Health Surveillance of Wild Brown Trout (Salmo trutta fario) in the Czech Republic Revealed a Coexistence of Proliferative Kidney Disease and Piscine Orthoreovirus-3 Infection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Project PROFISH CZ.02.1.01/0.0/0.0/16_019/0000869
ERDF in the operational programme VVV MŠMT
MZE-RO0518
Ministry of Agriculture of the Czech Republic
PubMed
32722219
PubMed Central
PMC7460431
DOI
10.3390/pathogens9080604
PII: pathogens9080604
Knihovny.cz E-zdroje
- Klíčová slova
- PCR, Tetracapsuloides bryosalmonae, immunohistochemistry, infectious hematopoietic necrosis, infectious pancreatic necrosis, salmonid alphavirus, serology, viral hemorrhagic septicemia,
- Publikační typ
- časopisecké články MeSH
The population of brown trout (Salmo trutta fario) in continental Europe is on the decline, with infectious diseases confirmed as one of the causative factors. However, no data on the epizootiological situation of wild fish in the Czech Republic are currently available. In this study, brown trout (n = 260) from eight rivers were examined for the presence of viral and parasitical pathogens. Salmonid alphavirus-2, infectious pancreatic necrosis virus, piscine novirhabdovirus (VHSV) and salmonid novirhabdovirus (IHNV) were not detected using PCR. Cell culturing showed no viruses as well, and serological analysis of 110 sera did not detect any specific antibodies against VHSV or IHNV. Fish from two rivers were positive for the presence of piscine orthoreovirus-3 (PRV-3), subtype PRV-3b. However, none of the PRV-3-positive fish showed gross pathologies typically associated with PRV infections. By far the most widespread pathogen was Tetracapsuloides bryosalmonae which was confirmed in each of the examined locations, with a prevalence of up to 65% and 100%, as established by immunohistochemistry and PCR, respectively. Furthermore, up to 43.8% of fish showed signs of proliferative kidney disease caused by T. bryosalmonae, suggesting that this parasite is a main health challenge for brown trout in the Czech Republic.
Department of Immunology Veterinary Research Institute 621 00 Brno Czech Republic
Department of Virology Veterinary Research Institute 621 00 Brno Czech Republic
Zobrazit více v PubMed
Ministry of Agriculture of the Czech Republic State of the Czech Argiculture. [(accessed on 27 June 2020)]; Available online: http://eagri.cz/public/web/file/648258/Zelena_zprava_2018.pdf.
OIE OIE-Listed Diseases, Infections and Infestations in Force in 2020. [(accessed on 27 June 2020)]; Available online: https://www.oie.int/animal-health-in-the-world/oie-listed-diseases-2020/
Reichert M., Matras M., Skall H.F., Olesen N.J., Kahns S. Trade practices are main factors involved in the transmission of viral haemorrhagic septicaemia. J. Fish Dis. 2013;36:103–114. doi: 10.1111/jfd.12004. PubMed DOI
European Commission Animal Disease Notification System (ADNS) [(accessed on 27 June 2020)]; Available online: https://ec.europa.eu/food/animals/animal-diseases/not-system_en.
Pojezdal Ľ., Pokorová D., Reschová S., Palíková M., Vícenová M., Veselý T., Navrátil S. Diagnostic efficacy of molecular assays for the viral haemorrhagic septicaemia virus isolates from the Czech Republic. Acta Vet. Brno. 2017;86:207–212. doi: 10.2754/avb201786030207. DOI
Kahns S., Skall H.F., Kaas R.S., Korsholm H., Bang Jensen B., Jonstrup S.P., Dodge M.J., Einer-Jensen K., Stone D., Olesen N.J. European freshwater VHSV genotype Ia isolates divide into two distinct subpopulations. Dis. Aquat. Org. 2012;99:23–35. doi: 10.3354/dao02444. PubMed DOI
Gadd T., Jakava-Viljanen M., Einer-Jensen K., Ariel E., Koski P., Sihvonen L. Viral haemorrhagic septicaemia virus (VHSV) genotype II isolated from European river lamprey Lampetra fluviatilis in Finland during surveillance from 1999 to 2008. Dis. Aquat. Org. 2010;88:189–198. doi: 10.3354/dao02169. PubMed DOI
