Acute effects of phenylbutyrate on glutamine, branched-chain amino acid and protein metabolism in skeletal muscles of rats
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28621016
PubMed Central
PMC5573773
DOI
10.1111/iep.12231
Knihovny.cz E-zdroje
- Klíčová slova
- Phenylbutyrate, branched-chain amino acids, glutamine, leucine, maple syrup urine disease, muscle protein,
- MeSH
- fenylbutyráty farmakologie MeSH
- glutamin metabolismus MeSH
- kosterní svaly účinky léků metabolismus MeSH
- leucin metabolismus MeSH
- oxidace-redukce účinky léků MeSH
- potkani Wistar MeSH
- proteosyntéza účinky léků MeSH
- svalové proteiny metabolismus MeSH
- techniky tkáňových kultur MeSH
- větvené aminokyseliny metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fenylbutyráty MeSH
- glutamin MeSH
- leucin MeSH
- svalové proteiny MeSH
- větvené aminokyseliny MeSH
Phenylbutyrate (PB) acts as chemical chaperone and histone deacetylase inhibitor, which is used to decrease ammonia in urea cycle disorders and has been investigated for use in the treatment of a number of lethal illnesses. We performed in vivo and in vitro experiments to examine the effects of PB on glutamine (GLN), branched-chain amino acid (BCAA; valine, leucine and isoleucine) and protein metabolism in rats. In the first study, animals were sacrificed one hour after three injections of PB (300mg/kg b.w.) or saline. In the second study, soleus (SOL, slow twitch) and extensor digitorum longus (EDL, fast twitch) muscles were incubated in a medium with or without PB (5 mM). L-[1-14 C] leucine was used to estimate protein synthesis and leucine oxidation, and 3-methylhistidine release was used to evaluate myofibrillar protein breakdown. PB treatment decreased GLN, BCAA and branched-chain keto acids (BCKAs) in blood plasma, decreased BCAA and increased GLN concentrations in muscles, and increased GLN synthetase activities in muscles. Addition of PB to incubation medium increased leucine oxidation (55% in EDL, 29% in SOL), decreased BCKA and increased GLN in medium of both muscles, increased GLN in muscles, decreased protein synthesis in SOL and increased proteolysis in EDL. It is concluded that PB decreases BCAA, BCKA and GLN in blood plasma, activates BCAA catabolism and GLN synthesis in muscle and exerts adverse effects on protein metabolism. The results indicate that BCAA and GLN supplementation is needed when PB is used therapeutically and that PB may be a useful prospective agent which could be effective in management of maple syrup urine disease.
Department of Biochemistry Faculty of Medicine Charles University Hradec Kralove Czech Republic
Department of Physiology Faculty of Medicine Charles University Hradec Kralove Czech Republic
Zobrazit více v PubMed
Bergström J., Fürst P., Norée L.O. et al (1974) Intracellular free amino acid concentration in human muscle tissue. J. Appl. Physiol. 36, 693–697. PubMed
Brunetti‐Pierri N., Lanpher B., Erez A. et al (2011) Phenylbutyrate therapy for maple syrup urine disease. Hum. Mol. Genet. 20, 631–640. PubMed PMC
Buchman A.L. (1999) Glutamine for the gut: mystical properties or an ordinary amino acid? Curr. Gastroenterol. Rep. 1, 417–423. PubMed
Carducci M.A., Nelson J.B., Chan‐Tack K.M. et al (1996) Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetate. Clin. Cancer Res. 2, 379–387. PubMed
Davies N.A., Wright G., Ytrebø L.M. et al (2009) L‐ornithine and phenylacetate synergistically produce sustained reduction in ammonia and brain water in cirrhotic rats. Hepatology 50, 155–164. PubMed
Exner R., Weingartmann G., Eliasen M.M. et al (2002) Glutamine deficiency renders human monocytic cells more susceptible to specific apoptosis triggers. Surgery 131, 75–80. PubMed
Graham J.A., Lamb J.F. & Linton A.L. (1967) Measurement of body water and intracellular electrolytes by means of muscle biopsy. Lancet 2, 1172–1176. PubMed
Hardy G. & Hardy I.J. (2008) Can glutamine enable the critically ill to cope better with infection? JPEN J. Parenter. Enteral Nutr. 32, 489–491. PubMed
Holecek M. (2001) The BCAA‐BCKA cycle: its relation to alanine and glutamine synthesis and protein balance. Nutrition 17, 70. PubMed
Holecek M. (2011) Branched‐chain amino acid oxidation in skeletal muscle ‐ physiological and clinical importance of its modulation by reactant availability. Curr Nutr Food Sci 7, 50–56.
