Comparison of diagnostic methods for Tetracapsuloides bryosalmonae detection in salmonid fish
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
PROFISH CZ.02.1.01/0.0/0.0/16_019/0000869
European Regional Development Fund
PubMed
33837562
PubMed Central
PMC8360006
DOI
10.1111/jfd.13375
Knihovny.cz E-zdroje
- Klíčová slova
- diagnostic sensitivity, diagnostic specificity, immunohistochemistry, polymerase chain reaction, prevalence, proliferative kidney disease,
- MeSH
- diagnostické testy rutinní metody veterinární MeSH
- Myxozoa izolace a purifikace MeSH
- nemoci ryb diagnóza epidemiologie parazitologie MeSH
- Oncorhynchus mykiss * MeSH
- parazitární nemoci u zvířat diagnóza epidemiologie parazitologie MeSH
- parazitologie metody MeSH
- prevalence MeSH
- pstruh * MeSH
- řeky MeSH
- vodní hospodářství MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
Diagnostic accuracy of pathogen detection depends upon the selection of suitable tests. Problems can arise when the selected diagnostic test gives false-positive or false-negative results, which can affect control measures, with consequences for the population health. The aim of this study was to compare sensitivity of different diagnostic methods IHC, PCR and qPCR detecting Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease in salmonid fish and as a consequence differences in disease prevalence. We analysed tissue from 388 salmonid specimens sampled from a recirculating system and rivers in the Czech Republic. Overall prevalence of T. bryosalmonae was extremely high at 92.0%, based on positive results of at least one of the above-mentioned screening methods. IHC resulted in a much lower detection rate (30.2%) than both PCR methods (qPCR32: 65.4%, PCR: 81.9%). While qPCR32 produced a good match with IHC (60.8%), all other methods differed significantly (p < .001) in the proportion of samples determined positive. Both PCR methods showed similar sensitivity, though specificity (i.e., the proportion of non-diseased fish classified correctly) differed significantly (p < .05). Sample preservation method significantly (p < .05) influenced the results of PCR, with a much lower DNA yield extracted from paraffin-embedded samples. Use of different methods that differ in diagnostic sensitivity and specificity resulted in random and systematic diagnosis errors, illustrating the importance of interpreting the results of each method carefully.
Department of Pathobiology Centre for Fish and Wildlife Health University of Bern Bern Switzerland
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Abd‐Elfattah, A., Kumar, G., Soliman, H., & El‐Matbouli, M. (2014). Persistence of PubMed DOI PMC
Adams, A., Richards, R. H., & de Mateo, M. M. (1992). Development of monoclonal antibodies to PK ‘X’, the causative agent of proliferative kidney disease. Journal of Fish Diseases, 15(6), 515–521. 10.1111/j.1365-2761.1992.tb00683.x DOI
Bettge, K., Segner, H., Burki, R., Schmidt‐Posthaus, H., & Wahli, T. (2009). Proliferative kidney disease (PKD) of rainbow trout: Temperature‐and time‐related changes of PubMed
Bettge, K., Wahli, T., Segner, H., & Schmidt‐Posthaus, H. (2009). Proliferative kidney disease in rainbow trout: Time‐and temperature‐related renal pathology and parasite distribution. Diseases of Aquatic Organisms, 83(1), 67–76. 10.3354/dao01989 PubMed DOI
Bonin, S., Petrera, F., Niccolini, B., & Stanta, G. (2003). PCR analysis in archival postmortem tissues. Molecular Pathology, 56(3), 184. 10.1136/mp.56.3.184 PubMed DOI PMC
Bramwell, N. H., & Burns, B. F. (1988). The effects of fixative type and fixation time on the quantity and quality of extractable DNA for hybridization studies on lymphoid tissue. Experimental Hematology, 16(8), 730–732. PubMed
Canning, E. U., Curry, A., Feist, S. W., Longshaw, M., & Okamura, B. (2000). A new class and order of myxozoans to accommodate parasites of bryozoans with ultrastructural observations on PubMed DOI
Castagnaro, M., Marin, M., Ghittino, C., & Hedrick, R. P. (1991). Lectin histochemistry and ultrastructure of rainbow trout DOI
Chilmonczyk, S., Monge, D., & De Kinkelin, P. (2002). Proliferative kidney disease: Cellular aspects of the rainbow trout DOI
Clifton‐Hadley, R. S., Bucke, D., & Richards, R. H. (1986). Economic importance of proliferative kidney disease of salmonid fish in England and Wales. Veterinary Record, 119(12), 305–306. 10.1136/vr.119.12.305 PubMed DOI
Clifton‐Hadley, R. S., Richards, R. H., & Bucke, D. (1986). Proliferative kidney disease (PKD) in rainbow trout DOI
Feist, S. W., Longshaw, M., Canning, E. U., & Okamura, B. (2001). Induction of proliferative kidney disease (PKD) in rainbow trout PubMed DOI
Ferguson, H. W. (1981). The effects of water temperature on the development of proliferative kidney disease in rainbow trout, DOI
Ferguson, H. W., & Ball, H. J. (1979). Epidemiological aspects of proliferative kidney disease amongst rainbow trout DOI
Ferguson, H. W., & Needham, E. A. (1978). Proliferative kidney disease in rainbow trout DOI
Gay, M., Okamura, B., & De Kinkelin, P. (2001). Evidence that infectious stages of PubMed DOI
Grabner, D. S., & El‐Matbouli, M. (2010). PubMed DOI
Hedrick, R. P., MacConnell, E., & De Kinkelin, P. (1993). Proliferative kidney disease of salmonid fish. Annual Review of Fish Diseases, 3, 277–290. 10.1016/0959-8030(93)90039-E DOI
Hedrick, R. P., Marin, M., Castagnaro, M., Monge, D., & De Kinkelin, P. (1992). Rapid lectin‐based staining procedure for the detection of the myxosporean causing proliferative kidney disease in salmonid fish. Diseases of Aquatic Organisms, 13(2), 129–132. 10.3354/dao013129 DOI
Henderson, M., & Okamura, B. (2004). The phylogeography of salmonid proliferative kidney disease in Europe and North America. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1549), 1729–1736. 10.1098/rspb.2004.2677 PubMed DOI PMC
Kent, M. L., & Hedrick, R. P. (1985). PKX, the causative agent of proliferative kidney disease (PKD) in Pacific salmonid fishes and its affinities with the myxozoa 1. The Journal of Protozoology, 32(2), 254–260. 10.1111/j.1550-7408.1985.tb03047.x PubMed DOI
Kent, M. L., Khattra, J., Hervio, D. M. L., & Devlin, R. H. (1998). Ribosomal DNA sequence analysis of isolates of the PKX myxosporean and their relationship to members of the genus Sphaerospora. Journal of Aquatic and Animal Health, 10, 12–21. 10.1577/1548-8667(1998)010<0012:RDSAOI>2.0.CO;2 DOI
Klontz, G. W., & Chacko, A. J. (1983). Methods to detect the organism causing proliferative kidney disease in salmonids. Bulletin of the European Association of Fish Pathologists, 3, 33–36.
