Incorporation of PVDF Nanofibre Multilayers into Functional Structure for Filtration Applications

. 2018 Sep 29 ; 8 (10) : . [epub] 20180929

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30274281

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843 Ministry of Education, Youth and Sports of the Czech Republic and the European Union

Membranes are considered as a promising technology for separation and filtration processes. Here, novel polyvinylidene fluoride (PVDF) nanofibrous multilayer membranes were fabricated by wire-based industrial electrospinning equipment following by a lamination process. The lamination process was optimised under various applied temperature, force of lamination, and lamination time. Air permeability and burst-pressure tests were run to determine the optimum membranes for filtration application. The structures of the prepared membranes were characterised by scanning electron microscopy and pore-size analysis. The hydrophilic properties of the membranes were evaluated using water contact angle measurement, and the mechanical strength of the membranes was analysed. Air and water filtration tests were run to find the possible application of prepared membranes. The air filtration results showed that membranes had high filtration efficiencies: Over 99.00% for PM2.5, and PM0.1. The water filtration results indicated that permeability of the membranes changed from 288 to 3275 L/m²hbar. The successful preparation of such an interesting material may provide a new approach for the design and development of electrospun filter membranes.

Zobrazit více v PubMed

Fang M., Chan C.K., Yao X. Managing air quality in a rapidly developing nation: China. Atmos. Environ. 2009;43:79–86. doi: 10.1016/j.atmosenv.2008.09.064. DOI

Fenger J. Air pollution in the last 50 years-From local to global. Atmos. Environ. 2009;43:13–22. doi: 10.1016/j.atmosenv.2008.09.061. DOI

Han L., Gao B., Hao H., Zhou H., Lu J., Sun K. Lead contamination in sediments in the past 20 years: A challenge for China. Sci. Total Environ. 2018;640–641:746–756. doi: 10.1016/j.scitotenv.2018.05.330. PubMed DOI

Da Souza I.C., Arrivabene H.P., Craig C.-A., Midwood A.J., Thornton B., Matsumoto S.T., Elliott M., Wunderlin D.A., Monferrán M.V., Fernandes M.N. Interrogating pollution sources in a mangrove food web using multiple stable isotopes. Sci. Total Environ. 2018;640–641:501–511. doi: 10.1016/j.scitotenv.2018.05.302. PubMed DOI

Liao Y., Wang R., Tian M., Qiu C., Fane A.G. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Membr. Sci. 2013;425–426:30–39. doi: 10.1016/j.memsci.2012.09.023. DOI

Yalcinkaya F., Siekierka A., Bryjak M. Surface modification of electrospun nanofibrous membranes for oily wastewater separation. RSC Adv. 2017;7:56704–56712. doi: 10.1039/C7RA11904F. DOI

Li Z., Kang W., Zhao H., Hu M., Wei N., Qiu J., Cheng B. A Novel Polyvinylidene Fluoride Tree-Like Nanofiber Membrane for Microfiltration. Nanomaterials. 2016;6:152. doi: 10.3390/nano6080152. PubMed DOI PMC

Kang D.H., Kang H.W. Advanced electrospinning using circle electrodes for freestanding PVDF nanofiber film fabrication. Appl. Surf. Sci. 2018;455:251–257. doi: 10.1016/j.apsusc.2018.05.211. DOI

Wu C.-M., Chou M.-H., Zeng W.-Y. Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes. Nanomaterials. 2018;8:420. doi: 10.3390/nano8060420. PubMed DOI PMC

Zhang X., Zheng S., Zou H., Zheng X., Liu Z., Yang W., Yang M. Two-step positive temperature coefficient effect with favorable reproducibility achieved by specific “island-bridge” electrical conductive networks in HDPE/PVDF/CNF composite. Compos. Part A Appl. Sci. Manuf. 2017;94:21–31. doi: 10.1016/j.compositesa.2016.12.001. DOI

Choi S.-S., Lee Y.S., Joo C.W., Lee S.G., Park J.K., Han K.-S. Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim. Acta. 2004;50:339–343. doi: 10.1016/j.electacta.2004.03.057. DOI

Homaeigohar S., Elbahri M. Nanocomposite Electrospun Nanofiber Membranes for Environmental Remediation. Materials (Basel) 2014;7:1017–1045. doi: 10.3390/ma7021017. PubMed DOI PMC

Yalcinkaya F., Siekierka A., Bryjak M. Preparation of fouling-resistant nanofibrous composite membranes for separation of oily wastewater. Polymers (Basel) 2017;9:679. doi: 10.3390/polym9120679. PubMed DOI PMC

Grimmelsmann N., Homburg S.V., Ehrmann A. Proceedings of the IOP Conference Series: Materials Science and Engineering, Guangzhou, China, 2017. Volume 213. IOP Publishing Ltd.; Bristol, UK: 2017. Electrospinning chitosan blends for nonwovens with morphologies between nanofiber mat and membrane; p. 012007.

