Effects of proteasome inhibitors MG132, ZL3VS and AdaAhx3L3VS on protein metabolism in septic rats
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
15566433
PubMed Central
PMC2517538
DOI
10.1111/j.0959-9673.2004.00405.x
PII: IEP405
Knihovny.cz E-zdroje
- MeSH
- inhibitory cysteinových proteinas farmakologie MeSH
- inhibitory proteasomu * MeSH
- játra účinky léků metabolismus MeSH
- kosterní svaly účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- ledviny účinky léků metabolismus MeSH
- leucin metabolismus MeSH
- leupeptiny farmakologie MeSH
- oligopeptidy farmakologie MeSH
- oxidace-redukce účinky léků MeSH
- potkani Wistar MeSH
- proteiny metabolismus MeSH
- sepse metabolismus MeSH
- slezina účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- benzyloxycarbonylleucyl-leucyl-leucine aldehyde MeSH Prohlížeč
- inhibitory cysteinových proteinas MeSH
- inhibitory proteasomu * MeSH
- leucin MeSH
- leupeptiny MeSH
- oligopeptidy MeSH
- proteiny MeSH
Proteasome inhibitors are novel therapeutic agents for the treatment of cancer and other severe disorders. One of the possible side effects is influencing the metabolism of proteins. The aim of our study was to evaluate the influence of three proteasome inhibitors MG132, ZL(3)VS and AdaAhx(3)L(3)VS on protein metabolism and leucine oxidation in incubated skeletal muscle of control and septic rats. Total proteolysis was determined according to the rates of tyrosine release into the medium during incubation. The rates of protein synthesis and leucine oxidation were measured in a medium containing L-[1-(14)C]leucine. Protein synthesis was determined as the amount of L-[1-(14)C]leucine incorporated into proteins, and leucine oxidation was evaluated according to the release of (14)CO(2) during incubation. Sepsis was induced in rats by means of caecal ligation and puncture. MG132 reduced proteolysis by more than 50% and protein synthesis by 10-20% in the muscles of healthy rats. In septic rats, proteasome inhibitors, except ZL(3)VS, decreased proteolysis in both soleus and extensor digitorum longus (EDL) muscles, although none of the inhibitors had any effect on protein synthesis. Leucine oxidation was increased by AdaAhx(3)L(3)VS in the septic EDL muscle and decreased by MG132 in intact EDL muscle. We conclude that MG132 and AdaAhx(3)L(3)VS reversed protein catabolism in septic rat muscles.
Zobrazit více v PubMed
Bailey JL, Wang X, England BK, Price SR, Ding X, Mitch WE. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin–proteasome pathway. J. Clin. Invest. 1996;97:1447–1453. PubMed PMC
Chai J, Wu Y, Sheng ZZ. Role of ubiquitin–proteasome pathway in skeletal muscle wasting in rats with endotoxemia. Crit. Care Med. 2003;31:1802–1807. PubMed
Davis NB, Taber DA, Ansari RH, et al. Phase II trial of PS-341 in patients with renal cell cancer: a University of Chicago phase II consortium study. J. Clin. Oncol. 2004;22:115–119. 10.1200/JCO.2004.07.165. PubMed DOI
Di Napoli M, Papa F. MLN-519. Millennium/PAION. Curr. Opin. Investig. Drugs. 2003;4:333–341. PubMed
Drexler HC. Programmed cell death and the proteasome. Apoptosis. 1998;3:1–7. 10.1023/A:1009604900979. PubMed DOI
Fang CH, Wang JJ, Hobler S, Li BG, Fischer JE, Hasselgren PO. Proteasome blockers inhibit protein breakdown in skeletal muscle after burn injury in rats. Clin. Sci. (Colch.) 1998;95:225–233. 10.1042/CS19980092. PubMed DOI
Fischer D, Gang G, Pritts T, Hasselgren PO. Sepsis-induced muscle proteolysis is prevented by a proteasome inhibitor in vivo. Biochem. Biophys. Res. Commun. 2000;270:215–221. 10.1006/bbrc.2000.2398. PubMed DOI
Glickman MH, Ciechanover A. The ubiquitin– proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 2002;82:373–428. PubMed
Hasselgren PO, James JH, Benson DW, et al. Total and myofibrillar protein breakdown in different types of rat skeletal muscle: effects of sepsis and regulation by insulin. Metabolism. 1989;38:634–640. 10.1016/0026-0495(89)90100-5. PubMed DOI
