Concurrence of High Corrosion Resistance and Strength with Excellent Ductility in Ultrafine-Grained Mg-3Y Alloy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-08-0015A
Ministry of health of the Czech Republic
GA19-00270S
Czech Science Foundation
389422
Charles University Grant Agency
313011AFG4
Ministry of Transport and Construction of the Slovak Republic
PubMed
36363162
PubMed Central
PMC9657410
DOI
10.3390/ma15217571
PII: ma15217571
Knihovny.cz E-zdroje
- Klíčová slova
- corrosion rate, magnesium, mechanical properties, ultrafine-grain microstructure, yttrium,
- Publikační typ
- časopisecké články MeSH
In the field of magnesium-based degradable implantable devices, the Mg-Y-RE-Zr alloying system (WE-type) has gained popularity due to its satisfying degradation rate together with mechanical strength. However, utilization of RE and Zr in the WE-type alloys was originally driven to improve Mg-based alloys for high-temperature applications in the industry, while for medical purposes, there is a question of whether the amount of alloying elements may be further optimized. For this reason, our paper presents the Mg-3Y (W3) magnesium alloy as an alternative to the WE43 alloy. This study shows that the omission of RE and Zr elements did not compromise the corrosion resistance and the degradation rate of the W3 alloy when compared with the WE43 alloy; appropriate biocompatibility was preserved as well. It was shown that the decrease in the mechanical strength caused by the omission of RE and Zr from the WE43 alloy could be compensated for by severe plastic deformation, as achieved in this study, by equal channel angular pressing. Ultrafine-grained W3 alloy exhibited compression yield strength of 362 ± 6 MPa and plastic deformation at maximum stress of 18 ± 1%. Overall, the early results of this study put forward the motion of avoiding RE elements and Zr in magnesium alloy as a suitable material for biodegradable applications and showed that solo alloying of yttrium is sufficient for maintaining desirable properties of the material at once.
2nd Faculty of Medicine Charles University 5 Úvalu 84 150 06 Praha Czech Republic
Faculty of Mathematics and Physics Charles University Ke Karlovu 5 121 16 Praha Czech Republic
Research Centre University of Žilina Univerzitná 8215 1 01026 Žilina Slovakia
Zobrazit více v PubMed
Williams D. New interests in magnesium. Med. Device Technol. 2006;17:9–10. PubMed
Erinc M., Sillekens W.H., Mannens R.G.T.M., Werkhoven R.J. Applicability of Existing Magnesium Alloys as Biomedical Implant Materials. 2009. [(accessed on 19 February 2009)]. pp. 209–214. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-67549135858&partnerID=40&md5=aed01891b5febf06388c95c196b66cc8.
Gu X., Zheng Y., Cheng Y., Zhong S., Xi T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30:484–498. doi: 10.1016/j.biomaterials.2008.10.021. PubMed DOI
Castellani C., Lindtner R.A., Hausbrandt P., Tschegg E., Stanzl-Tschegg S.E., Zanoni G., Beck S., Weinberg A.-M. Bone–implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control. Acta Biomater. 2011;7:432–440. doi: 10.1016/j.actbio.2010.08.020. PubMed DOI
Avedesian M.M., Baker H. ASM Specialty Handbook: Magnesium and Magnesium Alloys. ASM International; Almere, The Netherlands: 1999.