Banner J., Dautzenberg M., Feldhans T., Hofmann J., Plümer P., Ehrmann A. Water resistance and morphology of electrospun gelatine blended with citric acid and coconut oil. Tekstilec. 2018;61:129–135. doi: 10.14502/Tekstilec2018.61.129-135. DOI

Yalcinkaya F. Preparation of various nanofiber layers using wire electrospinning system. Arab. J. Chem. 2016 doi: 10.1016/j.arabjc.2016.12.012. DOI

Ding Y., Zhang P., Long Z., Jiang Y., Xu F., Di W. The ionic conductivity and mechanical property of electrospun P(VdF-HFP)/PMMA membranes for lithium ion batteries. J. Membr. Sci. 2009;329:56–59. doi: 10.1016/j.memsci.2008.12.024. DOI

Jahanbaani A.R., Behzad T., Borhani S., Darvanjooghi M.H.K. Electrospinning of cellulose nanofibers mat for laminated epoxy composite production. Fibers Polym. 2016;17:1438–1448. doi: 10.1007/s12221-016-6424-9. DOI

Viter R., Iatsunskyi I., Fedorenko V., Tumenas S., Balevicius Z., Ramanavicius A., Balme S., Kempiński M., Nowaczyk G., Jurga S., et al. Enhancement of Electronic and Optical Properties of ZnO/Al2O3 Nanolaminate Coated Electrospun Nanofibers. J. Phys. Chem. C. 2016;120:5124–5132. doi: 10.1021/acs.jpcc.5b12263. DOI

Turky A.O., Barhoum A., MohamedRashad M., Bechlany M. Enhanced the structure and optical properties for ZnO/PVP nanofibers fabricated via electrospinning technique. J. Mater. Sci. Mater. Electron. 2017;28:17526–17532. doi: 10.1007/s10854-017-7688-6. DOI

Charles L.E., Kramer E.R., Shaw M.T., Olson J.R., Wei M. Self-reinforced composites of hydroxyapatite-coated PLLA fibers: Fabrication and mechanical characterization. J. Mech. Behav. Biomed. Mater. 2012;17:269–277. doi: 10.1016/j.jmbbm.2012.09.007. PubMed DOI

Charles L.F., Shaw M.T., Olson J.R., Wei M. Fabrication and mechanical properties of PLLA/PCL/HA composites via a biomimetic, dip coating, and hot compression procedure. J. Mater. Sci. Mater. Med. 2010;21:1845–1854. doi: 10.1007/s10856-010-4051-3. PubMed DOI

Xu Y., Zhang X., Wang X., Wang X., Li X., Shen C., Li Q. Simultaneous enhancements in the strength, modulus and toughness of electrospun polymeric membranes. RSC Adv. 2017;7 doi: 10.1039/C7RA07739D. DOI

Yalcinkaya B., Yalcinkaya F., Chaloupek J. Thin Film Nanofibrous Composite Membrane for Dead-End Seawater Desalination. J. Nanomater. 2016;2016:2694373. doi: 10.1155/2016/2694373. DOI

Yalcinkaya B., Yalcinkaya F., Chaloupek J. Optimisation of thin film composite nanofiltration membranes based on laminated nanofibrous and nonwoven supporting material. Desalin. Water Treat. 2017;59:19–30. doi: 10.5004/dwt.2016.0254. DOI

Vijayan P.P., Puglia D., Dąbrowska A., Vijayan P.P., Huczko A., Kenny J.M., Thomas S. Mechanical and thermal properties of epoxy/silicon carbide nanofiber composites. Polym. Adv. Technol. 2015;26:142–146. doi: 10.1002/pat.3437. DOI

Park C.H., Kim C.H., Tijing L.D., Lee D.H., Yu M.H., Pant H.R., Kim Y., Kim C.S. Preparation and characterization of (polyurethane/nylon-6) nanofiber/(silicone) film composites via electrospinning and dip-coating. Fibers Polym. 2012;13:339–345. doi: 10.1007/s12221-012-0339-x. DOI