Hershko A, Ciechanover A, Varshavsky A. Basic Medical Research Award. The ubiquitin system. Nat. Med. 2000;6:1073–1081. 10.1038/80384. PubMed DOI
Hobler SC, Tiao G, Fischer JE, Monaco J, Hasselgren PO. Sepsis-induced increase in muscle proteolysis is blocked by specific proteasome inhibitors. Am. J. Physiol. 1998;274:R30–R37. PubMed
Holeček M. Leucine metabolism in fasted and tumor necrosis factor-treated rats. Clin. Nutr. 1996;15:91–93. PubMed
Holeček M, Šprongl L, Skopec F, Andrýs C, Pecka M. Leucine metabolism in TNF-alpha-and endotoxin-treated rats: contribution of hepatic tissue. Am. J. Physiol. 1997;273:E1052–E1058. PubMed
Kessler BM, Tortorella D, Altun M, et al. Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic beta-subunits. Chem. Biol. 2001;8:913–929. 10.1016/S1074-5521(01)00069-2. PubMed DOI
Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem. Biol. 2001;8:739–758. 10.1016/S1074-5521(01)00056-4. PubMed DOI
Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 1998;8:397–403. 10.1016/S0962-8924(98)01346-4. PubMed DOI
Lombardo YB, Thamotharan M, Bawani SZ, Paul HS, Adibi SA. Posttranscriptional alterations in protein masses of hepatic branched-chain keto acid dehydrogenase and its associated kinase in diabetes. Proc. Assoc. Am. Physicians. 1998;110:40–49. PubMed
Lowry OH, Rosebrough AL, Farr AL, Randal R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. PubMed
Mack PC, Davies AM, Lara PN, Gumerlock PH, Gandara DR. Integration of the proteasome inhibitor PS-341 (VELCADE) into the therapeutic approach to lung cancer. Lung Cancer. 2003;41:S89–S96. 10.1016/S0169-5002(03)00149-1. PubMed DOI
Mitch WE, Price SR. Mechanisms activating proteolysis to cause muscle atrophy in catabolic conditions. J. Ren. Nutr. 2003;13:149–152. 10.1053/jren.2003.50019. PubMed DOI
Nawabi MD, Block KP, Chakrabarti MC, Buse MG. Administration of endotoxin, tumor necrosis factor, or interleukin 1 to rats activates skeletal muscle branched-chain alpha-keto acid dehydrogenase. J. Clin. Invest. 1990;85:256–263. PubMed PMC
Pedersen PV, Warner BW, Bjornson HS, et al. Hemodynamic and metabolic alterations during experimental sepsis in young and adult rats. Surg. Gynecol. Obstet. 1989;168:148–156. PubMed
Richardson PG, Hideshima T, Anderson KC. Bortezomib (PS-341): a novel, first-in-class proteasome inhibitor for the treatment of multiple myeloma and other cancers. Cancer Control. 2003;10:361–369. PubMed
Šafránek R, Holeček M, Kadlcíková J, et al. Effect of acute acidosis on protein and amino acid metabolism in rats. Clin. Nutr. 2003;22:437–443. 10.1016/S0261-5614(03)00041-4. PubMed DOI
Tawa NE, Jr, Odessey R, Goldberg AL. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles. J. Clin. Invest. 1997;100:197–203. PubMed PMC
Tiao G, Fagan JM, Samuels N, et al. Sepsis stimulates non-lysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle. J. Clin. Invest. 1994;94:2255–2264. PubMed PMC
Tiao G, Lieberman M, Fischer JE, Hasselgren PO. Intracellular regulation of protein degradation during sepsis is different in fast-and slow-twitch muscle. Am. J. Physiol. 1997;272:R849–R856. PubMed
Tsujinaka T, Homma T, Ebisui C, et al. Modulation of muscle protein metabolism in disseminated intravascular coagulation. Eur. Surg. Res. 1995;27:227–233. PubMed
Waalkes TP, Udenfriend S. A fluorometric method for the estimation of tyrosine in plasma and tissues. J. Lab. Clin. Med. 1957;50:733–736. PubMed
Zamir O, Hasselgren PO, Frederick JA, Fischer JE. Is the metabolic response to sepsis in skeletal muscle different in infants and adults? An experimental study in rats. J. Pediatr. Surg. 1992;27:1399–1403. 10.1016/0022-3468(92)90185-A. PubMed DOI
Effects of branched-chain amino acids on muscles under hyperammonemic conditions
Muscle wasting in animal models of severe illness
Protein metabolism in slow- and fast-twitch skeletal muscle during turpentine-induced inflammation