnars E. Addition of glutamine to total parenteral nutrition after elective abdominal surgery spares free glutamine in muscle, counteracts the fall in muscle protein synthesis, and improves nitrogen balance. Ann. Surg. 1989;209:455–461. doi: 10.1097/00000658-198904000-00011. PubMed DOI PMC

Hardy G., Hardy I.J. Can glutamine enable the critically ill to cope better with infection? JPEN J. Parenter. Enter. Nutr. 2008;32:489–491. doi: 10.1177/0148607108319796. PubMed DOI

Legault Z., Bagnall N., Kimmerly D.S. The influence of oral L-glutamine supplementation on muscle strength recovery and soreness following unilateral knee extension eccentric exercise. Int. J. Sport Nutr. Exerc. Metab. 2015;25:417–426. doi: 10.1123/ijsnem.2014-0209. PubMed DOI

Castell L.M. Can glutamine modify the apparent immunodepression observed after prolonged, exhaustive exercise? Nutrition. 2002;18:371–375. doi: 10.1016/S0899-9007(02)00754-2. PubMed DOI

Córdova-Martínez A., Caballero-García A., Bello H.J., Pérez-Valdecantos D., Roche E. Effect of glutamine supplementation on muscular damage biomarkers in professional basketball players. Nutrients. 2021;13:2073. doi: 10.3390/nu13062073. PubMed DOI PMC

Phongsamran P.V., Kimm J.W., Cupo Abbottm J., Rosenblatt A. Pharmacotherapy for hepatic encephalopathy. Drugs. 2010;70:1131–1148. doi: 10.2165/10898630-000000000-00000. PubMed DOI

Shih V.E. Alternative-pathway therapy for hyperammonemia. N. Engl. J. Med. 2007;356:2321–2322. doi: 10.1056/NEJMe078075. PubMed DOI

Van Straten G., van Dalen D., Mesu S.J., Rothuizen J., Teske E., Spee B., Favier R.P., van Geijlswijk I.M. Efficacy of orally administered sodium benzoate and sodium phenylbutyrate in dogs with congenital portosystemic shunts. J. Vet. Intern. Med. 2019;33:1331–1335. doi: 10.1111/jvim.15477. PubMed DOI PMC

Zacharias H.D., Zacharias A.P., Gluud L.L., Morgan M.Y. Pharmacotherapies that specifically target ammonia for the prevention and treatment of hepatic encephalopathy in adults with cirrhosis. Cochrane Database Syst. Rev. 2019;6:CD012334. doi: 10.1002/14651858.CD012334.pub2. PubMed DOI PMC

Holecek M., Vodenicarovova M., Siman P. Acute effects of phenylbutyrate on glutamine, branched-chain amino acid and protein metabolism in skeletal muscles of rats. Int. J. Exp. Pathol. 2017;98:127–133. doi: 10.1111/iep.12231. PubMed DOI PMC

Holecek M., Vodenicarovova M. Phenylbutyrate exerts adverse effects on liver regeneration and amino acid concentrations in partially hepatectomized rats. Int. J. Exp. Pathol. 2016;97:278–284. doi: 10.1111/iep.12190. PubMed DOI PMC

Dam G., Ott P., Aagaard N.K., Vilstrup H. Branched-chain amino acids and muscle ammonia detoxification in cirrhosis. Metab. Brain Dis. 2013;28:217–220. doi: 10.1007/s11011-013-9377-3. PubMed DOI

Dam G., Keiding S., Munk O.L., Ott P., Buhl M., Vilstrup H., Bak L.K., Waagepetersen H.S., Schousboe A., Møller N., et al. Branched-chain amino acids increase arterial blood ammonia in spite of enhanced intrinsic muscle ammonia metabolism in patients with cirrhosis and healthy subjects. Am. J. Physiol. 2011;301:G269–G277. doi: 10.1152/ajpgi.00062.2011. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Aspartic Acid in Health and Disease

. 2023 Sep 17 ; 15 (18) : . [epub] 20230917

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...