Concurrence of High Corrosion Resistance and Strength with Excellent Ductility in Ultrafine-Grained Mg-3Y Alloy

. 2022 Oct 28 ; 15 (21) : . [epub] 20221028

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36363162

Grantová podpora
20-08-0015A Ministry of health of the Czech Republic
GA19-00270S Czech Science Foundation
389422 Charles University Grant Agency
313011AFG4 Ministry of Transport and Construction of the Slovak Republic

In the field of magnesium-based degradable implantable devices, the Mg-Y-RE-Zr alloying system (WE-type) has gained popularity due to its satisfying degradation rate together with mechanical strength. However, utilization of RE and Zr in the WE-type alloys was originally driven to improve Mg-based alloys for high-temperature applications in the industry, while for medical purposes, there is a question of whether the amount of alloying elements may be further optimized. For this reason, our paper presents the Mg-3Y (W3) magnesium alloy as an alternative to the WE43 alloy. This study shows that the omission of RE and Zr elements did not compromise the corrosion resistance and the degradation rate of the W3 alloy when compared with the WE43 alloy; appropriate biocompatibility was preserved as well. It was shown that the decrease in the mechanical strength caused by the omission of RE and Zr from the WE43 alloy could be compensated for by severe plastic deformation, as achieved in this study, by equal channel angular pressing. Ultrafine-grained W3 alloy exhibited compression yield strength of 362 ± 6 MPa and plastic deformation at maximum stress of 18 ± 1%. Overall, the early results of this study put forward the motion of avoiding RE elements and Zr in magnesium alloy as a suitable material for biodegradable applications and showed that solo alloying of yttrium is sufficient for maintaining desirable properties of the material at once.

Zobrazit více v PubMed

Williams D. New interests in magnesium. Med. Device Technol. 2006;17:9–10. PubMed

Erinc M., Sillekens W.H., Mannens R.G.T.M., Werkhoven R.J. Applicability of Existing Magnesium Alloys as Biomedical Implant Materials. 2009. [(accessed on 19 February 2009)]. pp. 209–214. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-67549135858&partnerID=40&md5=aed01891b5febf06388c95c196b66cc8.

Gu X., Zheng Y., Cheng Y., Zhong S., Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30:484–498. doi: 10.1016/j.biomaterials.2008.10.021. PubMed DOI

Castellani C., Lindtner R.A., Hausbrandt P., Tschegg E., Stanzl-Tschegg S.E., Zanoni G., Beck S., Weinberg A.-M. Bone–implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. Acta Biomater. 2011;7:432–440. doi: 10.1016/j.actbio.2010.08.020. PubMed DOI

Avedesian M.M., Baker H. ASM Specialty Handbook: Magnesium and Magnesium Alloys. ASM International; Almere, The Netherlands: 1999.

Xue D., Yun Y., Tan Z., Dong Z., Schulz M.J. In Vivo and In Vitro Degradation Behavior of Magnesium Alloys as Biomaterials. J. Mater. Sci. Technol. 2012;28:261–267. doi: 10.1016/S1005-0302(12)60051-6. DOI

Wang H., Estrin Y., Zúberová Z. Bio-corrosion of a magnesium alloy with different processing histories. Mater. Lett. 2008;62:2476–2479. doi: 10.1016/j.matlet.2007.12.052. DOI

Jia R., Zhang M., Zhang L., Zhang W., Guo F. Correlative change of corrosion behavior with the microstructure of AZ91 Mg alloy modified with Y additions. J. Alloys Compd. 2015;634:263–271. doi: 10.1016/j.jallcom.2015.02.019. DOI

Xin Y., Hu T., Chu P.K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review. Acta Biomater. 2011;7:1452–1459. doi: 10.1016/j.actbio.2010.12.004. PubMed DOI

Kirkland N., Lespagnol J., Birbilis N., Staiger M. A survey of bio-corrosion rates of magnesium alloys. Corros. Sci. 2010;52:287–291. doi: 10.1016/j.corsci.2009.09.033. DOI

Xu L., Zhang E., Yin D., Zeng S., Yang K. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. J. Mater. Sci. Mater. Med. 2007;19:1017–1025. doi: 10.1007/s10856-007-3219-y. PubMed DOI

