Incorporation of PVDF Nanofibre Multilayers into Functional Structure for Filtration Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843
Ministry of Education, Youth and Sports of the Czech Republic and the European Union
PubMed
30274281
PubMed Central
PMC6215093
DOI
10.3390/nano8100771
PII: nano8100771
Knihovny.cz E-zdroje
- Klíčová slova
- HEPA filter, PVDF, electrospinning, nanofiber, wastewater,
- Publikační typ
- časopisecké články MeSH
Membranes are considered as a promising technology for separation and filtration processes. Here, novel polyvinylidene fluoride (PVDF) nanofibrous multilayer membranes were fabricated by wire-based industrial electrospinning equipment following by a lamination process. The lamination process was optimised under various applied temperature, force of lamination, and lamination time. Air permeability and burst-pressure tests were run to determine the optimum membranes for filtration application. The structures of the prepared membranes were characterised by scanning electron microscopy and pore-size analysis. The hydrophilic properties of the membranes were evaluated using water contact angle measurement, and the mechanical strength of the membranes was analysed. Air and water filtration tests were run to find the possible application of prepared membranes. The air filtration results showed that membranes had high filtration efficiencies: Over 99.00% for PM2.5, and PM0.1. The water filtration results indicated that permeability of the membranes changed from 288 to 3275 L/m²hbar. The successful preparation of such an interesting material may provide a new approach for the design and development of electrospun filter membranes.
Zobrazit více v PubMed
Fang M., Chan C.K., Yao X. Managing air quality in a rapidly developing nation: China. Atmos. Environ. 2009;43:79–86. doi: 10.1016/j.atmosenv.2008.09.064. DOI
Fenger J. Air pollution in the last 50 years-From local to global. Atmos. Environ. 2009;43:13–22. doi: 10.1016/j.atmosenv.2008.09.061. DOI
Han L., Gao B., Hao H., Zhou H., Lu J., Sun K. Lead contamination in sediments in the past 20 years: A challenge for China. Sci. Total Environ. 2018;640–641:746–756. doi: 10.1016/j.scitotenv.2018.05.330. PubMed DOI
Da Souza I.C., Arrivabene H.P., Craig C.-A., Midwood A.J., Thornton B., Matsumoto S.T., Elliott M., Wunderlin D.A., Monferrán M.V., Fernandes M.N. Interrogating pollution sources in a mangrove food web using multiple stable isotopes. Sci. Total Environ. 2018;640–641:501–511. doi: 10.1016/j.scitotenv.2018.05.302. PubMed DOI
Liao Y., Wang R., Tian M., Qiu C., Fane A.G. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Membr. Sci. 2013;425–426:30–39. doi: 10.1016/j.memsci.2012.09.023. DOI
Yalcinkaya F., Siekierka A., Bryjak M. Surface modification of electrospun nanofibrous membranes for oily wastewater separation. RSC Adv. 2017;7:56704–56712. doi: 10.1039/C7RA11904F. DOI
Li Z., Kang W., Zhao H., Hu M., Wei N., Qiu J., Cheng B. A Novel Polyvinylidene Fluoride Tree-Like Nanofiber Membrane for Microfiltration. Nanomaterials. 2016;6:152. doi: 10.3390/nano6080152. PubMed DOI PMC
Kang D.H., Kang H.W. Advanced electrospinning using circle electrodes for freestanding PVDF nanofiber film fabrication. Appl. Surf. Sci. 2018;455:251–257. doi: 10.1016/j.apsusc.2018.05.211. DOI
Wu C.-M., Chou M.-H., Zeng W.-Y. Piezoelectric Response of Aligned Electrospun Polyvinylidene Fluoride/Carbon Nanotube Nanofibrous Membranes. Nanomaterials. 2018;8:420. doi: 10.3390/nano8060420. PubMed DOI PMC
Zhang X., Zheng S., Zou H., Zheng X., Liu Z., Yang W., Yang M. Two-step positive temperature coefficient effect with favorable reproducibility achieved by specific “island-bridge” electrical conductive networks in HDPE/PVDF/CNF composite. Compos. Part A Appl. Sci. Manuf. 2017;94:21–31. doi: 10.1016/j.compositesa.2016.12.001. DOI
Choi S.-S., Lee Y.S., Joo C.W., Lee S.G., Park J.K., Han K.-S. Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim. Acta. 2004;50:339–343. doi: 10.1016/j.electacta.2004.03.057. DOI
Homaeigohar S., Elbahri M. Nanocomposite Electrospun Nanofiber Membranes for Environmental Remediation. Materials (Basel) 2014;7:1017–1045. doi: 10.3390/ma7021017. PubMed DOI PMC
Yalcinkaya F., Siekierka A., Bryjak M. Preparation of fouling-resistant nanofibrous composite membranes for separation of oily wastewater. Polymers (Basel) 2017;9:679. doi: 10.3390/polym9120679. PubMed DOI PMC
Grimmelsmann N., Homburg S.V., Ehrmann A. Proceedings of the IOP Conference Series: Materials Science and Engineering, Guangzhou, China, 2017. Volume 213. IOP Publishing Ltd.; Bristol, UK: 2017. Electrospinning chitosan blends for nonwovens with morphologies between nanofiber mat and membrane; p. 012007.
