Origin and Roles of Alanine and Glutamine in Gluconeogenesis in the Liver, Kidneys, and Small Intestine under Physiological and Pathological Conditions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39000145
PubMed Central
PMC11241752
DOI
10.3390/ijms25137037
PII: ijms25137037
Knihovny.cz E-zdroje
- Klíčová slova
- branched-chain amino acids, cirrhosis, diabetes, glucose, starvation,
- MeSH
- alanin * metabolismus MeSH
- glukoneogeneze * MeSH
- glukosa metabolismus MeSH
- glutamin * metabolismus MeSH
- játra * metabolismus MeSH
- ledviny * metabolismus MeSH
- lidé MeSH
- tenké střevo * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- alanin * MeSH
- glukosa MeSH
- glutamin * MeSH
Alanine and glutamine are the principal glucogenic amino acids. Most originate from muscles, where branched-chain amino acids (valine, leucine, and isoleucine) are nitrogen donors and, under exceptional circumstances, a source of carbons for glutamate synthesis. Glutamate is a nitrogen source for alanine synthesis from pyruvate and a substrate for glutamine synthesis by glutamine synthetase. The following differences between alanine and glutamine, which can play a role in their use in gluconeogenesis, are shown: (i) glutamine appearance in circulation is higher than that of alanine; (ii) the conversion to oxaloacetate, the starting substance for glucose synthesis, is an ATP-consuming reaction for alanine, which is energetically beneficial for glutamine; (iii) most alanine carbons, but not glutamine carbons, originate from glucose; and (iv) glutamine acts a substrate for gluconeogenesis in the liver, kidneys, and intestine, whereas alanine does so only in the liver. Alanine plays a significant role during early starvation, exposure to high-fat and high-protein diets, and diabetes. Glutamine plays a dominant role in gluconeogenesis in prolonged starvation, acidosis, liver cirrhosis, and severe illnesses like sepsis and acts as a substrate for alanine synthesis in the small intestine. Interactions among muscles and the liver, kidneys, and intestine ensuring optimal alanine and glutamine supply for gluconeogenesis are suggested.
Department of Physiology Faculty of Medicine Charles University 500 03 Hradec Kralove Czech Republic
Zobrazit více v PubMed
Wu X., Chen S. Advances in natural small molecules on pretranslational regulation of gluconeogenesis. Drug Dev. Res. 2023;84:613–628. doi: 10.1002/ddr.22053. PubMed DOI
Oh K.J., Han H.S., Kim M.J., Koo S.H. Transcriptional regulators of hepatic gluconeogenesis. Arch. Pharm. Res. 2013;36:189–200. doi: 10.1007/s12272-013-0018-5. PubMed DOI
Sahoo B., Srivastava M., Katiyar A., Ecelbarger C., Tiwari S. Liver or kidney: Who has the oar in the gluconeogenesis boat and when? World J. Diabetes. 2023;14:1049–1056. doi: 10.4239/wjd.v14.i7.1049. PubMed DOI PMC
Mutel E., Gautier-Stein A., Abdul-Wahed A., Amigó-Correig M., Zitoun C., Stefanutti A., Houberdon I., Tourette J.A., Mithieux G., Rajas F. Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice: Induction of renal and intestinal gluconeogenesis by glucagon. Diabetes. 2011;60:3121–3131. doi: 10.2337/db11-0571. PubMed DOI PMC
Felig P., Owen O.E., Wahren J., Cahill G.F., Jr. Amino acid metabolism during prolonged starvation. J. Clin. Investig. 1969;48:584–594. doi: 10.1172/JCI106017. PubMed DOI PMC
Felig P. The glucose-alanine cycle. Metabolism. 1973;22:179–207. doi: 10.1016/0026-0495(73)90269-2. PubMed DOI