Xue D., Yun Y., Tan Z., Dong Z., Schulz M.J. In Vivo and In Vitro Degradation Behavior of Magnesium Alloys as Biomaterials. J. Mater. Sci. Technol. 2012;28:261–267. doi: 10.1016/S1005-0302(12)60051-6. DOI
Wang H., Estrin Y., Zúberová Z. Bio-corrosion of a magnesium alloy with different processing histories. Mater. Lett. 2008;62:2476–2479. doi: 10.1016/j.matlet.2007.12.052. DOI
Jia R., Zhang M., Zhang L., Zhang W., Guo F. Correlative change of corrosion behavior with the microstructure of AZ91 Mg alloy modified with Y additions. J. Alloys Compd. 2015;634:263–271. doi: 10.1016/j.jallcom.2015.02.019. DOI
Xin Y., Hu T., Chu P.K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review. Acta Biomater. 2011;7:1452–1459. doi: 10.1016/j.actbio.2010.12.004. PubMed DOI
Kirkland N., Lespagnol J., Birbilis N., Staiger M. A survey of bio-corrosion rates of magnesium alloys. Corros. Sci. 2010;52:287–291. doi: 10.1016/j.corsci.2009.09.033. DOI
Xu L., Zhang E., Yin D., Zeng S., Yang K. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. J. Mater. Sci. Mater. Med. 2007;19:1017–1025. doi: 10.1007/s10856-007-3219-y. PubMed DOI
Davenport A.J., Padovani C., Connolly B.J., Stevens N.P.C., Beale T.A.W., Groso A., Stampanoni M. Synchrotron X-ray Microtomography Study of the Role of Y in Corrosion of Magnesium Alloy WE. Electrochem. Solid-State Lett. 2007;10:C5–C8. doi: 10.1149/1.2400727. DOI
Hirano S., Suzuki K.T. Exposure, metabolism, and toxicity of rare earths and related compounds. Environ. Health Perspect. 1996;104:85–95. doi: 10.1289/ehp.96104s185. PubMed DOI PMC
Rim K.T., Koo K.H., Park J.S. Toxicological Evaluations of Rare Earths and Their Health Impacts to Workers: A Literature Review. Saf. Health Work. 2013;4:12–26. doi: 10.5491/SHAW.2013.4.1.12. PubMed DOI PMC
Gandel D., Easton M., Gibson M., Birbilis N. Influence of Mn and Zr on the Corrosion of Al-Free Mg Alloys: Part 2—Impact of Mn and Zr on Mg Alloy Electrochemistry and Corrosion. Corrosion. 2013;69:744–751. doi: 10.5006/0828. DOI
Yao H., Li Y., Wee A. Passivity behavior of melt-spun Mg–Y Alloys. Electrochim. Acta. 2003;48:4197–4204. doi: 10.1016/S0013-4686(03)00605-4. DOI
Hanzi A., Gunde P., Schinhammer M., Uggowitzer P. On the biodegradation performance of an Mg–Y–RE alloy with various surface conditions in simulated body fluid. Acta Biomater. 2009;5:162–171. doi: 10.1016/j.actbio.2008.07.034. PubMed DOI
Liu M., Schmutz P., Uggowitzer P.J., Song G., Atrens A. The influence of yttrium (Y) on the corrosion of Mg–Y binary alloys. Corros. Sci. 2010;52:3687–3701. doi: 10.1016/j.corsci.2010.07.019. DOI
Liu J., Bian D., Zheng Y., Chu X., Lin Y., Wang M., Lin Z., Li M., Zhang Y., Guan S. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems. Acta Biomater. 2019;102:508–528. doi: 10.1016/j.actbio.2019.11.013. PubMed DOI
StJohn D.H., Qian M., Easton M., Cao P., Hildebrand Z. Grain refinement of magnesium alloys. Met. Mater. Trans. A. 2005;36:1669–1679. doi: 10.1007/s11661-005-0030-6. DOI
Zhou L., Liu Y., Zhang J., Kang Z. Microstructure and mechanical properties of equal channel angular pressed Mg–Y–RE–Zr alloy. Mater. Sci. Technol. 2016;32:969–975. doi: 10.1080/02670836.2015.1104021. DOI
Minárik P., Král R., Janeček M. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys. Appl. Surf. Sci. 2013;281:44–48. doi: 10.1016/j.apsusc.2012.12.096. DOI
Janeček M., Popov M., Krieger M., Hellmig R., Estrin Y. Mechanical properties and microstructure of a Mg alloy AZ31 prepared by equal-channel angular pressing. Mater. Sci. Eng. A. 2007;462:116–120. doi: 10.1016/j.msea.2006.01.174. DOI
Bachmann F., Hielscher R., Schaeben H. Texture Analysis with MTEX—Free and Open Source Software Toolbox. Solid State Phenom. 2010;160:63–68. doi: 10.4028/www.scientific.net/SSP.160.63. DOI
Corrosion of Metals and Alloys—Removal of Corrosion Products from Corrosion Test Specimens. ISO; Geneva, Switzerland: 2009.