Kopp, R., Palíková, M., Papežíková, I., Mareš, J., Navrátil, S., Pikula, J., & Pohanka, M. (2018). Oxidative stress response of rainbow trout ( DOI
Lewisch, E., Unfer, G., Pinter, K., Bechter, T., & El‐Matbouli, M. (2018). Distribution and prevalence of PubMed
Longshaw, M., Feist, S. W., Canning, E. U., & Okamura, B. (1999). First identification of PKX in bryozoans from the United Kingdom‐molecular evidence. Bulletin‐European Association of Fish Pathologists, 19, 146–148.
Longshaw, M., Le Deuff, R. M., Harris, A. F., & Feist, S. W. (2002). Development of proliferative kidney disease in rainbow trout, DOI
Morris, D. C., Morris, D. J., & Adams, A. (2002). Molecular evidence of release of DOI
Nowak, B., Mueffling, T. V., Caspari, K., & Hartung, J. (2006). Validation of a method for the detection of virulent PubMed DOI
Okamura, B., Anderson, C. L., Longshaw, M., Feist, S. W., & Canning, E. U. (2001). Patterns of occurrence and 18S rDNA sequence variation of PKX ( PubMed
Palikova, M., Papezikova, I., Markova, Z., Navratil, S., Mares, J., Mares, L., Vojtek, L., Hyrsl, P., Jelinkova, E., & Schmidt‐Posthaus, H. (2017). Proliferative kidney disease in rainbow trout ( PubMed
Pojezdal, Ľ., Adamek, M., Syrová, E., Steinhagen, D., Minářová, H., Papežíková, I., Seidlová, V., Reschová, S., & Palíková, M. (2020). Health surveillance of wild brown trout ( PubMed PMC
Ribeiro, C. N. M., Peres, L. C., & Pina‐Neto, J. M. (2004). DNA extraction and quantification from touch and scrape preparations obtained from autopsy liver cells. Brazilian journal of medical and biological research, 37(5), 635–642. PubMed
Rüssmann, H., Kempf, V. A., Koletzko, S., Heesemann, J., & Autenrieth, I. B. (2001). Comparison of fluorescent in situ hybridization and conventional culturing for detection of PubMed DOI PMC
Schmidt‐Posthaus, H., Bettge, K., Forster, U., Segner, H., & Wahli, T. (2012). Kidney pathology and parasite intensity in rainbow trout PubMed DOI
Sengüven, B., Baris, E., Oygur, T., & Berktas, M. (2014). Comparison of methods for the extraction of DNA from formalin‐fixed, paraffin‐embedded archival tissues. International Journal of Medical Sciences, 11(5), 494. 10.7150/ijms.8842 PubMed DOI PMC
Skovgaard, A., & Buchmann, K. (2012). PubMed DOI
Sterud, E., Forseth, T., Ugedal, O., Poppe, T. T., Jørgensen, A., Bruheim, T., Fjeldstad, H.‐P., & Mo, T. A. (2007). Severe mortality in wild Atlantic salmon PubMed
Suresh, K., & Smith, H. (2004). Comparison of methods for detecting PubMed DOI
Syrová, E., Palíková, M., Mendel, J., Seidlová, V., Papežíková, I., Schmidt‐Posthaus, H., Somerlíková, K., Minářová, H., Mareš, L., Mikulíková, I., Pikula, J., & Mareš, J. (2020). Field study indicating susceptibility differences between salmonid species and their lineages to proliferative kidney disease. Journal of Fish Diseases, 43(10), 1201–1211. 10.1111/jfd.13221 PubMed DOI
Tops, S., Lockwood, W., & Okamura, B. (2006). Temperature‐driven proliferation of PubMed DOI
Vasemägi, A., Nousiainen, I., Saura, A., Vähä, J. P., Valjus, J., & Huusko, A. (2017). First record of proliferative kidney disease agent PubMed DOI
Whyte, P., Mc Gill, K., Collins, J. D., & Gormley, E. (2002). The prevalence and PCR detection of salmonella contamination in raw poultry. Veterinary Microbiology, 89(1), 53–60. 10.1016/S0378-1135(02)00160-8 PubMed DOI