Knuesel R., Segner H., Wahli T. A survey of viral diseases in farmed and feral salmonids in Switzerland. J. Fish Dis. 2003;26:167–182. doi: 10.1046/j.1365-2761.2003.00447.x. PubMed DOI
Skall H.F., Olesen N.J., Mellergaard S. Viral haemorrhagic septicaemia virus in marine fish and its implications for fish farming—A review. J. Fish Dis. 2005;28:509–529. doi: 10.1111/j.1365-2761.2005.00654.x. PubMed DOI
Wallace I.S., McKay P., Murray A.G. A historical review of the key bacterial and viral pathogens of Scottish wild fish. J. Fish Dis. 2017;40:1741–1756. doi: 10.1111/jfd.12654. PubMed DOI
Elsayed E., Faisal M., Thomas M., Whelan G., Batts W., Winton J. Isolation of viral haemorrhagic septicaemia virus from muskellunge, Esox masquinongy (Mitchill), in Lake St Clair, Michigan, USA reveals a new sublineage of the North American genotype. J. Fish Dis. 2006;29:611–619. doi: 10.1111/j.1365-2761.2006.00755.x. PubMed DOI
Ammayappan A., Vakharia V.N. Molecular characterization of the Great Lakes viral hemorrhagic septicemia virus (VHSV) isolate from USA. Virol. J. 2009;6:171. doi: 10.1186/1743-422X-6-171. PubMed DOI PMC
Kurath G., Garver K.A., Troyer R.M., Emmenegger E.J., Einer-Jensen K., Anderson E.D. Phylogeography of infectious haematopoietic necrosis virus in North America. J. Gen. Virol. 2003;84:803–814. doi: 10.1099/vir.0.18771-0. PubMed DOI
Rexhepi A., Berxholi K., Scheinert P., Hamidi A., Sherifi K. Study of viral diseases in some freshwater fish in the Republic of Kosovo. Veterinarski Arhiv. 2011;81:405–413.
Bellec L., Louboutin L., Cabon J., Castric J., Cozien J., Thiery R., Morin T. Molecular evolution and phylogeography of infectious hematopoietic necrosis virus with a focus on its presence in France over the last 30 years. J. Gen. Virol. 2017;98:2438–2446. doi: 10.1099/jgv.0.000894. PubMed DOI
Olsen A.B., Hjortaas M., Tengs T., Hellberg H., Johansen R. First description of a new disease in rainbow trout (Oncorhynchus mykiss (Walbaum)) similar to Heart and Skeletal Muscle Inflammation (HSMI) and detection of a gene sequence related to Piscine Orthoreovirus (PRV) PLoS ONE. 2015;10:e0131638. doi: 10.1371/journal.pone.0131638. PubMed DOI PMC
Vendramin N., Kannimuthu D., Olsen A.B., Cuenca A., Teige L.H., Wessel O., Iburg T.M., Dahle M.K., Rimstad E., Olesen N.J. Piscine orthoreovirus subtype 3 (PRV-3) causes heart inflammation in rainbow trout (Oncorhynchus mykiss) Vet. Res. 2019;50:14. doi: 10.1186/s13567-019-0632-4. PubMed DOI PMC
Adamek M., Hellmann J., Flamm A., Teitge F., Vendramin N., Fey D., Risse K., Blakey F., Rimstad E., Steinhagen D. Detection of piscine orthoreoviruses (PRV-1 and PRV-3) in Atlantic salmon and rainbow trout farmed in Germany. Transbound. Emerg. Dis. 2019;66:14–21. doi: 10.1111/tbed.13018. PubMed DOI
Dhamotharan K., Vendramin N., Markussen T., Wessel O., Cuenca A., Nyman I.B., Olsen A.B., Tengs T., Krudtaa Dahle M., Rimstad E. Molecular and antigenic characterization of Piscine orthoreovirus (PRV) from rainbow trout (Oncorhynchus mykiss) Viruses. 2018;10:170. doi: 10.3390/v10040170. PubMed DOI PMC
Cartagena J., Tambley C., Sandino A.M., Spencer E., Tello M. Detection of piscine orthoreovirus in farmed rainbow trout from Chile. Aquaculture. 2018;493:79–84. doi: 10.1016/j.aquaculture.2018.04.044. DOI
Kuehn R., Stoeckle B.C., Young M., Popp L., Taeubert J.E., Pfaffl M.W., Geist J. Identification of a piscine reovirus-related pathogen in proliferative darkening syndrome (PDS) infected brown trout (Salmo trutta fario) using a next-generation technology detection pipeline. PLoS ONE. 2018;13:e0206164. doi: 10.1371/journal.pone.0206164. PubMed DOI PMC
