Non-oxime reactivators of organophosphate-inhibited cholinesterases
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GA25-15339S
Grantová Agentura České Republiky
Excellence project no. 2206-2025
Univerzita Hradec Králové
PubMed
40317339
DOI
10.1007/s00204-025-04070-8
PII: 10.1007/s00204-025-04070-8
Knihovny.cz E-zdroje
- Klíčová slova
- Acetylcholinesterase, Butyrylcholinesterase, Nerve agent, Non-oxime, Reactivator,
- Publikační typ
- časopisecké články MeSH
Organophosphorus compounds, including pesticides and nerve agents, irreversibly inhibit acetylcholinesterase, leading to an accumulation of acetylcholine that can cause a cholinergic crisis. Standard treatment of organophosphate poisoning relies on oxime-based reactivators, such as pralidoxime, obidoxime, or asoxime. However, these compounds have several limitations, including poor penetration through the blood-brain barrier and limited efficacy across a broad spectrum of organophosphorus compounds. For this reason, non-oxime reactivators were introduced as potential alternatives. The most promising non-oxime reactivators contain Mannich phenol moiety, imidazole group or combination of both. Some of the non-oxime derivatives demonstrated better efficacy than standard oximes during in vitro evaluation. Nevertheless, these structures have significant drawbacks such as high intrinsic acetylcholinesterase inhibition or high toxicity profile which make them unsuitable for further in vivo tests. In this review, the current progress in the development of non-oxime reactivators is summarized and their bioactivity as well as their limitations are critically discussed.
Zobrazit více v PubMed
Ali K, Mishra P, Kumar A et al (2022) Reactivity vs. selectivity of quinone methides: synthesis of pharmaceutically important molecules, toxicity and biological applications. Chem Commun 58:6160–6175. https://doi.org/10.1039/D2CC00838F DOI
Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740. https://doi.org/10.1021/jm901137j PubMed DOI
Bajgar J, Fusek J, Kuca K et al (2007) Treatment of organophosphate intoxication using cholinesterase reactivators: facts and fiction. Mini-Rev Med Chem 7:461–466. https://doi.org/10.2174/138955707780619581 PubMed DOI
Bhattacharjee AK, Marek E, Le HT, Gordon RK (2012) Discovery of non-oxime reactivators using an in silico pharmacophore model of oxime reactivators of OP-inhibited acetylcholinesterase. Eur J Med Chem 49:229–238. https://doi.org/10.1016/j.ejmech.2012.01.016 PubMed DOI
Bhattacharjee AK, Musilek K, Kuca K (2013) In silico pharmacophore modeling on known pyridinium oxime reactivators of cyclosarin (GF) inhibited AChE to aid discovery of potential, more efficacious novel non-oxime reactivators. Curr Comput Aided Drug des 9:402–411. https://doi.org/10.2174/15734099113099990012 PubMed DOI
Bhattacharjee AK, Marek E, Le HT et al (2015) Discovery of non-oxime reactivators using an in silico pharmacophore model of reactivators for DFP-inhibited acetylcholinesterase. Eur J Med Chem 90:209–220. https://doi.org/10.1016/j.ejmech.2014.11.013 PubMed DOI
Bi H, Ouyang Q, Wei Z, Zheng Z (2020) Design, synthesis and evaluation of novel nonquaternary and 3 non-oxime reactivators for acetylcholinesterase inhibited by organophosphates. Bioorg Chem 100:103902. https://doi.org/10.1016/j.bioorg.2020.103902 PubMed DOI
Bierwisch A, Wille T, Thiermann H, Worek F (2016) Kinetic analysis of interactions of amodiaquine with human cholinesterases and organophosphorus compounds. Toxicol Lett 246:49–56. https://doi.org/10.1016/j.toxlet.2016.02.004 PubMed DOI
Čadež T, Maček Hrvat N, Šinko G et al (2025) Click-chemistry-derived oxime library reveals efficient reactivators of nerve agent-inhibited butyrylcholinesterase suitable for pseudo-catalytic bioscavenging. Arch Toxicol. https://doi.org/10.1007/s00204-025-03985-6 PubMed DOI
Cadieux CL, Wang H, Zhang Y et al (2016) Probing the activity of a non-oxime reactivator for acetylcholinesterase inhibited by organophosphorus nerve agents. Chem Biol Interact 259:133–141. https://doi.org/10.1016/j.cbi.2016.04.002 PubMed DOI PMC
Chai PR, Hayes BD, Erickson TB, Boyer EW (2018) Novichok agents: a historical, current, and toxicological perspective. Toxicol Commun 2:45–48. https://doi.org/10.1080/24734306.2018.1475151 PubMed DOI PMC
Chambers JE, Dail MB, Meek EC (2020) Oxime-mediated reactivation of organophosphate-inhibited acetylcholinesterase with emphasis on centrally-active oximes. Neuropharmacology 175:108201. https://doi.org/10.1016/j.neuropharm.2020.108201 PubMed DOI PMC
de Koning MC, Horn G, Worek F, van Grol M (2018) Discovery of a potent non-oxime reactivator of nerve agent inhibited human acetylcholinesterase. Eur J Med Chem 157:151–160. https://doi.org/10.1016/j.ejmech.2018.08.016 PubMed DOI
de Koning MC, Horn G, Worek F, van Grol M (2020) Synthesis and in vitro evaluation of novel non-oximes for the reactivation of nerve agent inhibited human acetylcholinesterase. Chem Biol Interact 326:109139. https://doi.org/10.1016/j.cbi.2020.109139 PubMed DOI
