Origin and Roles of Alanine and Glutamine in Gluconeogenesis in the Liver, Kidneys, and Small Intestine under Physiological and Pathological Conditions

. 2024 Jun 27 ; 25 (13) : . [epub] 20240627

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39000145

Alanine and glutamine are the principal glucogenic amino acids. Most originate from muscles, where branched-chain amino acids (valine, leucine, and isoleucine) are nitrogen donors and, under exceptional circumstances, a source of carbons for glutamate synthesis. Glutamate is a nitrogen source for alanine synthesis from pyruvate and a substrate for glutamine synthesis by glutamine synthetase. The following differences between alanine and glutamine, which can play a role in their use in gluconeogenesis, are shown: (i) glutamine appearance in circulation is higher than that of alanine; (ii) the conversion to oxaloacetate, the starting substance for glucose synthesis, is an ATP-consuming reaction for alanine, which is energetically beneficial for glutamine; (iii) most alanine carbons, but not glutamine carbons, originate from glucose; and (iv) glutamine acts a substrate for gluconeogenesis in the liver, kidneys, and intestine, whereas alanine does so only in the liver. Alanine plays a significant role during early starvation, exposure to high-fat and high-protein diets, and diabetes. Glutamine plays a dominant role in gluconeogenesis in prolonged starvation, acidosis, liver cirrhosis, and severe illnesses like sepsis and acts as a substrate for alanine synthesis in the small intestine. Interactions among muscles and the liver, kidneys, and intestine ensuring optimal alanine and glutamine supply for gluconeogenesis are suggested.

Zobrazit více v PubMed

Wu X., Chen S. Advances in natural small molecules on pretranslational regulation of gluconeogenesis. Drug Dev. Res. 2023;84:613–628. doi: 10.1002/ddr.22053. PubMed DOI

Oh K.J., Han H.S., Kim M.J., Koo S.H. Transcriptional regulators of hepatic gluconeogenesis. Arch. Pharm. Res. 2013;36:189–200. doi: 10.1007/s12272-013-0018-5. PubMed DOI

Sahoo B., Srivastava M., Katiyar A., Ecelbarger C., Tiwari S. Liver or kidney: Who has the oar in the gluconeogenesis boat and when? World J. Diabetes. 2023;14:1049–1056. doi: 10.4239/wjd.v14.i7.1049. PubMed DOI PMC

Mutel E., Gautier-Stein A., Abdul-Wahed A., Amigó-Correig M., Zitoun C., Stefanutti A., Houberdon I., Tourette J.A., Mithieux G., Rajas F. Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice: Induction of renal and intestinal gluconeogenesis by glucagon. Diabetes. 2011;60:3121–3131. doi: 10.2337/db11-0571. PubMed DOI PMC

Felig P., Owen O.E., Wahren J., Cahill G.F., Jr. Amino acid metabolism during prolonged starvation. J. Clin. Investig. 1969;48:584–594. doi: 10.1172/JCI106017. PubMed DOI PMC

Felig P. The glucose-alanine cycle. Metabolism. 1973;22:179–207. doi: 10.1016/0026-0495(73)90269-2. PubMed DOI

Gerich J.E., Meyer C., Woerle H.J., Stumvoll M. Renal gluconeogenesis: Its importance in human glucose homeostasis. Diabetes Care. 2001;24:382–391. doi: 10.2337/diacare.24.2.382. PubMed DOI

Stumvoll M., Meyer C., Kreider M., Perriello G., Gerich J. Effects of glucagon on renal and hepatic glutamine gluconeogenesis in normal postabsorptive humans. Metabolism. 1998;47:1227–1232. doi: 10.1016/S0026-0495(98)90328-6. PubMed DOI

Mitrakou A. Kidney: Its impact on glucose homeostasis and hormonal regulation. Diabetes Res. Clin. Pract. 2011;93:S66–S72. doi: 10.1016/S0168-8227(11)70016-X. PubMed DOI

Legouis D., Faivre A., Cippà P.E., de Seigneux S. Renal gluconeogenesis: An underestimated role of the kidney in systemic glucose metabolism. Nephrol. Dial. Transplant. 2022;37:1417–1425. doi: 10.1093/ndt/gfaa302. PubMed DOI