Banner J., Dautzenberg M., Feldhans T., Hofmann J., Plümer P., Ehrmann A. Water resistance and morphology of electrospun gelatine blended with citric acid and coconut oil. Tekstilec. 2018;61:129–135. doi: 10.14502/Tekstilec2018.61.129-135. DOI
Yalcinkaya F. Preparation of various nanofiber layers using wire electrospinning system. Arab. J. Chem. 2016 doi: 10.1016/j.arabjc.2016.12.012. DOI
Ding Y., Zhang P., Long Z., Jiang Y., Xu F., Di W. The ionic conductivity and mechanical property of electrospun P(VdF-HFP)/PMMA membranes for lithium ion batteries. J. Membr. Sci. 2009;329:56–59. doi: 10.1016/j.memsci.2008.12.024. DOI
Jahanbaani A.R., Behzad T., Borhani S., Darvanjooghi M.H.K. Electrospinning of cellulose nanofibers mat for laminated epoxy composite production. Fibers Polym. 2016;17:1438–1448. doi: 10.1007/s12221-016-6424-9. DOI
Viter R., Iatsunskyi I., Fedorenko V., Tumenas S., Balevicius Z., Ramanavicius A., Balme S., Kempiński M., Nowaczyk G., Jurga S., et al. Enhancement of Electronic and Optical Properties of ZnO/Al2O3 Nanolaminate Coated Electrospun Nanofibers. J. Phys. Chem. C. 2016;120:5124–5132. doi: 10.1021/acs.jpcc.5b12263. DOI
Turky A.O., Barhoum A., MohamedRashad M., Bechlany M. Enhanced the structure and optical properties for ZnO/PVP nanofibers fabricated via electrospinning technique. J. Mater. Sci. Mater. Electron. 2017;28:17526–17532. doi: 10.1007/s10854-017-7688-6. DOI
Charles L.E., Kramer E.R., Shaw M.T., Olson J.R., Wei M. Self-reinforced composites of hydroxyapatite-coated PLLA fibers: Fabrication and mechanical characterization. J. Mech. Behav. Biomed. Mater. 2012;17:269–277. doi: 10.1016/j.jmbbm.2012.09.007. PubMed DOI
Charles L.F., Shaw M.T., Olson J.R., Wei M. Fabrication and mechanical properties of PLLA/PCL/HA composites via a biomimetic, dip coating, and hot compression procedure. J. Mater. Sci. Mater. Med. 2010;21:1845–1854. doi: 10.1007/s10856-010-4051-3. PubMed DOI
Xu Y., Zhang X., Wang X., Wang X., Li X., Shen C., Li Q. Simultaneous enhancements in the strength, modulus and toughness of electrospun polymeric membranes. RSC Adv. 2017;7 doi: 10.1039/C7RA07739D. DOI
Yalcinkaya B., Yalcinkaya F., Chaloupek J. Thin Film Nanofibrous Composite Membrane for Dead-End Seawater Desalination. J. Nanomater. 2016;2016:2694373. doi: 10.1155/2016/2694373. DOI
Yalcinkaya B., Yalcinkaya F., Chaloupek J. Optimisation of thin film composite nanofiltration membranes based on laminated nanofibrous and nonwoven supporting material. Desalin. Water Treat. 2017;59:19–30. doi: 10.5004/dwt.2016.0254. DOI
Vijayan P.P., Puglia D., Dąbrowska A., Vijayan P.P., Huczko A., Kenny J.M., Thomas S. Mechanical and thermal properties of epoxy/silicon carbide nanofiber composites. Polym. Adv. Technol. 2015;26:142–146. doi: 10.1002/pat.3437. DOI
Park C.H., Kim C.H., Tijing L.D., Lee D.H., Yu M.H., Pant H.R., Kim Y., Kim C.S. Preparation and characterization of (polyurethane/nylon-6) nanofiber/(silicone) film composites via electrospinning and dip-coating. Fibers Polym. 2012;13:339–345. doi: 10.1007/s12221-012-0339-x. DOI
Shi Q., Wang Y., Wang Z., Lei Y., Wang B., Wu N., Han C., Xie S., Gou Y. Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction. Nano Res. 2016;9:317–328. doi: 10.1007/s12274-015-0911-y. DOI
Wang M.S., Song W.L., Fan L.Z. Three-Dimensional Interconnected Network of Graphene-Wrapped Silicon/Carbon Nanofiber Hybrids for Binder-Free Anodes in Lithium-Ion Batteries. ChemElectroChem. 2015;2:1699–1706. doi: 10.1002/celc.201500187. DOI