Fischer J., Pröfrock D., Hort N., Willumeit R., Feyerabend F. Reprint of: Improved cytotoxicity testing of magnesium materials. Mater. Sci. Eng. B. 2011;176:1773–1777. doi: 10.1016/j.mseb.2011.06.002. DOI
Minárik P., Drozdenko D., Zemková M., Veselý J., Čapek J., Bohlen J., Dobroň P. Advanced analysis of the deformation mechanisms in extruded magnesium alloys containing neodymium or yttrium. Mater. Sci. Eng. A. 2019;759:455–464. doi: 10.1016/j.msea.2019.05.069. DOI
Minárik P., Veselý J., Král R., Bohlen J., Kubásek J., Janeček M., Stráská J. Exceptional mechanical properties of ultra-fine grain Mg-4Y-3RE alloy processed by ECAP. Mater. Sci. Eng. A. 2017;708:193–198. doi: 10.1016/j.msea.2017.09.106. DOI
Shi Z., Cao F., Song G.-L., Liu M., Atrens A. Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg–RE alloys: RE = Ce, La, Nd, Y, Gd. Corros. Sci. 2013;76:98–118. doi: 10.1016/j.corsci.2013.06.032. DOI
Willbold E., Gu X., Albert D., Kalla K., Bobe K., Brauneis M., Janning C., Nellesen J., Czayka W., Tillmann W., et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater. 2015;11:554–562. doi: 10.1016/j.actbio.2014.09.041. PubMed DOI
Dobatkin S., Martynenko N., Anisimova N., Kiselevskiy M., Prosvirnin D., Terentiev V., Yurchenko N., Salishchev G., Estrin Y. Mechanical Properties, Biodegradation, and Biocompatibility of Ultrafine Grained Magnesium Alloy WE. Materials. 2019;12:3627. doi: 10.3390/ma12213627. PubMed DOI PMC
Mayama T., Noda M., Chiba R., Kuroda M. Crystal plasticity analysis of texture development in magnesium alloy during extrusion. Int. J. Plast. 2011;27:1916–1935. doi: 10.1016/j.ijplas.2011.02.007. DOI
Stanford N., Barnett M.R. The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng. A. 2008;496:399–408. doi: 10.1016/j.msea.2008.05.045. DOI
Bourezg Y.I., Azzeddine H., Abib K., Huang Y., Bradai D., Langdon T.G. Recrystallization in an Mg-Nd alloy processed by high-pressure torsion: A calorimetric analysis. J. Mater. Res. Technol. 2020;9:3047–3054. doi: 10.1016/j.jmrt.2020.01.035. DOI
Liu T., Wang Y., Wu S., Peng R.L., Huang C., Jiang C., Li S. Textures and mechanical behavior of Mg–3.3%Li alloy after ECAP. Scr. Mater. 2004;51:1057–1061. doi: 10.1016/j.scriptamat.2004.08.007. DOI
Minárik P., Král R., Čížek J., Chmelík F. Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP. Acta Mater. 2016;107:83–95. doi: 10.1016/j.actamat.2015.12.050. DOI
Minárik P., Král R., Pešička J., Daniš S., Janeček M. Microstructure characterization of LAE442 magnesium alloy processed by extrusion and ECAP. Mater. Charact. 2016;112:2. doi: 10.1016/j.matchar.2015.12.002. DOI
Minárik P., Zemková M., Veselý J., Bohlen J., Knapek M., Král R. The effect of Zr on dynamic recrystallization during ECAP processing of Mg-Y-RE alloys. Mater. Charact. 2021;174:111033. doi: 10.1016/j.matchar.2021.111033. DOI
Minárik P., Veselý J., Čížek J., Zemková M., Vlasák T., Krajňák T., Kubásek J., Král R., Hofman D., Stráská J. Effect of secondary phase particles on thermal stability of ultra-fine grained Mg-4Y-3RE alloy prepared by equal channel angular pressing. Mater. Charact. 2018;140:207–216. doi: 10.1016/j.matchar.2018.04.006. DOI
Kim K.-H., Jeon J.B., Kim N.J., Lee B.-J. Role of yttrium in activation of <c + a> slip in magnesium: An atomistic approach. Scr. Mater. 2015;108:104–108. doi: 10.1016/j.scriptamat.2015.06.028. DOI
Hadorn J.P., Hantzsche K., Yi S., Bohlen J., Letzig D., Wollmershauser J.A., Agnew S.R. Role of Solute in the Texture Modification During Hot Deformation of Mg-Rare Earth Alloys. Met. Mater. Trans. A. 2011;43:1347–1362. doi: 10.1007/s11661-011-0923-5. DOI