Gerich J.E., Meyer C., Woerle H.J., Stumvoll M. Renal gluconeogenesis: Its importance in human glucose homeostasis. Diabetes Care. 2001;24:382–391. doi: 10.2337/diacare.24.2.382. PubMed DOI
Stumvoll M., Meyer C., Kreider M., Perriello G., Gerich J. Effects of glucagon on renal and hepatic glutamine gluconeogenesis in normal postabsorptive humans. Metabolism. 1998;47:1227–1232. doi: 10.1016/S0026-0495(98)90328-6. PubMed DOI
Mitrakou A. Kidney: Its impact on glucose homeostasis and hormonal regulation. Diabetes Res. Clin. Pract. 2011;93:S66–S72. doi: 10.1016/S0168-8227(11)70016-X. PubMed DOI
Legouis D., Faivre A., Cippà P.E., de Seigneux S. Renal gluconeogenesis: An underestimated role of the kidney in systemic glucose metabolism. Nephrol. Dial. Transplant. 2022;37:1417–1425. doi: 10.1093/ndt/gfaa302. PubMed DOI
Perriello G., Jorde R., Nurjhan N., Stumvoll M., Dailey G., Jenssen T., Bier D.M., Gerich J.E. Estimation of glucose-alanine-lactate-glutamine cycles in postabsorptive humans: Role of skeletal muscle. Am. J. Physiol. 1995;269:E443–E450. doi: 10.1152/ajpendo.1995.269.3.E443. PubMed DOI
Waterhouse C., Keilson J. The contribution of glucose to alanine metabolism in man. J. Lab. Clin. Med. 1978;92:803–812. PubMed
Nurjhan N., Bucci A., Perriello G., Stumvoll M., Dailey G., Bier D.M., Toft I., Jenssen T.G., Gerich J.E. Glutamine: A major gluconeogenic precursor and vehicle for interorgan carbon transport in man. J. Clin. Investig. 1995;95:272–277. doi: 10.1172/JCI117651. PubMed DOI PMC
Mithieux G., Gautier-Stein A. Intestinal glucose metabolism revisited. Diabetes Res. Clin. Pract. 2014;105:295–301. doi: 10.1016/j.diabres.2014.04.008. PubMed DOI
Rajas F., Bruni N., Montano S., Zitoun C., Mithieux G. The glucose-6 phosphatase gene is expressed in human and rat small intestine: Regulation of expression in fasted and diabetic rats. Gastroenterology. 1999;117:132–139. doi: 10.1016/S0016-5085(99)70559-7. PubMed DOI
Darmaun D., Matthews D.E., Bier D.M. Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production. Am. J. Physiol. 1988;255:E366–E373. doi: 10.1152/ajpendo.1988.255.3.E366. PubMed DOI
Harper A.E., Miller R.H., Block K.P. Branched-chain amino acid metabolism. Annu. Rev. Nutr. 1984;4:409–454. doi: 10.1146/annurev.nu.04.070184.002205. PubMed DOI
Skeie B., Kvetan V., Gil K.M., Rothkopf M.M., Newsholme E.A., Askanazi J. Branch-chain amino acids: Their metabolism and clinical utility. Crit. Care Med. 1990;18:549–571. doi: 10.1097/00003246-199005000-00019. PubMed DOI
Haymond M.W., Miles J.M. Branched chain amino acids as a major source of alanine nitrogen in man. Diabetes. 1982;31:86–89. doi: 10.2337/diab.31.1.86. PubMed DOI
Galim E.B., Hruska K., Bier D.M., Matthews D.E., Haymond M.W. Branched-chain amino acid nitrogen transfer to alanine in vivo in dogs. Direct isotopic determination with [15N]leucine. J. Clin. Investig. 1980;66:1295–1304. doi: 10.1172/JCI109981. PubMed DOI PMC
Vozza A., Parisi G., De Leonardis F., Lasorsa F.M., Castegna A., Amorese D., Marmo R., Calcagnile V.M., Palmieri L., Ricquier D., et al. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc. Natl. Acad. Sci. USA. 2014;111:960–965. doi: 10.1073/pnas.1317400111. PubMed DOI PMC
Monné M., Vozza A., Lasorsa F.M., Porcelli V., Palmieri F. Mitochondrial carriers for aspartate, glutamate and other amino acids: A review. Int. J. Mol. Sci. 2019;20:4456. doi: 10.3390/ijms20184456. PubMed DOI PMC
Tornheim K., Lowenstein J.M. The purine nucleotide cycle. The production of ammonia from aspartate by extracts of rat skeletal muscle. J. Biol. Chem. 1972;247:162–169. doi: 10.1016/S0021-9258(19)45770-0. PubMed DOI