Lahnsteiner F., Haunschmid R., Mansour N. Possible reasons for late summer brown trout (Salmo trutta Linnaeus 1758) mortality in Austrian prealpine river systems. J. Appl. Ichthyol. 2011;27:83–93. doi: 10.1111/j.1439-0426.2010.01621.x. DOI
Fux R., Arndt D., Langenmayer M.C., Schwaiger J., Ferling H., Fischer N., Indenbirken D., Grundhoff A., Dolken L., Adamek M., et al. Piscine Orthoreovirus 3 is not the causative pathogen of Proliferative Darkening Syndrome (PDS) of brown trout (Salmo trutta fario) Viruses. 2019;11:112. doi: 10.3390/v11020112. PubMed DOI PMC
Arndt D., Fux R., Blutke A., Schwaiger J., El-Matbouli M., Sutter G., Langenmayer M.C. Proliferative kidney disease and proliferative darkening syndrome are linked with brown trout (Salmo trutta fario) mortalities in the Pre-Alpine Isar River. Pathogens. 2019;8:177. doi: 10.3390/pathogens8040177. PubMed DOI PMC
Lewisch E., Unfer G., Pinter K., Bechter T., El-Matbouli M. Distribution and prevalence of T. bryosalmonae in Austria: A first survey of trout from rivers with a shrinking population. J. Fish Dis. 2018;41:1549–1557. doi: 10.1111/jfd.12863. PubMed DOI
Hedrick R.P., MacConnell E., de Kinkelin P. Proliferative kidney disease of salmonid fish. Annu. Rev. Fish Dis. 1993;3:277–290. doi: 10.1016/0959-8030(93)90039-E. DOI
Palikova M., Papezikova I., Markova Z., Navratil S., Mares J., Mares L., Vojtek L., Hyrsl P., Jelinkova E., Schmidt-Posthaus H. Proliferative kidney disease in rainbow trout (Oncorhynchus mykiss) under intensive breeding conditions: Pathogenesis and haematological and immune parameters. Vet. Parasitol. 2017;238:5–16. doi: 10.1016/j.vetpar.2017.03.003. PubMed DOI
European Commission Commission Implementing Decision (EU) 2015/1554 of 11 September 2015 Laying Down Rules for the Application of Directive 2006/88/EC as Regards Requirements for Surveillance and Diagnostic Methods. [(accessed on 27 June 2020)]; Available online: http://data.europa.eu/eli/dec_impl/2015/1554/oj.
Jørgensen P.E.V. Egtved virus: The susceptibility of brown trout and rainbow trout to eight virus isolates and the significance of the findings for the VHS control. Fish Dis. 1980:3–7. doi: 10.1007/978-3-642-67854-7_1. DOI
Abbadi M., Fusaro A., Ceolin C., Casarotto C., Quartesan R., Dalla Pozza M., Cattoli G., Toffan A., Holmes E.C., Panzarin V. Molecular evolution and phylogeography of co-circulating IHNV and VHSV in Italy. Front. Microbiol. 2016;7:1306. doi: 10.3389/fmicb.2016.01306. PubMed DOI PMC
Dixon P.F., Avery S., Chambers E., Feist S., Mandhar H., Parry L., Stone D.M., Strommen H.K., Thurlow J.K., Lui C.T., et al. Four years of monitoring for viral haemorrhagic septicaemia virus in marine waters around the United Kingdom. Dis. Aquat. Org. 2003;54:175–186. doi: 10.3354/dao054175. PubMed DOI
Dopazo C.P., Moreno P., Olveira J.G., Borrego J.J. The theoretical reliability of PCR-based fish viral diagnostic methods is critically affected when they are applied to fish populations with low prevalence and virus loads. J. Appl. Microbiol. 2018;124:977–989. doi: 10.1111/jam.13586. PubMed DOI
Fringuelli E., Rowley H.M., Wilson J.C., Hunter R., Rodger H., Graham D.A. Phylogenetic analyses and molecular epidemiology of European salmonid alphaviruses (SAV) based on partial E2 and nsP3 gene nucleotide sequences. J. Fish Dis. 2008;31:811–823. doi: 10.1111/j.1365-2761.2008.00944.x. PubMed DOI
State Veterinary Administration Disease Status of Fish in the Czech Republic. [(accessed on 27 June 2020)]; Available online: https://www.svscr.cz/zdravi-zvirat/zdravi-ryb/nakazova-situace-v-cr/
Madhun A.S., Isachsen C.H., Omdal L.M., Einen A.C.B., Bjorn P.A., Nilsen R., Karlsbakk E. Occurrence of Salmonid Alphavirus (SAV) and Piscine Orthoreovirus (PRV) infections in wild sea trout Salmo trutta in Norway. Dis. Aquat. Org. 2016;120:109–113. doi: 10.3354/dao03009. PubMed DOI