Perriello G., Jorde R., Nurjhan N., Stumvoll M., Dailey G., Jenssen T., Bier D.M., Gerich J.E. Estimation of glucose-alanine-lactate-glutamine cycles in postabsorptive humans: Role of skeletal muscle. Am. J. Physiol. 1995;269:E443–E450. doi: 10.1152/ajpendo.1995.269.3.E443. PubMed DOI

Waterhouse C., Keilson J. The contribution of glucose to alanine metabolism in man. J. Lab. Clin. Med. 1978;92:803–812. PubMed

Nurjhan N., Bucci A., Perriello G., Stumvoll M., Dailey G., Bier D.M., Toft I., Jenssen T.G., Gerich J.E. Glutamine: A major gluconeogenic precursor and vehicle for interorgan carbon transport in man. J. Clin. Investig. 1995;95:272–277. doi: 10.1172/JCI117651. PubMed DOI PMC

Mithieux G., Gautier-Stein A. Intestinal glucose metabolism revisited. Diabetes Res. Clin. Pract. 2014;105:295–301. doi: 10.1016/j.diabres.2014.04.008. PubMed DOI

Rajas F., Bruni N., Montano S., Zitoun C., Mithieux G. The glucose-6 phosphatase gene is expressed in human and rat small intestine: Regulation of expression in fasted and diabetic rats. Gastroenterology. 1999;117:132–139. doi: 10.1016/S0016-5085(99)70559-7. PubMed DOI

Darmaun D., Matthews D.E., Bier D.M. Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production. Am. J. Physiol. 1988;255:E366–E373. doi: 10.1152/ajpendo.1988.255.3.E366. PubMed DOI

Harper A.E., Miller R.H., Block K.P. Branched-chain amino acid metabolism. Annu. Rev. Nutr. 1984;4:409–454. doi: 10.1146/annurev.nu.04.070184.002205. PubMed DOI

Skeie B., Kvetan V., Gil K.M., Rothkopf M.M., Newsholme E.A., Askanazi J. Branch-chain amino acids: Their metabolism and clinical utility. Crit. Care Med. 1990;18:549–571. doi: 10.1097/00003246-199005000-00019. PubMed DOI

Haymond M.W., Miles J.M. Branched chain amino acids as a major source of alanine nitrogen in man. Diabetes. 1982;31:86–89. doi: 10.2337/diab.31.1.86. PubMed DOI

Galim E.B., Hruska K., Bier D.M., Matthews D.E., Haymond M.W. Branched-chain amino acid nitrogen transfer to alanine in vivo in dogs. Direct isotopic determination with [15N]leucine. J. Clin. Investig. 1980;66:1295–1304. doi: 10.1172/JCI109981. PubMed DOI PMC

Vozza A., Parisi G., De Leonardis F., Lasorsa F.M., Castegna A., Amorese D., Marmo R., Calcagnile V.M., Palmieri L., Ricquier D., et al. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc. Natl. Acad. Sci. USA. 2014;111:960–965. doi: 10.1073/pnas.1317400111. PubMed DOI PMC

Monné M., Vozza A., Lasorsa F.M., Porcelli V., Palmieri F. Mitochondrial carriers for aspartate, glutamate and other amino acids: A review. Int. J. Mol. Sci. 2019;20:4456. doi: 10.3390/ijms20184456. PubMed DOI PMC

Tornheim K., Lowenstein J.M. The purine nucleotide cycle. The production of ammonia from aspartate by extracts of rat skeletal muscle. J. Biol. Chem. 1972;247:162–169. doi: 10.1016/S0021-9258(19)45770-0. PubMed DOI

Bröer S. Amino acid transporters as modulators of glucose homeostasis. Trends Endocrinol. Metab. 2022;33:120–135. doi: 10.1016/j.tem.2021.11.004. PubMed DOI

Chang T.W., Goldberg A.L. The metabolic fates of amino acids and the formation of glutamine in skeletal muscle. J. Biol. Chem. 1978;253:3685–3693. doi: 10.1016/S0021-9258(17)34855-X. PubMed DOI

Wagenmakers A.J., Salden H.J., Veerkamp J.H. The metabolic fate of branched-chain amino acids and 2-oxo acids in rat muscle homogenates and diaphragms. Int. J. Biochem. 1985;17:957–965. doi: 10.1016/0020-711X(85)90240-X. PubMed DOI