Bröer S. Amino acid transporters as modulators of glucose homeostasis. Trends Endocrinol. Metab. 2022;33:120–135. doi: 10.1016/j.tem.2021.11.004. PubMed DOI
Chang T.W., Goldberg A.L. The metabolic fates of amino acids and the formation of glutamine in skeletal muscle. J. Biol. Chem. 1978;253:3685–3693. doi: 10.1016/S0021-9258(17)34855-X. PubMed DOI
Wagenmakers A.J., Salden H.J., Veerkamp J.H. The metabolic fate of branched-chain amino acids and 2-oxo acids in rat muscle homogenates and diaphragms. Int. J. Biochem. 1985;17:957–965. doi: 10.1016/0020-711X(85)90240-X. PubMed DOI
Holecek M. Leucine metabolism in fasted and tumor necrosis factor-treated rats. Clin. Nutr. 1996;15:91–93. doi: 10.1016/S0261-5614(96)80028-8. PubMed DOI
Holecek M. Effect of starvation on branched-chain alpha-keto acid dehydrogenase activity in rat heart and skeletal muscle. Physiol. Res. 2001;50:19–24. doi: 10.33549/physiolres.930000.50.19. PubMed DOI
Nawabi M.D., Block K.P., Chakrabarti M.C., Buse M.G. Administration of endotoxin, tumor necrosis factor, or interleukin 1 to rats activates skeletal muscle branched-chain alpha-keto acid dehydrogenase. J. Clin. Investig. 1990;85:256–263. doi: 10.1172/JCI114421. PubMed DOI PMC
Wischmeyer P.E. Glutamine: Role in critical illness and ongoing clinical trials. Curr. Opin. Gastroenterol. 2008;24:190–197. doi: 10.1097/MOG.0b013e3282f4db94. PubMed DOI
Frayn K.N., Khan K., Coppack S.W., Elia M. Amino acid metabolism in human subcutaneous adipose tissue in vivo. Clin. Sci. (Lond.) 1991;80:471–474. doi: 10.1042/cs0800471. PubMed DOI
Tischler M.E., Goldberg A.L. Leucine degradation and release of glutamine and alanine by adipose tissue. J. Biol. Chem. 1980;255:8074–8081. doi: 10.1016/S0021-9258(19)70609-7. PubMed DOI
Plumley D.A., Souba W.W., Hautamaki R.D., Martin T.D., Flynn T.C., Rout W.R., Copeland E.M. Accelerated lung amino acid release in hyperdynamic septic surgical patients. Arch. Surg. 1990;125:57–61. doi: 10.1001/archsurg.1990.01410130063008. PubMed DOI
Conti F., Melone M. The glutamine commute: Lost in the tube? Neurochem. Int. 2006;48:459–464. doi: 10.1016/j.neuint.2005.11.016. PubMed DOI
Yang R.Z., Park S., Reagan W.J., Goldstein R., Zhong S., Lawton M., Rajamohan F., Qian K., Liu L., Gong D.W. Alanine aminotransferase isoenzymes: Molecular cloning and quantitative analysis of tissue expression in rats and serum elevation in liver toxicity. Hepatology. 2009;49:598–607. doi: 10.1002/hep.22657. PubMed DOI PMC
Jitrapakdee S., Wallace J.C. Structure, function and regulation of pyruvate carboxylase. Biochem. J. 1999;340:1–16. doi: 10.1042/bj3400001. PubMed DOI PMC
Curthoys N.P., Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu. Rev. Nutr. 1995;15:133–159. doi: 10.1146/annurev.nu.15.070195.001025. PubMed DOI
Treberg J.R., Banh S., Pandey U., Weihrauch D. Intertissue differences for the role of glutamate dehydrogenase in metabolism. Neurochem. Res. 2014;39:516–526. doi: 10.1007/s11064-013-0998-z. PubMed DOI
Spanaki C., Plaitakis A. The role of glutamate dehydrogenase in mammalian ammonia metabolism. Neurotox. Res. 2012;21:117–127. doi: 10.1007/s12640-011-9285-4. PubMed DOI
Amoedo N.D., Punzi G., Obre E., Lacombe D., De Grassi A., Pierri C.L., Rossignol R. AGC1/2, the mitochondrial aspartate-glutamate carriers. Biochim. Biophys. Acta. 2016;1863:2394–2412. doi: 10.1016/j.bbamcr.2016.04.011. PubMed DOI