Vendramin N., Alencar A.L.F., Iburg T.M., Dahle M.K., Wessel O., Olsen A.B., Rimstad E., Olesen N.J. Piscine orthoreovirus infection in Atlantic salmon (Salmo salar) protects against subsequent challenge with infectious hematopoietic necrosis virus (IHNV) Vet. Res. 2018;49:30. doi: 10.1186/s13567-018-0524-z. PubMed DOI PMC
Gorgoglione B., Taylor N.G.H., Holland J.W., Feist S.W., Secombes C.J. Immune response modulation upon sequential heterogeneous co-infection with Tetracapsuloides bryosalmonae and VHSV in brown trout (Salmo trutta) Fish Shellfish Immunol. 2019;88:375–390. doi: 10.1016/j.fsi.2019.02.032. PubMed DOI
Schmidt-Posthaus H., Steiner P., Muller B., Casanova-Nakayama A. Complex interaction between proliferative kidney disease, water temperature and concurrent nematode infection in brown trout. Dis. Aquat. Org. 2013;104:23–34. doi: 10.3354/dao02580. PubMed DOI
Clifton-Hadley R.S., Bucke D., Richards R.H. Proliferative kidney disease of salmonid fish: A review. J. Fish Dis. 1984;7:363–377. doi: 10.1111/j.1365-2761.1984.tb01201.x. DOI
Grabner D.S., El-Matbouli M. Comparison of the susceptibility of brown trout (Salmo trutta) and four rainbow trout (Oncorhynchus mykiss) strains to the myxozoan Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease (PKD) Vet. Parasitol. 2009;165:200–206. doi: 10.1016/j.vetpar.2009.07.028. PubMed DOI
Wahli T., Knuesel R., Bernet D., Segner H., Pugovkin D., Burkhardt-Holm P., Escher M., Schmidt-Posthaus H. Proliferative kidney disease in Switzerland: Current state of knowledge. J. Fish Dis. 2002;25:491–500. doi: 10.1046/j.1365-2761.2002.00401.x. DOI
Wahli T., Bernet D., Steiner P.A., Schmidt-Posthaus H. Geographic distribution of Tetracapsuloides bryosalmonae infected fish in Swiss rivers: An update. Aquat. Sci. 2007;69:3–10. doi: 10.1007/s00027-006-0843-4. DOI
Rubin A., de Coulon P., Bailey C., Segner H., Wahli T., Rubin J.F. Keeping an eye on wild brown trout (Salmo trutta) populations: Correlation between temperature, environmental parameters, and proliferative kidney disease. Front. Vet. Sci. 2019;6:281. doi: 10.3389/fvets.2019.00281. PubMed DOI PMC
Peeler E.J., Feist S.W., Longshaw M., Thrush M.A., St-Hilaire S. An assessment of the variation in the prevalence of renal myxosporidiosis and hepatitis in wild brown trout, Salmo trutta L.; within and between rivers in South-West England. J. Fish Dis. 2008;31:719–728. doi: 10.1111/j.1365-2761.2008.00942.x. PubMed DOI
Dash M., Vasemagi A. Proliferative kidney disease (PKD) agent Tetracapsuloides bryosalmonae in brown trout populations in Estonia. Dis. Aquat. Org. 2014;109:139–148. doi: 10.3354/dao02731. PubMed DOI
Abd-Elfattah A., Kumar G., Soliman H., El-Matbouli M. Persistence of Tetracapsuloides bryosalmonae (Myxozoa) in chronically infected brown trout Salmo trutta. Dis. Aquat. Org. 2014;111:41–49. doi: 10.3354/dao02768. PubMed DOI PMC
Soliman H., Kumar G., El-Matbouli M. Tetracapsuloides bryosalmonae persists in brown trout Salmo trutta for five years post exposure. Dis. Aquat. Org. 2018;127:151–156. doi: 10.3354/dao03200. PubMed DOI
Kumar G., Sarker S., Menanteau-Ledouble S., El-Matbouli M. Tetracapsuloides bryosalmonae infection affects the expression of genes involved in cellular signal transduction and iron metabolism in the kidney of the brown trout Salmo trutta. Parasitol. Res. 2015;114:2301–2308. doi: 10.1007/s00436-015-4425-z. PubMed DOI PMC
Bailey C., Strepparava N., Wahli T., Segner H. Exploring the immune response, tolerance and resistance in proliferative kidney disease of salmonids. Dev. Comp. Immunol. 2019;90:165–175. doi: 10.1016/j.dci.2018.09.015. PubMed DOI
Borsuk M.E., Reichert P., Peter A., Schager E., Burkhardt-Holm P. Assessing the decline of brown trout (Salmo trutta) in Swiss rivers using a Bayesian probability network. Ecol. Model. 2006;192:224–244. doi: 10.1016/j.ecolmodel.2005.07.006. DOI