Yalcinkaya F., Hruza J. Effect of Laminating Pressure on Polymeric Nanofibre Composite Membranes for Liquid Filtration. Nanomaterials. 2018;8:272. doi: 10.3390/nano8050272. PubMed DOI PMC
Hernández A., Calvo J.I., Prádanos P., Tejerina F. Pore size distributions in microporous membranes. A critical analysis of the bubble point extended method. J. Membr. Sci. 1996;112:1–12. doi: 10.1016/0376-7388(95)00025-9. DOI
Szczerbińska J., Kujawski W., Arszyńska J.M., Kujawa J. Assessment of air-gap membrane distillation with hydrophobic porous membranes utilized for damaged paintings humidification. J. Membr. Sci. 2017;538:1–8. doi: 10.1016/j.memsci.2017.05.048. DOI
Kujawski W., Adamczak P., Narebska A. A Fully Automated System for the Determination of Pore Size Distribution in Microfiltration and Ultrafiltration Membranes. Sep. Sci. Technol. 1989;24:495–506. doi: 10.1080/01496398908049787. DOI
Yalcinkaya F., Yalcinkaya B., Hruza J., Hrabak P. Effect of Nanofibrous Membrane Structures on the Treatment of Wastewater Microfiltration. Sci. Adv. Mater. 2016;9:747–757. doi: 10.1166/sam.2017.3027. DOI
Yao M., Woo Y.C., Tijing L.D., Shim W.-G., Choi J.-S., Kim S.-H., Shon H.K. Effect of heat-press conditions on electrospun membranes for desalination by direct contact membrane distillation. Desalination. 2016;378:80–91. doi: 10.1016/j.desal.2015.09.025. DOI
Kim K., Lee C., Kim I.W., Kim J. Performance modification of a melt-blown filter medium via an additional nano-web layer prepared by electrospinning. Fibers Polym. 2009;10:60–64. doi: 10.1007/s12221-009-0060-6. DOI
Hung C.-H., Leung W.W.-F. Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime. Sep. Purif. Technol. 2011;79:34–42. doi: 10.1016/j.seppur.2011.03.008. DOI
Leung W.W.-F., Hung C.-H., Yuen P.-T. Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Sep. Purif. Technol. 2010;71:30–37. doi: 10.1016/j.seppur.2009.10.017. DOI
Podgórski A., Bałazy A., Gradoń L. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem. Eng. Sci. 2006;61:6804–6815. doi: 10.1016/j.ces.2006.07.022. DOI
Balgis R., Kartikowati C.W., Ogi T., Gradon L., Bao L., Seki K., Okuyama K. Synthesis and evaluation of straight and bead-free nanofibers for improved aerosol filtration. Chem. Eng. Sci. 2015;137:947–954. doi: 10.1016/j.ces.2015.07.038. DOI
Maze B., Vahedi Tafreshi H., Wang Q., Pourdeyhimi B. A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures. J. Aerosol Sci. 2007;38:550–571. doi: 10.1016/j.jaerosci.2007.03.008. DOI
Marega C., Marigo A. Influence of annealing and chain defects on the melting behaviour of poly(vinylidene fluoride) Eur. Polym. J. 2003;39:1713–1720. doi: 10.1016/S0014-3057(03)00062-4. DOI
Na H., Zhao Y., Zhao C., Zhao C., Yuan X. Effect of hot-press on electrospun poly(vinylidene fluoride) membranes. Polym. Eng. Sci. 2008;48:934–940. doi: 10.1002/pen.21039. DOI
Parker A., Ueda A., Marvinney C.E., Hargrove S.K., Williams F., Mu R. Structural and Thermal Treatment Evaluation of Electrospun PVDF Nanofibers for Sensors. J. Polym. Sci. Appl. 2018;2:5–8.
Polyvinyl Butyral (PVB) Nanofiber/Nanoparticle-Covered Yarns for Antibacterial Textile Surfaces
Surface-Modified Nanofibrous PVDF Membranes for Liquid Separation Technology
Electrospun Polyacrylonitrile Nanofibrous Membranes for Point-of-Use Water and Air Cleaning