Hänzi A.C., Gerber I., Schinhammer M., Löffler J.F., Uggowitzer P.J. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater. 2010;6:1824–1833. doi: 10.1016/j.actbio.2009.10.008. PubMed DOI
Song D., Ma A., Jiang J., Lin P., Yang D., Fan J. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros. Sci. 2010;52:481–490. doi: 10.1016/j.corsci.2009.10.004. DOI
Mei D., Lamaka S.V., Lu X., Zheludkevich M.L. Selecting medium for corrosion testing of bioabsorbable magnesium and other metals—A critical review. Corros. Sci. 2020;171:108722. doi: 10.1016/j.corsci.2020.108722. DOI
Yamamoto A., Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Mater. Sci. Eng. C. 2009;29:1559–1568. doi: 10.1016/j.msec.2008.12.015. DOI
Minárik P., Jablonská E., Král R., Lipov J., Ruml T., Blawert C., Hadzima B., Chmelík F. Effect of equal channel angular pressing on in vitro degradation of LAE442 magnesium alloy. Mater. Sci. Eng. C. 2017;73:736–742. doi: 10.1016/j.msec.2016.12.120. PubMed DOI
Birbilis N., Ralston K.D., Virtanen S., Fraser H.L., Davies C.H.J. Grain character influences on corrosion of ECAPed pure magnesium. Corros. Eng. Sci. Technol. 2010;45:224–230. doi: 10.1179/147842209X12559428167805. DOI
Zemková M., Král R., Čížek J., Šmilauerová J., Minárik P. Influence of heat treatment on corrosion resistance of Mg-Al-Zn alloy processed by severe plastic deformation. Open Eng. 2018;8:391–394. doi: 10.1515/eng-2018-0044. DOI
Son I.-J., Nakano H., Oue S., Kobayashi S., Fukushima H., Horita Z. Effect of Annealing on the Pitting Corrosion Resistance of Anodized Aluminum-Magnesium Alloy Processed by Severe Plastic Deformation. Mater. Trans. 2008;49:2656–2663. doi: 10.2320/matertrans.MRA2008230. DOI
Dvorsky D., Kubasek J., Jablonska E., Kaufmanova J., Vojtech D. Mechanical, corrosion and biological properties of advanced biodegradable Mg–MgF2 and WE43-MgF2 composite materials prepared by spark plasma sintering. J. Alloys Compd. 2020;825:154016. doi: 10.1016/j.jallcom.2020.154016. DOI
Dobatkin S.V., A Lukyanova E., Martynenko N.S., Anisimova N.Y., Kiselevskiy M.V., Gorshenkov M.V., Yurchenko N., I Raab G., Yusupov V.S., Birbilis N., et al. Strength, corrosion resistance, and biocompatibility of ultrafine-grained Mg alloys after different modes of severe plastic deformation. IOP Conf. Series Mater. Sci. Eng. 2017;194:12004. doi: 10.1088/1757-899X/194/1/012004. DOI
Stráská J., Minárik P., Šašek S., Veselý J., Bohlen J., Král R., Kubásek J. Texture Hardening Observed in Mg–Zn–Nd Alloy Processed by Equal-Channel Angular Pressing (ECAP) Metals. 2019;10:35. doi: 10.3390/met10010035. DOI
Kubásek J., Vojtěch D., Jablonská E., Pospíšilová I., Lipov J., Ruml T. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys. Mater. Sci. Eng. C. 2016;58:24–35. doi: 10.1016/j.msec.2015.08.015. PubMed DOI
Krištofová P., Roudnická M., Kubásek J., Paloušek D., Suchý J., Vojtěch D. Influence of Production Parameters on the Properties of 3D Printed Magnesium Alloy Mg-4Y-3RE-Zr (WE43) Manuf. Technol. 2019;19:613–618. doi: 10.21062/ujep/343.2019/a/1213-2489/MT/19/4/6013. DOI
Agnew S., Yoo M., Tomé C. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater. 2001;49:4277–4289. doi: 10.1016/S1359-6454(01)00297-X. DOI
Shen J., Gärtnerová V., Kecskes L.J., Kondoh K., Jäger A., Wei Q. Residual stress and its effect on the mechanical properties of Y-doped Mg alloy fabricated via back-pressure assisted equal channel angular pressing (ECAP-BP) Mater. Sci. Eng. A. 2016;669:110–117. doi: 10.1016/j.msea.2016.05.067. DOI
Peng Q., Huang Y., Zhou L., Hort N., Kainer K.U. Preparation and properties of high purity Mg–Y biomaterials. Biomaterials. 2010;31:398–403. doi: 10.1016/j.biomaterials.2009.09.065. PubMed DOI