Davenport A.J., Padovani C., Connolly B.J., Stevens N.P.C., Beale T.A.W., Groso A., Stampanoni M. Synchrotron X-ray Microtomography Study of the Role of Y in Corrosion of Magnesium Alloy WE. Electrochem. Solid-State Lett. 2007;10:C5–C8. doi: 10.1149/1.2400727. DOI

Hirano S., Suzuki K.T. Exposure, metabolism, and toxicity of rare earths and related compounds. Environ. Health Perspect. 1996;104:85–95. doi: 10.1289/ehp.96104s185. PubMed DOI PMC

Rim K.T., Koo K.H., Park J.S. Toxicological Evaluations of Rare Earths and Their Health Impacts to Workers: A Literature Review. Saf. Health Work. 2013;4:12–26. doi: 10.5491/SHAW.2013.4.1.12. PubMed DOI PMC

Gandel D., Easton M., Gibson M., Birbilis N. Influence of Mn and Zr on the Corrosion of Al-Free Mg Alloys: Part 2—Impact of Mn and Zr on Mg Alloy Electrochemistry and Corrosion. Corrosion. 2013;69:744–751. doi: 10.5006/0828. DOI

Yao H., Li Y., Wee A. Passivity behavior of melt-spun Mg–Y Alloys. Electrochim. Acta. 2003;48:4197–4204. doi: 10.1016/S0013-4686(03)00605-4. DOI

Hanzi A., Gunde P., Schinhammer M., Uggowitzer P. On the biodegradation performance of an Mg–Y–RE alloy with various surface conditions in simulated body fluid. Acta Biomater. 2009;5:162–171. doi: 10.1016/j.actbio.2008.07.034. PubMed DOI

Liu M., Schmutz P., Uggowitzer P.J., Song G., Atrens A. The influence of yttrium (Y) on the corrosion of Mg–Y binary alloys. Corros. Sci. 2010;52:3687–3701. doi: 10.1016/j.corsci.2010.07.019. DOI

Liu J., Bian D., Zheng Y., Chu X., Lin Y., Wang M., Lin Z., Li M., Zhang Y., Guan S. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems. Acta Biomater. 2019;102:508–528. doi: 10.1016/j.actbio.2019.11.013. PubMed DOI

StJohn D.H., Qian M., Easton M., Cao P., Hildebrand Z. Grain refinement of magnesium alloys. Met. Mater. Trans. A. 2005;36:1669–1679. doi: 10.1007/s11661-005-0030-6. DOI

Zhou L., Liu Y., Zhang J., Kang Z. Microstructure and mechanical properties of equal channel angular pressed Mg–Y–RE–Zr alloy. Mater. Sci. Technol. 2016;32:969–975. doi: 10.1080/02670836.2015.1104021. DOI

Minárik P., Král R., Janeček M. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys. Appl. Surf. Sci. 2013;281:44–48. doi: 10.1016/j.apsusc.2012.12.096. DOI

Janeček M., Popov M., Krieger M., Hellmig R., Estrin Y. Mechanical properties and microstructure of a Mg alloy AZ31 prepared by equal-channel angular pressing. Mater. Sci. Eng. A. 2007;462:116–120. doi: 10.1016/j.msea.2006.01.174. DOI

Bachmann F., Hielscher R., Schaeben H. Texture Analysis with MTEX—Free and Open Source Software Toolbox. Solid State Phenom. 2010;160:63–68. doi: 10.4028/www.scientific.net/SSP.160.63. DOI

Corrosion of Metals and Alloys—Removal of Corrosion Products from Corrosion Test Specimens. ISO; Geneva, Switzerland: 2009.