Holecek M. Leucine metabolism in fasted and tumor necrosis factor-treated rats. Clin. Nutr. 1996;15:91–93. doi: 10.1016/S0261-5614(96)80028-8. PubMed DOI

Holecek M. Effect of starvation on branched-chain alpha-keto acid dehydrogenase activity in rat heart and skeletal muscle. Physiol. Res. 2001;50:19–24. doi: 10.33549/physiolres.930000.50.19. PubMed DOI

Nawabi M.D., Block K.P., Chakrabarti M.C., Buse M.G. Administration of endotoxin, tumor necrosis factor, or interleukin 1 to rats activates skeletal muscle branched-chain alpha-keto acid dehydrogenase. J. Clin. Investig. 1990;85:256–263. doi: 10.1172/JCI114421. PubMed DOI PMC

Wischmeyer P.E. Glutamine: Role in critical illness and ongoing clinical trials. Curr. Opin. Gastroenterol. 2008;24:190–197. doi: 10.1097/MOG.0b013e3282f4db94. PubMed DOI

Frayn K.N., Khan K., Coppack S.W., Elia M. Amino acid metabolism in human subcutaneous adipose tissue in vivo. Clin. Sci. (Lond.) 1991;80:471–474. doi: 10.1042/cs0800471. PubMed DOI

Tischler M.E., Goldberg A.L. Leucine degradation and release of glutamine and alanine by adipose tissue. J. Biol. Chem. 1980;255:8074–8081. doi: 10.1016/S0021-9258(19)70609-7. PubMed DOI

Plumley D.A., Souba W.W., Hautamaki R.D., Martin T.D., Flynn T.C., Rout W.R., Copeland E.M. Accelerated lung amino acid release in hyperdynamic septic surgical patients. Arch. Surg. 1990;125:57–61. doi: 10.1001/archsurg.1990.01410130063008. PubMed DOI

Conti F., Melone M. The glutamine commute: Lost in the tube? Neurochem. Int. 2006;48:459–464. doi: 10.1016/j.neuint.2005.11.016. PubMed DOI

Yang R.Z., Park S., Reagan W.J., Goldstein R., Zhong S., Lawton M., Rajamohan F., Qian K., Liu L., Gong D.W. Alanine aminotransferase isoenzymes: Molecular cloning and quantitative analysis of tissue expression in rats and serum elevation in liver toxicity. Hepatology. 2009;49:598–607. doi: 10.1002/hep.22657. PubMed DOI PMC

Jitrapakdee S., Wallace J.C. Structure, function and regulation of pyruvate carboxylase. Biochem. J. 1999;340:1–16. doi: 10.1042/bj3400001. PubMed DOI PMC

Curthoys N.P., Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu. Rev. Nutr. 1995;15:133–159. doi: 10.1146/annurev.nu.15.070195.001025. PubMed DOI

Treberg J.R., Banh S., Pandey U., Weihrauch D. Intertissue differences for the role of glutamate dehydrogenase in metabolism. Neurochem. Res. 2014;39:516–526. doi: 10.1007/s11064-013-0998-z. PubMed DOI

Spanaki C., Plaitakis A. The role of glutamate dehydrogenase in mammalian ammonia metabolism. Neurotox. Res. 2012;21:117–127. doi: 10.1007/s12640-011-9285-4. PubMed DOI

Amoedo N.D., Punzi G., Obre E., Lacombe D., De Grassi A., Pierri C.L., Rossignol R. AGC1/2, the mitochondrial aspartate-glutamate carriers. Biochim. Biophys. Acta. 2016;1863:2394–2412. doi: 10.1016/j.bbamcr.2016.04.011. PubMed DOI

Holeček M. Roles of malate and aspartate in gluconeogenesis in various physiological and pathological states. Metabolism. 2023;145:155614. doi: 10.1016/j.metabol.2023.155614. PubMed DOI

Owen O.E., Reichle F.A., Mozzoli M.A., Kreulen T., Patel M.S., Elfenbein I.B., Golsorkhi M., Chang K.H., Rao N.S., Sue H.S., et al. Hepatic, gut, and renal substrate flux rates in patients with hepatic cirrhosis. J. Clin. Investig. 1981;68:240–252. doi: 10.1172/JCI110240. PubMed DOI PMC

van de Poll M.C., Ligthart-Melis G.C., Boelens P.G., Deutz N.E., van Leeuwen P.A., Dejong C.H. Intestinal and hepatic metabolism of glutamine and citrulline in humans. J. Physiol. 2007;581:819–827. doi: 10.1113/jphysiol.2006.126029. PubMed DOI PMC