Holeček M. Roles of malate and aspartate in gluconeogenesis in various physiological and pathological states. Metabolism. 2023;145:155614. doi: 10.1016/j.metabol.2023.155614. PubMed DOI
Owen O.E., Reichle F.A., Mozzoli M.A., Kreulen T., Patel M.S., Elfenbein I.B., Golsorkhi M., Chang K.H., Rao N.S., Sue H.S., et al. Hepatic, gut, and renal substrate flux rates in patients with hepatic cirrhosis. J. Clin. Investig. 1981;68:240–252. doi: 10.1172/JCI110240. PubMed DOI PMC
van de Poll M.C., Ligthart-Melis G.C., Boelens P.G., Deutz N.E., van Leeuwen P.A., Dejong C.H. Intestinal and hepatic metabolism of glutamine and citrulline in humans. J. Physiol. 2007;581:819–827. doi: 10.1113/jphysiol.2006.126029. PubMed DOI PMC
Jungas R.L., Halperin M.L., Brosnan J.T. Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol. Rev. 1992;72:419–448. doi: 10.1152/physrev.1992.72.2.419. PubMed DOI
Schutz Y. Protein turnover, ureagenesis and gluconeogenesis. Int. J. Vitam. Nutr. Res. 2011;81:101–107. doi: 10.1024/0300-9831/a000064. PubMed DOI
Veldhorst M.A., Westerterp-Plantenga M.S., Westerterp K.R. Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am. J. Clin. Nutr. 2009;90:519–526. doi: 10.3945/ajcn.2009.27834. PubMed DOI
Cooper A.J., Nieves E., Rosenspire K.C., Filc-DeRicco S., Gelbard A.S., Brusilow S.W. Short-term metabolic fate of 13N-labeled glutamate, alanine, and glutamine(amide) in rat liver. J. Biol. Chem. 1988;263:12268–12273. doi: 10.1016/S0021-9258(18)37750-0. PubMed DOI
Neis E.P., Sabrkhany S., Hundscheid I., Schellekens D., Lenaerts K., Olde Damink S.W., Blaak E.E., Dejong C.H., Rensen S.S. Human splanchnic amino-acid metabolism. Amino Acids. 2017;49:161–172. doi: 10.1007/s00726-016-2344-7. PubMed DOI PMC
Windmueller H.G., Spaeth A.E. Uptake and metabolism of plasma glutamine by the small intestine. J. Biol. Chem. 1974;249:5070–5079. doi: 10.1016/S0021-9258(19)42329-6. PubMed DOI
Hanson P.J., Parsons D.S. The interrelationship between glutamine and alanine in the intestine. Biochem. Soc. Trans. 1980;8:506–509. doi: 10.1042/bst0080506. PubMed DOI
Häussinger D., Stoll B., Stehle T., Gerok W. Hepatocyte heterogeneity in glutamate metabolism and bidirectional transport in perfused rat liver. Eur. J. Biochem. 1989;185:189–195. doi: 10.1111/j.1432-1033.1989.tb15101.x. PubMed DOI
Brosnan M.E., Brosnan J.T. Hepatic glutamate metabolism: A tale of 2 hepatocytes. Am. J. Clin. Nutr. 2009;90:857S–861S. doi: 10.3945/ajcn.2009.27462Z. PubMed DOI
Nissim I. Newer aspects of glutamine/glutamate metabolism: The role of acute pH changes. Am. J. Physiol. 1999;277:F493–F497. doi: 10.1152/ajprenal.1999.277.4.F493. PubMed DOI
McGivan J.D., Bungard C.I. The transport of glutamine into mammalian cells. Front. Biosci. 2007;12:874–882. doi: 10.2741/2109. PubMed DOI
Triplitt C.L. Understanding the kidneys’ role in blood glucose regulation. Am. J. Manag. Care. 2012;18:S11–S16. PubMed
Cahill G.F., Jr. Starvation in man. N. Engl. J. Med. 1970;282:668–675. doi: 10.1016/S0300-595X(76)80028-X. PubMed DOI
Cersosimo E., Garlick P., Ferretti J. Insulin regulation of renal glucose metabolism in humans. Am. J. Physiol. 1999;276:E78–E84. doi: 10.1152/ajpendo.1999.276.1.E78. PubMed DOI
Miller B.M., Cersosimo E., McRae J., Williams P.E., Lacy W.W., Abumrad N.N. Interorgan relationships of alanine and glutamine during fasting in the conscious dog. J. Surg. Res. 1983;35:310–318. doi: 10.1016/0022-4804(83)90006-9. PubMed DOI
Meyer C., Stumvoll M., Nadkarni V., Dostou J., Mitrakou A., Gerich J. Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J. Clin. Investig. 1998;102:619–624. doi: 10.1172/JCI2415. PubMed DOI PMC