Fischer J., Pröfrock D., Hort N., Willumeit R., Feyerabend F. Reprint of: Improved cytotoxicity testing of magnesium materials. Mater. Sci. Eng. B. 2011;176:1773–1777. doi: 10.1016/j.mseb.2011.06.002. DOI

Minárik P., Drozdenko D., Zemková M., Veselý J., Čapek J., Bohlen J., Dobroň P. Advanced analysis of the deformation mechanisms in extruded magnesium alloys containing neodymium or yttrium. Mater. Sci. Eng. A. 2019;759:455–464. doi: 10.1016/j.msea.2019.05.069. DOI

Minárik P., Veselý J., Král R., Bohlen J., Kubásek J., Janeček M., Stráská J. Exceptional mechanical properties of ultra-fine grain Mg-4Y-3RE alloy processed by ECAP. Mater. Sci. Eng. A. 2017;708:193–198. doi: 10.1016/j.msea.2017.09.106. DOI

Shi Z., Cao F., Song G.-L., Liu M., Atrens A. Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg–RE alloys: RE = Ce, La, Nd, Y, Gd. Corros. Sci. 2013;76:98–118. doi: 10.1016/j.corsci.2013.06.032. DOI

Willbold E., Gu X., Albert D., Kalla K., Bobe K., Brauneis M., Janning C., Nellesen J., Czayka W., Tillmann W., et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater. 2015;11:554–562. doi: 10.1016/j.actbio.2014.09.041. PubMed DOI

Dobatkin S., Martynenko N., Anisimova N., Kiselevskiy M., Prosvirnin D., Terentiev V., Yurchenko N., Salishchev G., Estrin Y. Mechanical Properties, Biodegradation, and Biocompatibility of Ultrafine Grained Magnesium Alloy WE. Materials. 2019;12:3627. doi: 10.3390/ma12213627. PubMed DOI PMC

Mayama T., Noda M., Chiba R., Kuroda M. Crystal plasticity analysis of texture development in magnesium alloy during extrusion. Int. J. Plast. 2011;27:1916–1935. doi: 10.1016/j.ijplas.2011.02.007. DOI

Stanford N., Barnett M.R. The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng. A. 2008;496:399–408. doi: 10.1016/j.msea.2008.05.045. DOI

Bourezg Y.I., Azzeddine H., Abib K., Huang Y., Bradai D., Langdon T.G. Recrystallization in an Mg-Nd alloy processed by high-pressure torsion: A calorimetric analysis. J. Mater. Res. Technol. 2020;9:3047–3054. doi: 10.1016/j.jmrt.2020.01.035. DOI

Liu T., Wang Y., Wu S., Peng R.L., Huang C., Jiang C., Li S. Textures and mechanical behavior of Mg–3.3%Li alloy after ECAP. Scr. Mater. 2004;51:1057–1061. doi: 10.1016/j.scriptamat.2004.08.007. DOI

Minárik P., Král R., Čížek J., Chmelík F. Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP. Acta Mater. 2016;107:83–95. doi: 10.1016/j.actamat.2015.12.050. DOI

Minárik P., Král R., Pešička J., Daniš S., Janeček M. Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP. Mater. Charact. 2016;112:2. doi: 10.1016/j.matchar.2015.12.002. DOI

Minárik P., Zemková M., Veselý J., Bohlen J., Knapek M., Král R. The effect of Zr on dynamic recrystallization during ECAP processing of Mg-Y-RE alloys. Mater. Charact. 2021;174:111033. doi: 10.1016/j.matchar.2021.111033. DOI

Minárik P., Veselý J., Čížek J., Zemková M., Vlasák T., Krajňák T., Kubásek J., Král R., Hofman D., Stráská J. Effect of secondary phase particles on thermal stability of ultra-fine grained Mg-4Y-3RE alloy prepared by equal channel angular pressing. Mater. Charact. 2018;140:207–216. doi: 10.1016/j.matchar.2018.04.006. DOI

Kim K.-H., Jeon J.B., Kim N.J., Lee B.-J. Role of yttrium in activation of <c + a> slip in magnesium: An atomistic approach. Scr. Mater. 2015;108:104–108. doi: 10.1016/j.scriptamat.2015.06.028. DOI

Hadorn J.P., Hantzsche K., Yi S., Bohlen J., Letzig D., Wollmershauser J.A., Agnew S.R. Role of Solute in the Texture Modification During Hot Deformation of Mg-Rare Earth Alloys. Met. Mater. Trans. A. 2011;43:1347–1362. doi: 10.1007/s11661-011-0923-5. DOI

Hänzi A.C., Gerber I., Schinhammer M., Löffler J.F., Uggowitzer P.J. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater. 2010;6:1824–1833. doi: 10.1016/j.actbio.2009.10.008. PubMed DOI