Jungas R.L., Halperin M.L., Brosnan J.T. Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol. Rev. 1992;72:419–448. doi: 10.1152/physrev.1992.72.2.419. PubMed DOI

Schutz Y. Protein turnover, ureagenesis and gluconeogenesis. Int. J. Vitam. Nutr. Res. 2011;81:101–107. doi: 10.1024/0300-9831/a000064. PubMed DOI

Veldhorst M.A., Westerterp-Plantenga M.S., Westerterp K.R. Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am. J. Clin. Nutr. 2009;90:519–526. doi: 10.3945/ajcn.2009.27834. PubMed DOI

Cooper A.J., Nieves E., Rosenspire K.C., Filc-DeRicco S., Gelbard A.S., Brusilow S.W. Short-term metabolic fate of 13N-labeled glutamate, alanine, and glutamine(amide) in rat liver. J. Biol. Chem. 1988;263:12268–12273. doi: 10.1016/S0021-9258(18)37750-0. PubMed DOI

Neis E.P., Sabrkhany S., Hundscheid I., Schellekens D., Lenaerts K., Olde Damink S.W., Blaak E.E., Dejong C.H., Rensen S.S. Human splanchnic amino-acid metabolism. Amino Acids. 2017;49:161–172. doi: 10.1007/s00726-016-2344-7. PubMed DOI PMC

Windmueller H.G., Spaeth A.E. Uptake and metabolism of plasma glutamine by the small intestine. J. Biol. Chem. 1974;249:5070–5079. doi: 10.1016/S0021-9258(19)42329-6. PubMed DOI

Hanson P.J., Parsons D.S. The interrelationship between glutamine and alanine in the intestine. Biochem. Soc. Trans. 1980;8:506–509. doi: 10.1042/bst0080506. PubMed DOI

Häussinger D., Stoll B., Stehle T., Gerok W. Hepatocyte heterogeneity in glutamate metabolism and bidirectional transport in perfused rat liver. Eur. J. Biochem. 1989;185:189–195. doi: 10.1111/j.1432-1033.1989.tb15101.x. PubMed DOI

Brosnan M.E., Brosnan J.T. Hepatic glutamate metabolism: A tale of 2 hepatocytes. Am. J. Clin. Nutr. 2009;90:857S–861S. doi: 10.3945/ajcn.2009.27462Z. PubMed DOI

Nissim I. Newer aspects of glutamine/glutamate metabolism: The role of acute pH changes. Am. J. Physiol. 1999;277:F493–F497. doi: 10.1152/ajprenal.1999.277.4.F493. PubMed DOI

McGivan J.D., Bungard C.I. The transport of glutamine into mammalian cells. Front. Biosci. 2007;12:874–882. doi: 10.2741/2109. PubMed DOI

Triplitt C.L. Understanding the kidneys’ role in blood glucose regulation. Am. J. Manag. Care. 2012;18:S11–S16. PubMed

Cahill G.F., Jr. Starvation in man. N. Engl. J. Med. 1970;282:668–675. doi: 10.1016/S0300-595X(76)80028-X. PubMed DOI

Cersosimo E., Garlick P., Ferretti J. Insulin regulation of renal glucose metabolism in humans. Am. J. Physiol. 1999;276:E78–E84. doi: 10.1152/ajpendo.1999.276.1.E78. PubMed DOI

Miller B.M., Cersosimo E., McRae J., Williams P.E., Lacy W.W., Abumrad N.N. Interorgan relationships of alanine and glutamine during fasting in the conscious dog. J. Surg. Res. 1983;35:310–318. doi: 10.1016/0022-4804(83)90006-9. PubMed DOI

Meyer C., Stumvoll M., Nadkarni V., Dostou J., Mitrakou A., Gerich J. Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J. Clin. Investig. 1998;102:619–624. doi: 10.1172/JCI2415. PubMed DOI PMC

Vinay P., Lemieux G., Gougoux A., Halperin M. Regulation of glutamine metabolism in dog kidney in vivo. Kidney Int. 1986;29:68–79. doi: 10.1038/ki.1986.9. PubMed DOI