Schmidt-Posthaus H., Bernet D., Wahli T., Burkhardt-Holm P. Morphological organ alterations and infectious diseases in brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss exposed to polluted river water. Dis. Aquat. Org. 2001;44:161–170. doi: 10.3354/dao044161. PubMed DOI
Zimmerli S., Bernet D., Burkhardt-Holm P., Schmidt-Posthaus H., Vonlanthen P., Wahli T., Segner H. Assessment of fish health status in four Swiss rivers showing a decline of brown trout catches. Aquat. Sci. 2007;69:11–25. doi: 10.1007/s00027-006-0844-3. DOI
Wahli T., Bernet D., Segner H., Schmidt-Posthaus H. Role of altitude and water temperature as regulating factors for the geographical distribution ofTetracapsuloides bryosalmonaeinfected fishes in Switzerland. J. Fish Biol. 2008;73:2184–2197. doi: 10.1111/j.1095-8649.2008.02054.x. DOI
Cinkova K., Reschová S., Kulich P., Veselý T. Evaluation of a polyclonal antibody for the detection and identification of ranaviruses from freshwater fish and amphibians. Dis. Aquat. Org. 2010;89:191–198. doi: 10.3354/dao02198. PubMed DOI
Farr A.G., Nakane P.K. Immunohistochemistry with enzyme labeled antibodies: A brief review. J. Immunol. Methods. 1981;47:129–144. doi: 10.1016/0022-1759(81)90114-9. PubMed DOI
Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.F., Guindon S., Lefort V., Lescot M., et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36:465–469. doi: 10.1093/nar/gkn180. PubMed DOI PMC
Dietrich M.A., Nynca J., Adamek M., Steinhagen D., Karol H., Ciereszko A. Expression of apolipoprotein A-I and A-II in rainbow trout reproductive tract and their possible role in antibacterial defence. Fish Shellfish Immunol. 2015;45:750–756. doi: 10.1016/j.fsi.2015.05.048. PubMed DOI
Jonstrup S.P., Kahns S., Skall H.F., Boutrup T.S., Olesen N.J. Development and validation of a novel Taqman-based real-time RT-PCR assay suitable for demonstrating freedom from viral haemorrhagic septicaemia virus. J. Fish Dis. 2013;36:9–23. doi: 10.1111/j.1365-2761.2012.01416.x. PubMed DOI
Purcell M.K., Thompson R.L., Garver K.A., Hawley L.M., Batts W.N., Sprague L., Sampson C., Winton J.R. Universal reverse-transcriptase real-time PCR for infectious hematopoietic necrosis virus (IHNV) Dis. Aquat. Org. 2013;106:103–115. doi: 10.3354/dao02644. PubMed DOI
Orpetveit I., Mikalsen A.B., Sindre H., Evensen O., Dannevig B.H., Midtlyng P.J. Detection of infectious pancreatic necrosis virus in subclinically infected Atlantic salmon by virus isolation in cell culture or real-time reverse transcription polymerase chain reaction: Influence of sample preservation and storage. J. Vet. Diagn. Investig. 2010;22:886–895. doi: 10.1177/104063871002200606. PubMed DOI
Hodneland K., Endresen C. Sensitive and specific detection of Salmonid alphavirus using real-time PCR (TaqMan) J. Virol. Methods. 2006;131:184–192. doi: 10.1016/j.jviromet.2005.08.012. PubMed DOI
Bettge K., Segner H., Burki R., Schmidt-Posthaus H., Wahli T. Proliferative kidney disease (PKD) of rainbow trout: Temperature- and time-related changes of Tetracapsuloides bryosalmonae DNA in the kidney. Parasitology. 2009;136:615–625. doi: 10.1017/S0031182009005800. PubMed DOI
Adams A., Richards R.H., Mateo M.M. Development of monoclonal antibodies to PK‘X’, the causative agent of proliferative kidney disease. J. Fish Dis. 1992;15:515–521. doi: 10.1111/j.1365-2761.1992.tb00683.x. DOI
Schmidt-Posthaus H., Bettge K., Forster U., Segner H., Wahli T. Kidney pathology and parasite intensity in rainbow trout Oncorhynchus mykiss surviving proliferative kidney disease: Time course and influence of temperature. Dis. Aquat. Org. 2012;97:207–218. doi: 10.3354/dao02417. PubMed DOI
Comparison of diagnostic methods for Tetracapsuloides bryosalmonae detection in salmonid fish