Vinay P., Lemieux G., Gougoux A., Halperin M. Regulation of glutamine metabolism in dog kidney in vivo. Kidney Int. 1986;29:68–79. doi: 10.1038/ki.1986.9. PubMed DOI
Verrey F., Singer D., Ramadan T., Vuille-dit-Bille R.N., Mariotta L., Camargo S.M. Kidney amino acid transport. Pflugers Arch. 2009;458:53–60. doi: 10.1007/s00424-009-0638-2. PubMed DOI
Pitts R.F., Stone W.J. Renal metabolism of alanine. J. Clin. Investig. 1967;46:530–538. doi: 10.1172/JCI105554. PubMed DOI PMC
Anderson J.W. Glucose metabolism in jejunal mucosa of fed, fasted, and streptozotocin-diabetic rats. Am. J. Physiol. 1974;226:226–229. doi: 10.1152/ajplegacy.1974.226.1.226. PubMed DOI
Croset M., Rajas F., Zitoun C., Hurt J.M., Montano S., Mithieux G. Rat small intestine is an insulin-sensitive gluconeogenic organ. Diabetes. 2001;50:740–746. doi: 10.2337/diabetes.50.4.740. PubMed DOI
James L.A., Lunn P.G., Middleton S., Elia M. Distribution of glutaminase and glutamine synthetase activities in the human gastrointestinal tract. Clin. Sci. 1998;94:313–319. doi: 10.1042/cs0940313. PubMed DOI
Watford M. Glutamine metabolism in rat small intestine: Synthesis of three-carbon products in isolated enterocytes. Biochim. Biophys. Acta. 1994;1200:73–78. doi: 10.1016/0304-4165(94)90029-9. PubMed DOI
Kimura R.E. Glutamine oxidation by developing rat small intestine. Pediatr. Res. 1987;21:214–217. doi: 10.1203/00006450-198702000-00021. PubMed DOI
Johnson A.W., Berrington J.M., Walker I., Manning A., Losowsky M.S. Measurement of the transfer of the nitrogen moiety of intestinal lumen glutamic acid in man after oral ingestion of l-[15N]glutamic acid. Clin. Sci. 1988;75:499–502. doi: 10.1042/cs0750499. PubMed DOI
LeBlanc J., Soucy J., Nadeau A. Early insulin and glucagon responses to different food items. Horm. Metab. Res. 1996;28:276–279. doi: 10.1055/s-2007-979791. PubMed DOI
Moon J., Koh G. Clinical evidence and mechanisms of high-protein diet-induced weight loss. J. Obes. Metab. Syndr. 2020;29:166–173. doi: 10.7570/jomes20028. PubMed DOI PMC
Linn T., Santosa B., Grönemeyer D., Aygen S., Scholz N., Busch M., Bretzel R.G. Effect of long-term dietary protein intake on glucose metabolism in humans. Diabetologia. 2000;43:1257–1265. doi: 10.1007/s001250051521. PubMed DOI
Holecek M., Siman P., Vodenicarovova M., Kandar R. Alterations in protein and amino acid metabolism in rats fed a branched-chain amino acid- or leucine-enriched diet during postprandial and postabsorptive states. Nutr. Metab. 2016;13:12. doi: 10.1186/s12986-016-0072-3. PubMed DOI PMC
Tsai P.J., Huang P.C. Circadian variations in plasma and erythrocyte concentrations of glutamate, glutamine, and alanine in men on a diet without and with added monosodium glutamate. Metabolism. 1999;48:1455–1460. doi: 10.1016/S0026-0495(99)90159-2. PubMed DOI
Gautier-Stein A., Rajas F., Mithieux G. Intestinal gluconeogenesis and protein diet: Future directions. Proc. Nutr. Soc. 2021;80:118–125. doi: 10.1017/S0029665120007922. PubMed DOI
Pillot B., Soty M., Gautier-Stein A., Zitoun C., Mithieux G. Protein feeding promotes redistribution of endogenous glucose production to the kidney and potentiates its suppression by insulin. Endocrinology. 2009;150:616–624. doi: 10.1210/en.2008-0601. PubMed DOI
Martín-Requero A., Ciprés G., Rivas T., Ayuso M.S., Parrilla R. Reciprocal changes in gluconeogenesis and ureagenesis induced by fatty acid oxidation. Metabolism. 1993;42:1573–1582. doi: 10.1016/0026-0495(93)90153-F. PubMed DOI