Verrey F., Singer D., Ramadan T., Vuille-dit-Bille R.N., Mariotta L., Camargo S.M. Kidney amino acid transport. Pflugers Arch. 2009;458:53–60. doi: 10.1007/s00424-009-0638-2. PubMed DOI

Pitts R.F., Stone W.J. Renal metabolism of alanine. J. Clin. Investig. 1967;46:530–538. doi: 10.1172/JCI105554. PubMed DOI PMC

Anderson J.W. Glucose metabolism in jejunal mucosa of fed, fasted, and streptozotocin-diabetic rats. Am. J. Physiol. 1974;226:226–229. doi: 10.1152/ajplegacy.1974.226.1.226. PubMed DOI

Croset M., Rajas F., Zitoun C., Hurt J.M., Montano S., Mithieux G. Rat small intestine is an insulin-sensitive gluconeogenic organ. Diabetes. 2001;50:740–746. doi: 10.2337/diabetes.50.4.740. PubMed DOI

James L.A., Lunn P.G., Middleton S., Elia M. Distribution of glutaminase and glutamine synthetase activities in the human gastrointestinal tract. Clin. Sci. 1998;94:313–319. doi: 10.1042/cs0940313. PubMed DOI

Watford M. Glutamine metabolism in rat small intestine: Synthesis of three-carbon products in isolated enterocytes. Biochim. Biophys. Acta. 1994;1200:73–78. doi: 10.1016/0304-4165(94)90029-9. PubMed DOI

Kimura R.E. Glutamine oxidation by developing rat small intestine. Pediatr. Res. 1987;21:214–217. doi: 10.1203/00006450-198702000-00021. PubMed DOI

Johnson A.W., Berrington J.M., Walker I., Manning A., Losowsky M.S. Measurement of the transfer of the nitrogen moiety of intestinal lumen glutamic acid in man after oral ingestion of l-[15N]glutamic acid. Clin. Sci. 1988;75:499–502. doi: 10.1042/cs0750499. PubMed DOI

LeBlanc J., Soucy J., Nadeau A. Early insulin and glucagon responses to different food items. Horm. Metab. Res. 1996;28:276–279. doi: 10.1055/s-2007-979791. PubMed DOI

Moon J., Koh G. Clinical evidence and mechanisms of high-protein diet-induced weight loss. J. Obes. Metab. Syndr. 2020;29:166–173. doi: 10.7570/jomes20028. PubMed DOI PMC

Linn T., Santosa B., Grönemeyer D., Aygen S., Scholz N., Busch M., Bretzel R.G. Effect of long-term dietary protein intake on glucose metabolism in humans. Diabetologia. 2000;43:1257–1265. doi: 10.1007/s001250051521. PubMed DOI

Holecek M., Siman P., Vodenicarovova M., Kandar R. Alterations in protein and amino acid metabolism in rats fed a branched-chain amino acid- or leucine-enriched diet during postprandial and postabsorptive states. Nutr. Metab. 2016;13:12. doi: 10.1186/s12986-016-0072-3. PubMed DOI PMC

Tsai P.J., Huang P.C. Circadian variations in plasma and erythrocyte concentrations of glutamate, glutamine, and alanine in men on a diet without and with added monosodium glutamate. Metabolism. 1999;48:1455–1460. doi: 10.1016/S0026-0495(99)90159-2. PubMed DOI

Gautier-Stein A., Rajas F., Mithieux G. Intestinal gluconeogenesis and protein diet: Future directions. Proc. Nutr. Soc. 2021;80:118–125. doi: 10.1017/S0029665120007922. PubMed DOI

Pillot B., Soty M., Gautier-Stein A., Zitoun C., Mithieux G. Protein feeding promotes redistribution of endogenous glucose production to the kidney and potentiates its suppression by insulin. Endocrinology. 2009;150:616–624. doi: 10.1210/en.2008-0601. PubMed DOI

Martín-Requero A., Ciprés G., Rivas T., Ayuso M.S., Parrilla R. Reciprocal changes in gluconeogenesis and ureagenesis induced by fatty acid oxidation. Metabolism. 1993;42:1573–1582. doi: 10.1016/0026-0495(93)90153-F. PubMed DOI

Sarabhai T., Kahl S., Szendroedi J., Markgraf D.F., Zaharia O.P., Barosa C., Herder C., Wickrath F., Bobrov P., Hwang J.H., et al. Monounsaturated fat rapidly induces hepatic gluconeogenesis and whole-body insulin resistance. JCI Insight. 2020;5:e134520. doi: 10.1172/jci.insight.134520. PubMed DOI PMC

