Polyvinyl Butyral (PVB) Nanofiber/Nanoparticle-Covered Yarns for Antibacterial Textile Surfaces
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31484450
PubMed Central
PMC6747065
DOI
10.3390/ijms20174317
PII: ijms20174317
Knihovny.cz E-zdroje
- Klíčová slova
- PVB, antibacterial, copper, electrospinning, nanoyarn, vanadium,
- MeSH
- antibakteriální látky chemie MeSH
- měď chemie MeSH
- nanovlákna chemie MeSH
- polyvinyly chemie MeSH
- vanad chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- měď MeSH
- polyvinylbutyral MeSH Prohlížeč
- polyvinyly MeSH
- vanad MeSH
In this study, nanoparticle-incorporated nanofiber-covered yarns were prepared using a custom-made needle-free electrospinning system. The ultimate goal of this work was to prepare functional nanofibrous surfaces with antibacterial properties and realize high-speed production. As antibacterial agents, we used various amounts of copper oxide (CuO) and vanadium (V) oxide (V2O5) nanoparticles (NPs). Three yarn preparation speeds (100 m/min, 150 m/min, and 200 m/min) were used for the nanofiber-covered yarn. The results indicate a relationship between the yarn speed, quantity of NPs, and antibacterial efficiency of the material. We found a higher yarn speed to be associated with a lower reduction in bacteria. NP-loaded nanofiber yarns were proven to have excellent antibacterial properties against Gram-negative Escherichia coli (E. coli). CuO exhibited a greater inhibition and bactericidal effect against E. coli than V2O5. In brief, the studied samples are good candidates for use in antibacterial textile surface applications, such as wastewater filtration. As greater attention is being drawn to this field, this work provides new insights regarding the antibacterial textile surfaces of nanofiber-covered yarns.
Zobrazit více v PubMed
Yalcinkaya F., Yalcinkaya B., Hruza J., Hrabak P. Effect of nanofibrous membrane structures on the treatment of wastewater microfiltration. Sci. Adv. Mater. 2016;9:747–757. doi: 10.1166/sam.2017.3027. DOI
Ma Z., Kotaki M., Ramakrishna S. Electrospun cellulose nanofiber as affinity membrane. J. Memb. Sci. 2005;265:115–123.
Fan Y., Chen S., Zhao H., Liu Y. Distillation membrane constructed by TiO2nanofiber followed by fluorination for excellent water desalination performance. Desalination. 2017;405:51–58. doi: 10.1016/j.desal.2016.11.028. DOI
Yalcinkaya F. A review on advanced nanofiber technology for membrane distillation. J. Eng. Fiber. Fabr. 2019;14 doi: 10.1177/1558925018824901. DOI
Yalcinkaya B., Yalcinkaya F., Chaloupek J. Optimisation of thin film composite nanofiltration membranes based on laminated nanofibrous and nonwoven supporting material. Desalin. Water Treat. 2017;59:19–30. doi: 10.5004/dwt.2016.0254. DOI
Yalcinkaya B., Yalcinkaya F., Chaloupek J. Thin Film Nanofibrous composite membrane for dead-end seawater desalination. J. Nanomater. 2016;2016:1–12.
Kadam V.V., Wang L., Padhye R. Electrospun nanofibre materials to filter air pollutants—A review. J. Ind. Text. 2018;47:2253–2280.
Roche R., Yalcinkaya F. Incorporation of PVDF nanofibre multilayers into functional structure for filtration applications. Nanomaterials. 2018;8:771. doi: 10.3390/nano8100771. PubMed DOI PMC
Yusof M.R., Shamsudin R., Abdullah Y., Yalcinkaya F., Yaacob N. Electrospinning of carboxymethyl starch/poly(L-lactide acid) composite nanofiber. Polym. Advan. Technol. 2018;29:1843–1851.
Yalcin Enis I., Gok Sadikoglu T. Design parameters for electrospun biodegradable vascular grafts. J. Ind. Text. 2016 doi: 10.1177/1528083716654470. DOI
Macagnano A., Perri V., Zampetti E., Bearzotti A., De Cesare F., Sprovieri F., Pirrone N. A smart nanofibrous material for adsorbing and detecting elemental mercury in air. Atmos. Chem. Phys. 2017;17:6883–6893. doi: 10.5194/acp-17-6883-2017. DOI
Liu P., Wu S., Zhang Y., Zhang H., Qin X. A Fast Response ammonia sensor based on coaxial PPy–PAN nanofiber yarn. Nanomaterials. 2016;6:121. PubMed PMC
Gopalan A.I., Santhosh P., Manesh K.M., Nho J.H., Kim S.H., Hwang C.G., Lee K.P. Development of electrospun PVdF-PAN membrane-based polymer electrolytes for lithium batteries. J. Memb. Sci. 2008;325:683–690.