Sarabhai T., Kahl S., Szendroedi J., Markgraf D.F., Zaharia O.P., Barosa C., Herder C., Wickrath F., Bobrov P., Hwang J.H., et al. Monounsaturated fat rapidly induces hepatic gluconeogenesis and whole-body insulin resistance. JCI Insight. 2020;5:e134520. doi: 10.1172/jci.insight.134520. PubMed DOI PMC
Hernández E.Á., Kahl S., Seelig A., Begovatz P., Irmler M., Kupriyanova Y., Nowotny B., Nowotny P., Herder C., Barosa C., et al. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J. Clin. Investig. 2017;127:695–708. doi: 10.1172/JCI89444. PubMed DOI PMC
Cairns R., Fischer A.W., Blanco-Munoz P., Alvarez-Guaita A., Meneses-Salas E., Egert A., Buechler C., Hoy A.J., Heeren J., Enrich C., et al. Altered hepatic glucose homeostasis in AnxA6-KO mice fed a high-fat diet. PLoS ONE. 2018;13:e0201310. doi: 10.1371/journal.pone.0201310. PubMed DOI PMC
Lopez H.W., Moundras C., Morand C., Demigné C., Rémésy C. Opposite fluxes of glutamine and alanine in the splanchnic area are an efficient mechanism for nitrogen sparing in rats. J. Nutr. 1998;128:1487–1494. doi: 10.1093/jn/128.9.1487. PubMed DOI
Holeček M. Why Are Branched-Chain Amino Acids Increased in Starvation and Diabetes? Nutrients. 2020;12:3087. doi: 10.3390/nu12103087. PubMed DOI PMC
Kong S.E., Hall J.C., Cooper D., McCauley R.D. Starvation alters the activity and mRNA level of glutaminase and glutamine synthetase in the rat intestine. J. Nutr. Biochem. 2000;11:393–400. doi: 10.1016/S0955-2863(00)00095-4. PubMed DOI
McFarlane Anderson N., Bennett F.I., Alleyne G.A. Ammonia production by the small intestine of the rat. Biochim. Biophys. Acta. 1976;437:238–243. doi: 10.1016/0304-4165(76)90365-2. PubMed DOI
Alleyne G.A., Lupianez J.A., McFarlane-Anderson N., Hortelano P., Benjamin J., Barnswell J., Scott B. Glutamine metabolism in metabolic acidosis. Ciba Found. Symp. 1982;87:101–119. PubMed
Hwang J.J., Curthoys N.P. Effect of acute alterations in acid-base balance on rat renal glutaminase and phosphoenolpyruvate carboxykinase gene expression. J. Biol. Chem. 1991;266:9392–9396. doi: 10.1016/S0021-9258(18)92831-0. PubMed DOI
Lemieux G., Berkofsky J., Lemieux C., Quenneville A., Marsolais M. Real importance of alanine in renal metabolism: In vitro studies in rat and dog. Am. J. Physiol. 1988;255:R42–R45. doi: 10.1152/ajpregu.1988.255.1.R42. PubMed DOI
Schröck H., Goldstein L. Interorgan relationships for glutamine metabolism in normal and acidotic rats. Am. J. Physiol. 1981;240:E519–E525. doi: 10.1152/ajpendo.1981.240.5.E519. PubMed DOI
Welbourne T.C. Effect of metabolic acidosis on hindquarter glutamine and alanine release. Metabolism. 1986;35:614–618. doi: 10.1016/0026-0495(86)90166-6. PubMed DOI
Fine A. Effects of acute metabolic acidosis on renal, gut, liver, and muscle metabolism of glutamine and ammonia in the dog. Kidney Int. 1982;21:439–444. doi: 10.1038/ki.1982.44. PubMed DOI
Almdal T.P., Jensen T., Vilstrup H. Increased hepatic efficacy of urea synthesis from alanine in insulin-dependent diabetes mellitus. Eur. J. Clin. Investig. 1990;20:29–34. doi: 10.1111/j.1365-2362.1990.tb01787.x. PubMed DOI
Wahren J., Felig P., Cerasi E., Luft R. Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus. J. Clin. Investig. 1972;51:1870–1878. doi: 10.1172/JCI106989. PubMed DOI PMC
Elia M., Ilic V., Bacon S., Williamson D.H., Smith R. Relationship between the basal blood alanine concentration and the removal of an alanine load in various clinical states in man. Clin. Sci. 1980;58:301–309. doi: 10.1042/cs0580301. PubMed DOI