Holecek M. & Sispera L. (2014) Glutamine deficiency in extracellular fluid exerts adverse effects on protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats. Amino Acids 46, 1377–1384. PubMed
Holecek M. & Vodenicarovova M. (2016) Phenylbutyrate exerts adverse effects on liver regeneration and amino acid concentrations in partially hepatectomized rats. Int. J. Exp. Pathol. 97, 278–284. PubMed PMC
Holecek M., Sprongl L., Skopec F. et al (1997) Leucine metabolism in TNF‐alpha‐ and endotoxin‐treated rats: contribution of hepatic tissue. Am. J. Physiol. 273, E1052–E1058. PubMed
Holecek M., Sprongl L., Tichy M. et al (1998) Leucine metabolism in rat liver after a bolus injection of endotoxin. Metabolism 47, 681–685. PubMed
Holecek M., Sispera L. & Skalska H. (2015) Enhanced glutamine availability exerts different effects on protein and amino acid metabolism in skeletal muscle from healthy and septic rats. JPEN J. Parenter. Enteral Nutr. 39, 847–854. PubMed
Iannitti T. & Palmieri B. (2011) Clinical and experimental applications of sodium phenylbutyrate. Drugs R D 11, 227–249. PubMed PMC
Kadlcikova J., Holecek M., Safranek R. et al (2004) Effects of proteasome inhibitors MG132, ZL3VS and AdaAhx3L3VS on protein metabolism in septic rats. Int. J. Exp. Pathol. 85, 365–371. PubMed PMC
Kimball S.R. & Jefferson L.S. (2001) Regulation of protein synthesis by branched‐chain amino acids. Curr. Opin. Clin. Nutr. Metab. Care 4, 39–43. PubMed
Lowry O.H., Rosebrough N.J., Farr A.L. et al (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275. PubMed
Maizels E.Z., Ruderman N.B., Goodman M.N. et al (1977) Effect of acetoacetate on glucose metabolism in the soleus and extensor digitorum longus muscles of the rat. Biochem. J. 162, 557–568. PubMed PMC
Minet R., Villie F., Marcollet M. et al (1997) Measurement of glutamine synthetase activity in rat muscle by a colorimetric assay. Clin. Chim. Acta 268, 121–132. PubMed
Mokhtarani M., Diaz G.A., Rhead W. et al (2013) Elevated phenylacetic acid levels do not correlate with adverse events in patients with urea cycle disorders or hepatic encephalopathy and can be predicted based on the plasma PAA to PAGN ratio. Mol. Genet. Metab. 110, 446–453. PubMed PMC
Muthny T., Kovarik M., Sispera L. et al (2008) Protein metabolism in slow‐ and fast‐twitch muscle during turpentine‐induce inflammation. Int. J. Exp. Pathol. 89, 64–71. PubMed PMC
Muthny T., Kovarik M., Sispera L. et al (2009) The effect of new proteasome inhibitors, belactosin A and C, on protein metabolism in isolated rat skeletal muscle. J. Physiol. Biochem. 65, 137–146. PubMed
Nair K.S. & Short K.R. (2005) Hormonal and signaling role of branched‐chain amino acids. J. Nutr. 135, 1547S–1552S. PubMed
O'Donnel T.F., Clowes G.H., Blackburn G.L. et al (1976) Proteolysis associated with a deficit of peripheral energy fuel substrates in septic man. Surgery 80, 192–200. PubMed
Perrine S.P., Wargin W.A., Boosalis M.S. et al (2011) Evaluation of safety and pharmacokinetics of sodium 2,2 dimethylbutyrate, a novel short chain fatty acid derivative, in a phase 1, double‐blind, placebo‐controlled, single‐dose, and repeat‐dose studies in healthy volunteers. J. Clin. Pharmacol. 51, 1186–1194. PubMed PMC
Safranek R., Holecek M., Kadlcikova J. et al (2003a) Method of measurement of protein metabolism in isolated skeletal muscle of the rat. Acta Medica. (Hradec Kralove) Suppl. 46, 33–37. PubMed
Safranek R., Holecek M., Kadlcikova J. et al (2003b) Effect of acute acidosis on protein and amino acid metabolism in rats. Clin. Nutr. 22, 437–443. PubMed
Stadtman E.R. (2001) The story of glutamine synthetase regulation. J. Biol. Chem. 276, 44357–44364. PubMed
Tischler M.E., Desautels M. & Goldberg A.L. (1982) Does leucine, leucyl‐tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J. Biol. Chem. 257, 1613–1621. PubMed
Walser M. (1984) Therapeutic aspects of branched‐chain amino and keto acids. Clin. Sci. (Lond.) 66, 1–15. PubMed