Aydın H., Çelik S.Ü., Bozkurt A. Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application. Solid State Ionics. 2017;309:71–76. doi: 10.1016/j.ssi.2017.07.004. DOI
Döpke C., Grothe T., Steblinski P., Klöcker M., Sabantina L., Kosmalska D., Blachowicz T., Ehrmann A. Magnetic nanofiber mats for data storage and transfer. Nanomaterials. 2019;9:92. doi: 10.3390/nano9010092. PubMed DOI PMC
Juhász Junger I., Wehlage D., Böttjer R., Grothe T., Juhász L., Grassmann C., Blachowicz T., Ehrmann A. Dye-sensitized solar cells with electrospun nanofiber mat-based counter electrodes. Materials. 2018;11:1604. doi: 10.3390/ma11091604. PubMed DOI PMC
Grothe T., Sabantina L., Klöcker M., Junger I., Döpke C., Ehrmann A. Wet relaxation of electrospun nanofiber mats. Technologies. 2019;7:23.
Yalcinkaya F. Preparation of various nanofiber layers using wire electrospinning system. Arab. J. Chem. 2016 doi: 10.1016/j.arabjc.2016.12.012. DOI
Turky A.O., Barhoum A., MohamedRashad M., Bechlany M. Enhanced the structure and optical properties for ZnO/PVP nanofibers fabricated via electrospinning technique. J. Mater. Sci. Mater. Electron. 2017;28:17526–17532. doi: 10.1007/s10854-017-7688-6. DOI
Jahanbaani A.R., Behzad T., Borhani S., Darvanjooghi M.H.K. Electrospinning of cellulose nanofibers mat for laminated epoxy composite production. Fiber. Polym. 2016;17:1438–1448.
Yalcinkaya F., Hruza J. Effect of Laminating pressure on polymeric multilayer nanofibrous membranes for liquid filtration. Nanomaterials. 2018;8:272. PubMed PMC
Charles L.F., Shaw M.T., Olson J.R., Wei M. Fabrication and mechanical properties of PLLA/PCL/HA composites via a biomimetic, dip coating, and hot compression procedure. J. Mater. Sci. Mater. Med. 2010;21:1845–1854. doi: 10.1007/s10856-010-4051-3. PubMed DOI
Wirth E., Sabantina L., Weber M., Finsterbusch K., Ehrmann A. Preliminary study of ultrasonic welding as a joining process for electrospun nanofiber mats. Nanomaterials. 2018;8:746. doi: 10.3390/nano8100746. PubMed DOI PMC
Wang X., Zhang K., Zhu M., Yu H., Zhou Z., Chen Y., Hsiao B.S. Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method. Polymer. 2008;49:2755–2761.
Khil M.S., Bhattarai S.R., Kim H.Y., Kim S.Z., Lee K.H. Novel fabricated matrix via electrospinning for tissue engineering. J. Biomed. Mater. Res. B. 2005;72:117–124. doi: 10.1002/jbm.b.30122. PubMed DOI
Smit E., Buttner U., Sanderson R.D. Continuous yarns from electrospun fibers. Polymer. 2005;46:2419–2423. doi: 10.1016/j.polymer.2005.02.002. DOI
Teo W.E., Gopal R., Ramaseshan R., Fujihara K., Ramakrishna S. A dynamic liquid support system for continuous electrospun yarn fabrication. Polymer. 2007;48:3400–3405.
Jin S., Xin B., Zheng Y., Liu S. Effect of electric field on the directly electrospun nanofiber yarns: Simulation and experimental study. Fiber. Polym. 2018;19:116–124. doi: 10.1007/s12221-018-7734-2. DOI
Levitt A.S., Vallett R., Dion G., Schauer C.L. Effect of electrospinning processing variables on polyacrylonitrile nanoyarns. J. Appl. Polym. Sci. 2018;135:46404. doi: 10.1002/app.46404. DOI
Shuakat M.N., Lin T. Highly-twisted, continuous nanofibre yarns prepared by a hybrid needle-needleless electrospinning technique. RSC Adv. 2015;5:33930–33937.
Pokorny P., Kostakova E., Sanetrnik F., Mikes P., Chvojka J., Kalous T., Bilek M., Pejchar K., Valtera J., Lukas D. Effective AC needleless and collectorless electrospinning for yarn production. Phys. Chem. Chem. Phys. 2014;16:26816–26822. doi: 10.1039/C4CP04346D. PubMed DOI
Yener F., Jirsak O., Gemci R. Using a range of PVB spinning solution to acquire diverse morphology for electrospun nanofibres. Iran. J. Chem. Chem. Eng. 2012;31:49–58.
Yener F., Yalcinkaya B. Electrospinning of polyvinyl butyral in different solvents. E-Polymers. 2013;13:229–242. doi: 10.1515/epoly-2013-0121. DOI
Xu X., Shen J., Qin J., Duan H., He G., Chen H. Cytotoxicity of bacteriostatic reduced graphene oxide-based copper oxide nanocomposites. JOM. 2019;71:294–301.
Khatoon U.T., Mohan Mantravadi K., Nageswara Rao G.V.S. Strategies to synthesise copper oxide nanoparticles and their bio applications–a review. Mater. Sci. Technol. 2018;34:2214–2222. doi: 10.1080/02670836.2018.1482600. DOI
Dhayal Raj A., Pazhanivel T., Suresh Kumar P., Mangalaraj D., Nataraj D., Ponpandian N. Self assembled V2O5 nanorods for gas sensors. Curr. Appl. Phys. 2010;10:531–537.