Holeček M., Vodeničarovová M., Fingrová R. Dual effects of beta-hydroxy-beta-methylbutyrate (HMB) on amino acid, energy, and protein metabolism in the liver and muscles of rats with streptozotocin-induced type 1 diabetes. Biomolecules. 2020;10:1475. doi: 10.3390/biom10111475. PubMed DOI PMC
Shah A., Wondisford F.E. Gluconeogenesis flux in metabolic disease. Annu. Rev. Nutr. 2023;43:153–177. doi: 10.1146/annurev-nutr-061121-091507. PubMed DOI
Sharma R., Tiwari S. Renal gluconeogenesis in insulin resistance: A culprit for hyperglycemia in diabetes. World J. Diabetes. 2021;12:556–568. doi: 10.4239/wjd.v12.i5.556. PubMed DOI PMC
Stumvoll M., Perriello G., Nurjhan N., Bucci A., Welle S., Jansson P.A., Dailey G., Bier D., Jenssen T., Gerich J. Glutamine and alanine metabolism in NIDDM. Diabetes. 1996;45:863–868. doi: 10.2337/diab.45.7.863. PubMed DOI
Consoli A., Nurjhan N., Reilly J.J., Bier D.M., Gerich J.E. Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus. Role of alterations in systemic, hepatic, and muscle lactate and alanine metabolism. J. Clin. Investig. 1990;86:2038–2045. doi: 10.1172/JCI114940. PubMed DOI PMC
Qian K., Zhong S., Xie K., Yu D., Yang R., Gong D.W. Hepatic ALT isoenzymes are elevated in gluconeogenic conditions including diabetes and suppressed by insulin at the protein level. Diabetes Metab. Res. Rev. 2015;31:562–571. doi: 10.1002/dmrr.2655. PubMed DOI PMC
Okun J.G., Rusu P.M., Chan A.Y., Wu Y., Yap Y.W., Sharkie T., Schumacher J., Schmidt K.V., Roberts-Thomson K.M., Russell R.D., et al. Liver alanine catabolism promotes skeletal muscle atrophy and hyperglycaemia in type 2 diabetes. Nat. Metab. 2021;3:394–409. doi: 10.1038/s42255-021-00369-9. PubMed DOI
Martino M.R., Gutiérrez-Aguilar M., Yiew N.K.H., Lutkewitte A.J., Singer J.M., McCommis K.S., Ferguson D., Liss K.H.H., Yoshino J., Renkemeyer M.K., et al. Silencing alanine transaminase 2 in diabetic liver attenuates hyperglycemia by reducing gluconeogenesis from amino acids. Cell Rep. 2022;39:110733. doi: 10.1016/j.celrep.2022.110733. PubMed DOI PMC
Holeček M. The role of skeletal muscle in the pathogenesis of altered concentrations of branched-chain amino acids (valine, leucine, and isoleucine) in liver cirrhosis, diabetes, and other diseases. Physiol. Res. 2021;70:293–305. doi: 10.33549/physiolres.934648. PubMed DOI PMC
Balk R.A. Systemic inflammatory response syndrome (SIRS): Where did it come from and is it still relevant today? Virulence. 2014;5:20–26. doi: 10.4161/viru.27135. PubMed DOI PMC
Davies M.G., Hagen P.O. Systemic inflammatory response syndrome. Br. J. Surg. 1997;84:920–935. doi: 10.1002/bjs.1800840707. PubMed DOI
Al-Yousif N., Rawal S., Jurczak M., Mahmud H., Shah F.A. Endogenous glucose production in critical illness. Nutr. Clin. Pract. 2021;36:344–359. doi: 10.1002/ncp.10646. PubMed DOI
Mizock B.A. Alterations in carbohydrate metabolism during stress: A review of the literature. Am. J. Med. 1995;98:75–84. doi: 10.1016/S0002-9343(99)80083-7. PubMed DOI
Holecek M., Sprongl L., Skopec F., Andrýs C., Pecka M. Leucine metabolism in TNF-alpha- and endotoxin-treated rats: Contribution of hepatic tissue. Am. J. Physiol. 1997;273:E1052–E1058. PubMed
Vesali R.F., Klaude M., Rooyackers O., Wernerman J. Amino acid metabolism in leg muscle after an endotoxin injection in healthy volunteers. Am. J. Physiol. 2005;288:E360–E364. doi: 10.1152/ajpendo.00248.2004. PubMed DOI