Hernández E.Á., Kahl S., Seelig A., Begovatz P., Irmler M., Kupriyanova Y., Nowotny B., Nowotny P., Herder C., Barosa C., et al. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J. Clin. Investig. 2017;127:695–708. doi: 10.1172/JCI89444. PubMed DOI PMC

Cairns R., Fischer A.W., Blanco-Munoz P., Alvarez-Guaita A., Meneses-Salas E., Egert A., Buechler C., Hoy A.J., Heeren J., Enrich C., et al. Altered hepatic glucose homeostasis in AnxA6-KO mice fed a high-fat diet. PLoS ONE. 2018;13:e0201310. doi: 10.1371/journal.pone.0201310. PubMed DOI PMC

Lopez H.W., Moundras C., Morand C., Demigné C., Rémésy C. Opposite fluxes of glutamine and alanine in the splanchnic area are an efficient mechanism for nitrogen sparing in rats. J. Nutr. 1998;128:1487–1494. doi: 10.1093/jn/128.9.1487. PubMed DOI

Holeček M. Why Are Branched-Chain Amino Acids Increased in Starvation and Diabetes? Nutrients. 2020;12:3087. doi: 10.3390/nu12103087. PubMed DOI PMC

Kong S.E., Hall J.C., Cooper D., McCauley R.D. Starvation alters the activity and mRNA level of glutaminase and glutamine synthetase in the rat intestine. J. Nutr. Biochem. 2000;11:393–400. doi: 10.1016/S0955-2863(00)00095-4. PubMed DOI

McFarlane Anderson N., Bennett F.I., Alleyne G.A. Ammonia production by the small intestine of the rat. Biochim. Biophys. Acta. 1976;437:238–243. doi: 10.1016/0304-4165(76)90365-2. PubMed DOI

Alleyne G.A., Lupianez J.A., McFarlane-Anderson N., Hortelano P., Benjamin J., Barnswell J., Scott B. Glutamine metabolism in metabolic acidosis. Ciba Found. Symp. 1982;87:101–119. PubMed

Hwang J.J., Curthoys N.P. Effect of acute alterations in acid-base balance on rat renal glutaminase and phosphoenolpyruvate carboxykinase gene expression. J. Biol. Chem. 1991;266:9392–9396. doi: 10.1016/S0021-9258(18)92831-0. PubMed DOI

Lemieux G., Berkofsky J., Lemieux C., Quenneville A., Marsolais M. Real importance of alanine in renal metabolism: In vitro studies in rat and dog. Am. J. Physiol. 1988;255:R42–R45. doi: 10.1152/ajpregu.1988.255.1.R42. PubMed DOI

Schröck H., Goldstein L. Interorgan relationships for glutamine metabolism in normal and acidotic rats. Am. J. Physiol. 1981;240:E519–E525. doi: 10.1152/ajpendo.1981.240.5.E519. PubMed DOI

Welbourne T.C. Effect of metabolic acidosis on hindquarter glutamine and alanine release. Metabolism. 1986;35:614–618. doi: 10.1016/0026-0495(86)90166-6. PubMed DOI

Fine A. Effects of acute metabolic acidosis on renal, gut, liver, and muscle metabolism of glutamine and ammonia in the dog. Kidney Int. 1982;21:439–444. doi: 10.1038/ki.1982.44. PubMed DOI

Almdal T.P., Jensen T., Vilstrup H. Increased hepatic efficacy of urea synthesis from alanine in insulin-dependent diabetes mellitus. Eur. J. Clin. Investig. 1990;20:29–34. doi: 10.1111/j.1365-2362.1990.tb01787.x. PubMed DOI

Wahren J., Felig P., Cerasi E., Luft R. Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus. J. Clin. Investig. 1972;51:1870–1878. doi: 10.1172/JCI106989. PubMed DOI PMC

Elia M., Ilic V., Bacon S., Williamson D.H., Smith R. Relationship between the basal blood alanine concentration and the removal of an alanine load in various clinical states in man. Clin. Sci. 1980;58:301–309. doi: 10.1042/cs0580301. PubMed DOI