Pan A., Zhang J.G., Nie Z., Cao G., Arey B.W., Li G., Liang S.Q., Liu J. Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater. Chem. 2010;20:9193–9199. doi: 10.1039/c0jm01306d. DOI
Elbohy H., Thapa A., Poudel P., Adhikary N., Venkatesan S., Qiao Q. Vanadium oxide as new charge recombination blocking layer for high efficiency dye-sensitized solar cells. Nano Energy. 2015;13:368–375. doi: 10.1016/j.nanoen.2014.09.008. DOI
Ottaviano L., Pennisi A., Simone F., Salvi A.M. RF sputtered electrochromic V2O5 films. Opt. Mater. 2004;27:307–313. doi: 10.1016/j.optmat.2004.04.001. DOI
Pan K.-Y., Wei D.-H. Optoelectronic and electrochemical properties of vanadium pentoxide nanowires synthesized by vapor-solid process. Nanomaterials. 2016;6:140. doi: 10.3390/nano6080140. PubMed DOI PMC
Raj S., Kumar S., Chatterjee K. Facile synthesis of vanadia nanoparticles and assessment of antibacterial activity and cytotoxicity. Mater. Technol. 2016;31:562–573. doi: 10.1080/10667857.2016.1147130. DOI
Coliform Bacteria in Drinking Water Supplies. [(accessed on 29 July 2019)]; Available online: https://www.health.ny.gov/environmental/water/drinking/coliform_bacteria.htm.
Kaper J.B. Pathogenic Escherichia coli. Int. J. Med. Microbiol. 2005;295:355–356. doi: 10.1016/j.ijmm.2005.06.008. PubMed DOI
Yener F., Jirsak O. Comparison between the needle and roller electrospinning of polyvinylbutyral. J. Nanomater. 2012;2012:1–6. doi: 10.1155/2012/839317. DOI
Demir D., Güreş D., Tecim T., Genç R., Bölgen N. Magnetic nanoparticle-loaded electrospun poly(ε-caprolactone) nanofibers for drug delivery applications. Appl. Nanosci. 2018;8:1461–1469. doi: 10.1007/s13204-018-0830-9. DOI
Seil J.T., Webster T.J. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomed. 2012;7:2767–2781. PubMed PMC
Padmavathy N., Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles—An antimicrobial study. Sci. Technol. Adv. Mater. 2008;9:035004. doi: 10.1088/1468-6996/9/3/035004. PubMed DOI PMC
Meghana S., Kabra P., Chakraborty S., Padmavathy N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 2015;5:12293–12299. doi: 10.1039/C4RA12163E. DOI
Crans D.C., Smee J.J., Gaidamauskas E., Yang L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 2004;104:849–902. doi: 10.1021/cr020607t. PubMed DOI
Jayaraj S.K., Sadishkumar V., Arun T., Thangadurai P. Enhanced photocatalytic activity of V2O5 nanorods for the photodegradation of organic dyes: A detailed understanding of the mechanism and their antibacterial activity. Mater. Sci. Semicond. Process. 2018;85:122–133. doi: 10.1016/j.mssp.2018.06.006. DOI
Yalcinkaya F., Komarek M., Lubasova D., Sanetrnik F., Maryska J. Preparation of Antibacterial nanofibre/nanoparticle covered composite yarns. J. Nanomater. 2016;2016:1–7. doi: 10.1155/2016/7565972. DOI
Yalcinkaya F., Komarek M., Lubasova D., Sanetrnik F., Maryska J. Producing antibacterial textile material by weaving PVB/CuO nanocomposite fiber covered yarn. Nanocon 2014, 6th International Conference 2015. [(accessed on 1 May 2019)]; Available online: http://nanocon2014.tanger.cz/en/view-list-of-papers/3255-producing-antibacterial-textile-material-by-weaving-pvb-cuo-nanocomposite-fiber-covered-yarn/
Ungur G., Hrůza J. Modified polyurethane nanofibers as antibacterial filters for air and water purification. RSC Adv. 2017;7:49177–49187. doi: 10.1039/C7RA06317B. DOI
Yalcinkaya F., Lubasova D. Quantitative evaluation of antibacterial activities of nanoparticles (ZnO, TiO2, ZnO/TiO2, SnO2, CuO, ZrO2, and AgNO3) incorporated into polyvinyl butyral nanofibers. Polym. Adv. Technol. 2017;28:137–140. doi: 10.1002/pat.3883. DOI
Homaeigohar S., Zillohu A.U., Abdelaziz R., Hedayati M.K., Elbahri M. A Novel nanohybrid nanofibrous adsorbent for water purification from dye pollutants. Materials (Basel) 2016;9:848. doi: 10.3390/ma9100848. PubMed DOI PMC
Nano- and Microfiber PVB Patches as Natural Oil Carriers for Atopic Skin Treatment
Novel Polyvinyl Butyral/Monoacylglycerol Nanofibrous Membrane with Antifouling Activity