Shi Q., Wang Y., Wang Z., Lei Y., Wang B., Wu N., Han C., Xie S., Gou Y. Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction. Nano Res. 2016;9:317–328. doi: 10.1007/s12274-015-0911-y. DOI

Wang M.S., Song W.L., Fan L.Z. Three-Dimensional Interconnected Network of Graphene-Wrapped Silicon/Carbon Nanofiber Hybrids for Binder-Free Anodes in Lithium-Ion Batteries. ChemElectroChem. 2015;2:1699–1706. doi: 10.1002/celc.201500187. DOI

Yalcinkaya F., Hruza J. Effect of Laminating Pressure on Polymeric Nanofibre Composite Membranes for Liquid Filtration. Nanomaterials. 2018;8:272. doi: 10.3390/nano8050272. PubMed DOI PMC

Hernández A., Calvo J.I., Prádanos P., Tejerina F. Pore size distributions in microporous membranes. A critical analysis of the bubble point extended method. J. Membr. Sci. 1996;112:1–12. doi: 10.1016/0376-7388(95)00025-9. DOI

Szczerbińska J., Kujawski W., Arszyńska J.M., Kujawa J. Assessment of air-gap membrane distillation with hydrophobic porous membranes utilized for damaged paintings humidification. J. Membr. Sci. 2017;538:1–8. doi: 10.1016/j.memsci.2017.05.048. DOI

Kujawski W., Adamczak P., Narebska A. A Fully Automated System for the Determination of Pore Size Distribution in Microfiltration and Ultrafiltration Membranes. Sep. Sci. Technol. 1989;24:495–506. doi: 10.1080/01496398908049787. DOI

Yalcinkaya F., Yalcinkaya B., Hruza J., Hrabak P. Effect of Nanofibrous Membrane Structures on the Treatment of Wastewater Microfiltration. Sci. Adv. Mater. 2016;9:747–757. doi: 10.1166/sam.2017.3027. DOI

Yao M., Woo Y.C., Tijing L.D., Shim W.-G., Choi J.-S., Kim S.-H., Shon H.K. Effect of heat-press conditions on electrospun membranes for desalination by direct contact membrane distillation. Desalination. 2016;378:80–91. doi: 10.1016/j.desal.2015.09.025. DOI

Kim K., Lee C., Kim I.W., Kim J. Performance modification of a melt-blown filter medium via an additional nano-web layer prepared by electrospinning. Fibers Polym. 2009;10:60–64. doi: 10.1007/s12221-009-0060-6. DOI

Hung C.-H., Leung W.W.-F. Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime. Sep. Purif. Technol. 2011;79:34–42. doi: 10.1016/j.seppur.2011.03.008. DOI

Leung W.W.-F., Hung C.-H., Yuen P.-T. Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Sep. Purif. Technol. 2010;71:30–37. doi: 10.1016/j.seppur.2009.10.017. DOI

Podgórski A., Bałazy A., Gradoń L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem. Eng. Sci. 2006;61:6804–6815. doi: 10.1016/j.ces.2006.07.022. DOI

Balgis R., Kartikowati C.W., Ogi T., Gradon L., Bao L., Seki K., Okuyama K. Synthesis and evaluation of straight and bead-free nanofibers for improved aerosol filtration. Chem. Eng. Sci. 2015;137:947–954. doi: 10.1016/j.ces.2015.07.038. DOI

Maze B., Vahedi Tafreshi H., Wang Q., Pourdeyhimi B. A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures. J. Aerosol Sci. 2007;38:550–571. doi: 10.1016/j.jaerosci.2007.03.008. DOI

Marega C., Marigo A. Influence of annealing and chain defects on the melting behaviour of poly(vinylidene fluoride) Eur. Polym. J. 2003;39:1713–1720. doi: 10.1016/S0014-3057(03)00062-4. DOI

Na H., Zhao Y., Zhao C., Zhao C., Yuan X. Effect of hot-press on electrospun poly(vinylidene fluoride) membranes. Polym. Eng. Sci. 2008;48:934–940. doi: 10.1002/pen.21039. DOI

Parker A., Ueda A., Marvinney C.E., Hargrove S.K., Williams F., Mu R. Structural and Thermal Treatment Evaluation of Electrospun PVDF Nanofibers for Sensors. J. Polym. Sci. Appl. 2018;2:5–8.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...