Eddleston M, Szinicz L, Eyer P, Buckley N (2002) Oximes in acute organophosphate pesticide poisoning: a systematic review of clinical trials. QJM 95:275–283. https://doi.org/10.1093/qjmed/95.5.275 PubMed DOI
Franca T, Kitagawa D, Cavalcante S et al (2019) Novichoks: the dangerous fourth generation of chemical weapons. Int J Mol Sci 20:1222. https://doi.org/10.3390/ijms20051222 PubMed DOI PMC
Franjesevic AJ, Sillart SB, Beck JM et al (2019) Resurrection and reactivation of acetylcholinesterase and butyrylcholinesterase. Chem Eur J 25:5337–5371. https://doi.org/10.1002/chem.201805075 PubMed DOI
Hoenig SL (2006) Nerve agents. Compendium of chemical warfare agents, 1st edn. Springer, New York, pp 77–128
Horn G, de Koning MC, van Grol M et al (2018) Interactions between acetylcholinesterase, toxic organophosphorus compounds and a short series of structurally related non-oxime reactivators: analysis of reactivation and inhibition kinetics in vitro. Toxicol Lett 299:218–225. https://doi.org/10.1016/j.toxlet.2018.10.004 PubMed DOI
Johnson MK, Jacobsen D, Meredith TJ et al (2000) Evaluation of antidotes for poisoning by organophosphorus pesticides. Emerg Med Australas 12:22–37. https://doi.org/10.1046/j.1442-2026.2000.00087.x DOI
Karasova JZ, Chladek J, Hroch M et al (2013) Pharmacokinetic study of two acetylcholinesterase reactivators, trimedoxime and newly synthesized oxime K027, in rat plasma. J Appl Toxicol 33:18–23. https://doi.org/10.1002/jat.1699 PubMed DOI
Katz FS, Pecic S, Tran TH et al (2015) Discovery of new classes of compounds that reactivate acetylcholinesterase inhibited by organophosphates. ChemBioChem 16:2205–2215. https://doi.org/10.1002/cbic.201500348 PubMed DOI PMC
Katz FS, Pecic S, Schneider L et al (2018) New therapeutic approaches and novel alternatives for organophosphate toxicity. Toxicol Lett 291:1–10. https://doi.org/10.1016/j.toxlet.2018.03.028 PubMed DOI PMC
Kohoutova Z, Prchalova E, Andrys R et al (2024) Halogenated monopyridinium oximes are less effective in reactivation of phosphylated cholinesterases than bisquaternary oximes. Bioorg Chem 153:107904. https://doi.org/10.1016/j.bioorg.2024.107904 PubMed DOI
Korabecny J, Soukup O, Dolezal R et al (2014) From pyridinium-based to centrally active acetylcholinesterase reactivators. Mini Rev Med Chem 14:215–221. https://doi.org/10.2174/1389557514666140219103138 PubMed DOI
Lovins AR, Miller KA, Buck AK et al (2024) 4-Amidophenol quinone methide precursors: Effective and broad-scope nonoxime reactivators of organophosphorus-inhibited cholinesterases and resurrectors of organophosphorus-aged acetylcholinesterase. ACS Chem Neurosci 15:1813–1827. https://doi.org/10.1021/acschemneuro.4c00011 PubMed DOI
Malinak D, Korabecny J, Soukup O et al (2018) A review of the synthesis of quaternary acetylcholinesterase reactivators. Curr Org Chem 22:1619–1648. https://doi.org/10.2174/1385272822666180711123529 DOI
Marrs TC (1993) Organophosphate poisoning. Pharmacol Ther 58:51–66. https://doi.org/10.1016/0163-7258(93)90066-M PubMed DOI
Monks TJ, Jones DC (2002) The metabolism and toxicity of quinones, quinonimines, quinone methides, and quinone-thioethers. Curr Drug Metab 3:425–438. https://doi.org/10.2174/1389200023337388 PubMed DOI
Neftel KA, Woodtly W, Schmid M et al (1986) Amodiaquine induced agranulocytosis and liver damage. BMJ 292:721–723. https://doi.org/10.1136/bmj.292.6522.721 PubMed DOI PMC
Sakurada K, Matsubara K, Shimizu K et al (2003) Pralidoxime iodide (2-PAM) penetrates across the blood–brain barrier. Neurochem Res 28:1401–1407. https://doi.org/10.1023/A:1024960819430 PubMed DOI
Soukup O, Korabecny J, Malinak D et al (2018) In vitro and in silico evaluation of non-quaternary reactivators of AChE as antidotes of organophosphorus poisoning - a new hope or a blind alley? Med Chem 14:281–292. https://doi.org/10.2174/1573406414666180112105657 PubMed DOI
Steindl D, Boehmerle W, Körner R et al (2021) Novichok nerve agent poisoning. Lancet 397:249–252. https://doi.org/10.1016/S0140-6736(20)32644-1 PubMed DOI
Vieira LA, Almeida JSFD, De Koning MC et al (2023) Molecular modeling of Mannich phenols as reactivators of human acetylcholinesterase inhibited by A-series nerve agents. Chem Biol Interact 382:110622. https://doi.org/10.1016/j.cbi.2023.110622 PubMed DOI
Wei Z, Zhang X, Nie H et al (2022) Discovery of novel non-oxime reactivators showing in vivo antidotal efficiency for sarin poisoned mice. Molecules 27:1096. https://doi.org/10.3390/molecules27031096 PubMed DOI PMC
Worek F, von der Wellen J, Musilek K et al (2012) Reactivation kinetics of a homologous series of bispyridinium bis-oximes with nerve agent-inhibited human acetylcholinesterase. Arch Toxicol 86:1379–1386. https://doi.org/10.1007/s00204-012-0842-2 PubMed DOI
Worek F, Thiermann H, Wille T (2020) Organophosphorus compounds and oximes: a critical review. Arch Toxicol 94:2275–2292. https://doi.org/10.1007/s00204-020-02797-0 PubMed DOI PMC