Karinch A.M., Pan M., Lin C.M., Strange R., Souba W.W. Glutamine metabolism in sepsis and infection. J. Nutr. 2001;131:2535S–2538S. doi: 10.1093/jn/131.9.2535S. PubMed DOI
Muthny T., Kovarik M., Sispera L., Tilser I., Holecek M. Protein metabolism in slow- and fast-twitch skeletal muscle during turpentine-induced inflammation. Int. J. Exp. Pathol. 2008;89:64–71. doi: 10.1111/j.1365-2613.2007.00553.x. PubMed DOI PMC
Meguid M.M., Brennan M.F., Aoki T.T., Muller W.A., Ball M.R., Moore F.D. Hormone-substrate interrelationships following trauma. Arch. Surg. 1974;109:776–783. doi: 10.1001/archsurg.1974.01360060046013. PubMed DOI
Salleh M., Ardawi M. Hepatic glutamine metabolism in the septic rat. Clin. Sci. 1992;82:709–716. doi: 10.1042/cs0820709. PubMed DOI
Bugianesi E., Kalhan S., Burkett E., Marchesini G., McCullough A. Quantification of gluconeogenesis in cirrhosis: Response to glucagon. Gastroenterology. 1998;115:1530–1540. doi: 10.1016/S0016-5085(98)70033-2. PubMed DOI
Petersen K.F., Krssak M., Navarro V., Chandramouli V., Hundal R., Schumann W.C., Landau B.R., Shulman G.I. Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis. Am. J. Physiol. 1999;276:E529–E535. doi: 10.1152/ajpendo.1999.276.3.E529. PubMed DOI
Perdigoto R., Furtado A.L., Porto A., Rodrigues T.B., Geraldes C.F., Jones J.G. Sources of glucose production in cirrhosis by 2H2O ingestion and 2H NMR analysis of plasma glucose. Biochim. Biophys. Acta. 2003;1637:156–163. doi: 10.1016/S0925-4439(03)00018-8. PubMed DOI
Joseph S.E., Heaton N., Potter D., Pernet A., Umpleby M.A., Amiel S.A. Renal glucose production compensates for the liver during the anhepatic phase of liver transplantation. Diabetes. 2000;49:450–456. doi: 10.2337/diabetes.49.3.450. PubMed DOI
Holecek M., Sprongl L., Tichý M. Effect of hyperammonemia on leucine and protein metabolism in rats. Metabolism. 2000;49:1330–1334. doi: 10.1053/meta.2000.9531. PubMed DOI
Holecek M., Kandar R., Sispera L., Kovarik M. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: Different sensitivity of red and white muscle. Amino Acids. 2011;40:575–584. doi: 10.1007/s00726-010-0679-z. PubMed DOI
Rodney S., Boneh A. Amino acid profiles in patients with urea cycle disorders at admission to hospital due to metabolic decompensation. JIMD Rep. 2013;9:97–104. PubMed PMC
Olde Damink S.W., Jalan R., Redhead D.N., Hayes P.C., Deutz N.E., Soeters P.B. Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology. 2002;36:1163–1171. doi: 10.1053/jhep.2002.36497. PubMed DOI
Holeček M., Vodeničarovová M. Muscle wasting and branched-chain amino acid, alpha-ketoglutarate, and ATP depletion in a rat model of liver cirrhosis. Int. J. Exp. Pathol. 2018;99:274–281. doi: 10.1111/iep.12299. PubMed DOI PMC
Mpabanzi L., Deutz N., Hayes P.C., Dejong C.H., Olde Damink S.W., Jalan R. Overnight glucose infusion suppresses renal ammoniagenesis and reduces hyperammonaemia induced by a simulated bleed in cirrhotic patients. Aliment. Pharmacol. Ther. 2012;35:921–928. doi: 10.1111/j.1365-2036.2012.05044.x. PubMed DOI
Romero-Gómez M., Ramos-Guerrero R., Grande L., de Terán L.C., Corpas R., Camacho I., Bautista J.D. Intestinal glutaminase activity is increased in liver cirrhosis and correlates with minimal hepatic encephalopathy. J. Hepatol. 2004;41:49–54. doi: 10.1016/j.jhep.2004.03.021. PubMed DOI
Kruszynska Y.T., McIntyre N. Gluconeogenesis from glycerol is not increased in overnight fasted cirrhotic patients. Clin. Sci. 1994;87:11P–12P. doi: 10.1042/cs045011Pc_pt2. DOI