Holeček M., Vodeničarovová M., Fingrová R. Dual effects of beta-hydroxy-beta-methylbutyrate (HMB) on amino acid, energy, and protein metabolism in the liver and muscles of rats with streptozotocin-induced type 1 diabetes. Biomolecules. 2020;10:1475. doi: 10.3390/biom10111475. PubMed DOI PMC

Shah A., Wondisford F.E. Gluconeogenesis flux in metabolic disease. Annu. Rev. Nutr. 2023;43:153–177. doi: 10.1146/annurev-nutr-061121-091507. PubMed DOI

Sharma R., Tiwari S. Renal gluconeogenesis in insulin resistance: A culprit for hyperglycemia in diabetes. World J. Diabetes. 2021;12:556–568. doi: 10.4239/wjd.v12.i5.556. PubMed DOI PMC

Stumvoll M., Perriello G., Nurjhan N., Bucci A., Welle S., Jansson P.A., Dailey G., Bier D., Jenssen T., Gerich J. Glutamine and alanine metabolism in NIDDM. Diabetes. 1996;45:863–868. doi: 10.2337/diab.45.7.863. PubMed DOI

Consoli A., Nurjhan N., Reilly J.J., Bier D.M., Gerich J.E. Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus. Role of alterations in systemic, hepatic, and muscle lactate and alanine metabolism. J. Clin. Investig. 1990;86:2038–2045. doi: 10.1172/JCI114940. PubMed DOI PMC

Qian K., Zhong S., Xie K., Yu D., Yang R., Gong D.W. Hepatic ALT isoenzymes are elevated in gluconeogenic conditions including diabetes and suppressed by insulin at the protein level. Diabetes Metab. Res. Rev. 2015;31:562–571. doi: 10.1002/dmrr.2655. PubMed DOI PMC

Okun J.G., Rusu P.M., Chan A.Y., Wu Y., Yap Y.W., Sharkie T., Schumacher J., Schmidt K.V., Roberts-Thomson K.M., Russell R.D., et al. Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes. Nat. Metab. 2021;3:394–409. doi: 10.1038/s42255-021-00369-9. PubMed DOI

Martino M.R., Gutiérrez-Aguilar M., Yiew N.K.H., Lutkewitte A.J., Singer J.M., McCommis K.S., Ferguson D., Liss K.H.H., Yoshino J., Renkemeyer M.K., et al. Silencing alanine transaminase 2 in diabetic liver attenuates hyperglycemia by reducing gluconeogenesis from amino acids. Cell Rep. 2022;39:110733. doi: 10.1016/j.celrep.2022.110733. PubMed DOI PMC

Holeček M. The role of skeletal muscle in the pathogenesis of altered concentrations of branched-chain amino acids (valine, leucine, and isoleucine) in liver cirrhosis, diabetes, and other diseases. Physiol. Res. 2021;70:293–305. doi: 10.33549/physiolres.934648. PubMed DOI PMC

Balk R.A. Systemic inflammatory response syndrome (SIRS): Where did it come from and is it still relevant today? Virulence. 2014;5:20–26. doi: 10.4161/viru.27135. PubMed DOI PMC

Davies M.G., Hagen P.O. Systemic inflammatory response syndrome. Br. J. Surg. 1997;84:920–935. doi: 10.1002/bjs.1800840707. PubMed DOI

Al-Yousif N., Rawal S., Jurczak M., Mahmud H., Shah F.A. Endogenous glucose production in critical illness. Nutr. Clin. Pract. 2021;36:344–359. doi: 10.1002/ncp.10646. PubMed DOI

Mizock B.A. Alterations in carbohydrate metabolism during stress: A review of the literature. Am. J. Med. 1995;98:75–84. doi: 10.1016/S0002-9343(99)80083-7. PubMed DOI

Holecek M., Sprongl L., Skopec F., Andrýs C., Pecka M. Leucine metabolism in TNF-alpha- and endotoxin-treated rats: Contribution of hepatic tissue. Am. J. Physiol. 1997;273:E1052–E1058. PubMed

Vesali R.F., Klaude M., Rooyackers O., Wernerman J. Amino acid metabolism in leg muscle after an endotoxin injection in healthy volunteers. Am. J. Physiol. 2005;288:E360–E364. doi: 10.1152/ajpendo.00248.2004. PubMed DOI