Song D., Ma A., Jiang J., Lin P., Yang D., Fan J. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros. Sci. 2010;52:481–490. doi: 10.1016/j.corsci.2009.10.004. DOI

Mei D., Lamaka S.V., Lu X., Zheludkevich M.L. Selecting medium for corrosion testing of bioabsorbable magnesium and other metals—A critical review. Corros. Sci. 2020;171:108722. doi: 10.1016/j.corsci.2020.108722. DOI

Yamamoto A., Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Mater. Sci. Eng. C. 2009;29:1559–1568. doi: 10.1016/j.msec.2008.12.015. DOI

Minárik P., Jablonská E., Král R., Lipov J., Ruml T., Blawert C., Hadzima B., Chmelík F. Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy. Mater. Sci. Eng. C. 2017;73:736–742. doi: 10.1016/j.msec.2016.12.120. PubMed DOI

Birbilis N., Ralston K.D., Virtanen S., Fraser H.L., Davies C.H.J. Grain character influences on corrosion of ECAPed pure magnesium. Corros. Eng. Sci. Technol. 2010;45:224–230. doi: 10.1179/147842209X12559428167805. DOI

Zemková M., Král R., Čížek J., Šmilauerová J., Minárik P. Influence of heat treatment on corrosion resistance of Mg-Al-Zn alloy processed by severe plastic deformation. Open Eng. 2018;8:391–394. doi: 10.1515/eng-2018-0044. DOI

Son I.-J., Nakano H., Oue S., Kobayashi S., Fukushima H., Horita Z. Effect of Annealing on the Pitting Corrosion Resistance of Anodized Aluminum-Magnesium Alloy Processed by Severe Plastic Deformation. Mater. Trans. 2008;49:2656–2663. doi: 10.2320/matertrans.MRA2008230. DOI

Dvorsky D., Kubasek J., Jablonska E., Kaufmanova J., Vojtech D. Mechanical, corrosion and biological properties of advanced biodegradable Mg–MgF2 and WE43-MgF2 composite materials prepared by spark plasma sintering. J. Alloys Compd. 2020;825:154016. doi: 10.1016/j.jallcom.2020.154016. DOI

Dobatkin S.V., A Lukyanova E., Martynenko N.S., Anisimova N.Y., Kiselevskiy M.V., Gorshenkov M.V., Yurchenko N., I Raab G., Yusupov V.S., Birbilis N., et al. Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation. IOP Conf. Series Mater. Sci. Eng. 2017;194:12004. doi: 10.1088/1757-899X/194/1/012004. DOI

Stráská J., Minárik P., Šašek S., Veselý J., Bohlen J., Král R., Kubásek J. Texture Hardening Observed in Mg–Zn–Nd Alloy Processed by Equal-Channel Angular Pressing (ECAP) Metals. 2019;10:35. doi: 10.3390/met10010035. DOI

Kubásek J., Vojtěch D., Jablonská E., Pospíšilová I., Lipov J., Ruml T. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys. Mater. Sci. Eng. C. 2016;58:24–35. doi: 10.1016/j.msec.2015.08.015. PubMed DOI

Krištofová P., Roudnická M., Kubásek J., Paloušek D., Suchý J., Vojtěch D. Influence of Production Parameters on the Properties of 3D Printed Magnesium Alloy Mg-4Y-3RE-Zr (WE43) Manuf. Technol. 2019;19:613–618. doi: 10.21062/ujep/343.2019/a/1213-2489/MT/19/4/6013. DOI

Agnew S., Yoo M., Tomé C. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater. 2001;49:4277–4289. doi: 10.1016/S1359-6454(01)00297-X. DOI

Shen J., Gärtnerová V., Kecskes L.J., Kondoh K., Jäger A., Wei Q. Residual stress and its effect on the mechanical properties of Y-doped Mg alloy fabricated via back-pressure assisted equal channel angular pressing (ECAP-BP) Mater. Sci. Eng. A. 2016;669:110–117. doi: 10.1016/j.msea.2016.05.067. DOI

Peng Q., Huang Y., Zhou L., Hort N., Kainer K.U. Preparation and properties of high purity Mg–Y biomaterials. Biomaterials. 2010;31:398–403. doi: 10.1016/j.biomaterials.2009.09.065. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...