Karinch A.M., Pan M., Lin C.M., Strange R., Souba W.W. Glutamine metabolism in sepsis and infection. J. Nutr. 2001;131:2535S–2538S. doi: 10.1093/jn/131.9.2535S. PubMed DOI

Muthny T., Kovarik M., Sispera L., Tilser I., Holecek M. Protein metabolism in slow- and fast-twitch skeletal muscle during turpentine-induced inflammation. Int. J. Exp. Pathol. 2008;89:64–71. doi: 10.1111/j.1365-2613.2007.00553.x. PubMed DOI PMC

Meguid M.M., Brennan M.F., Aoki T.T., Muller W.A., Ball M.R., Moore F.D. Hormone-substrate interrelationships following trauma. Arch. Surg. 1974;109:776–783. doi: 10.1001/archsurg.1974.01360060046013. PubMed DOI

Salleh M., Ardawi M. Hepatic glutamine metabolism in the septic rat. Clin. Sci. 1992;82:709–716. doi: 10.1042/cs0820709. PubMed DOI

Bugianesi E., Kalhan S., Burkett E., Marchesini G., McCullough A. Quantification of gluconeogenesis in cirrhosis: Response to glucagon. Gastroenterology. 1998;115:1530–1540. doi: 10.1016/S0016-5085(98)70033-2. PubMed DOI

Petersen K.F., Krssak M., Navarro V., Chandramouli V., Hundal R., Schumann W.C., Landau B.R., Shulman G.I. Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis. Am. J. Physiol. 1999;276:E529–E535. doi: 10.1152/ajpendo.1999.276.3.E529. PubMed DOI

Perdigoto R., Furtado A.L., Porto A., Rodrigues T.B., Geraldes C.F., Jones J.G. Sources of glucose production in cirrhosis by 2H2O ingestion and 2H NMR analysis of plasma glucose. Biochim. Biophys. Acta. 2003;1637:156–163. doi: 10.1016/S0925-4439(03)00018-8. PubMed DOI

Joseph S.E., Heaton N., Potter D., Pernet A., Umpleby M.A., Amiel S.A. Renal glucose production compensates for the liver during the anhepatic phase of liver transplantation. Diabetes. 2000;49:450–456. doi: 10.2337/diabetes.49.3.450. PubMed DOI

Holecek M., Sprongl L., Tichý M. Effect of hyperammonemia on leucine and protein metabolism in rats. Metabolism. 2000;49:1330–1334. doi: 10.1053/meta.2000.9531. PubMed DOI

Holecek M., Kandar R., Sispera L., Kovarik M. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: Different sensitivity of red and white muscle. Amino Acids. 2011;40:575–584. doi: 10.1007/s00726-010-0679-z. PubMed DOI

Rodney S., Boneh A. Amino acid profiles in patients with urea cycle disorders at admission to hospital due to metabolic decompensation. JIMD Rep. 2013;9:97–104. PubMed PMC

Olde Damink S.W., Jalan R., Redhead D.N., Hayes P.C., Deutz N.E., Soeters P.B. Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology. 2002;36:1163–1171. doi: 10.1053/jhep.2002.36497. PubMed DOI

Holeček M., Vodeničarovová M. Muscle wasting and branched-chain amino acid, alpha-ketoglutarate, and ATP depletion in a rat model of liver cirrhosis. Int. J. Exp. Pathol. 2018;99:274–281. doi: 10.1111/iep.12299. PubMed DOI PMC

Mpabanzi L., Deutz N., Hayes P.C., Dejong C.H., Olde Damink S.W., Jalan R. Overnight glucose infusion suppresses renal ammoniagenesis and reduces hyperammonaemia induced by a simulated bleed in cirrhotic patients. Aliment. Pharmacol. Ther. 2012;35:921–928. doi: 10.1111/j.1365-2036.2012.05044.x. PubMed DOI

Romero-Gómez M., Ramos-Guerrero R., Grande L., de Terán L.C., Corpas R., Camacho I., Bautista J.D. Intestinal glutaminase activity is increased in liver cirrhosis and correlates with minimal hepatic encephalopathy. J. Hepatol. 2004;41:49–54. doi: 10.1016/j.jhep.2004.03.021. PubMed DOI

Kruszynska Y.T., McIntyre N. Gluconeogenesis from glycerol is not increased in overnight fasted cirrhotic patients. Clin. Sci. 1994;87:11P–12P. doi: 10.1042/cs045011Pc_pt2. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...