Polyvinyl Butyral (PVB) Nanofiber/Nanoparticle-Covered Yarns for Antibacterial Textile Surfaces

. 2019 Sep 03 ; 20 (17) : . [epub] 20190903

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31484450

In this study, nanoparticle-incorporated nanofiber-covered yarns were prepared using a custom-made needle-free electrospinning system. The ultimate goal of this work was to prepare functional nanofibrous surfaces with antibacterial properties and realize high-speed production. As antibacterial agents, we used various amounts of copper oxide (CuO) and vanadium (V) oxide (V2O5) nanoparticles (NPs). Three yarn preparation speeds (100 m/min, 150 m/min, and 200 m/min) were used for the nanofiber-covered yarn. The results indicate a relationship between the yarn speed, quantity of NPs, and antibacterial efficiency of the material. We found a higher yarn speed to be associated with a lower reduction in bacteria. NP-loaded nanofiber yarns were proven to have excellent antibacterial properties against Gram-negative Escherichia coli (E. coli). CuO exhibited a greater inhibition and bactericidal effect against E. coli than V2O5. In brief, the studied samples are good candidates for use in antibacterial textile surface applications, such as wastewater filtration. As greater attention is being drawn to this field, this work provides new insights regarding the antibacterial textile surfaces of nanofiber-covered yarns.

Zobrazit více v PubMed

Yalcinkaya F., Yalcinkaya B., Hruza J., Hrabak P. Effect of nanofibrous membrane structures on the treatment of wastewater microfiltration. Sci. Adv. Mater. 2016;9:747–757. doi: 10.1166/sam.2017.3027. DOI

Ma Z., Kotaki M., Ramakrishna S. Electrospun cellulose nanofiber as affinity membrane. J. Memb. Sci. 2005;265:115–123.

Fan Y., Chen S., Zhao H., Liu Y. Distillation membrane constructed by TiO2nanofiber followed by fluorination for excellent water desalination performance. Desalination. 2017;405:51–58. doi: 10.1016/j.desal.2016.11.028. DOI

Yalcinkaya F. A review on advanced nanofiber technology for membrane distillation. J. Eng. Fiber. Fabr. 2019;14 doi: 10.1177/1558925018824901. DOI

Yalcinkaya B., Yalcinkaya F., Chaloupek J. Optimisation of thin film composite nanofiltration membranes based on laminated nanofibrous and nonwoven supporting material. Desalin. Water Treat. 2017;59:19–30. doi: 10.5004/dwt.2016.0254. DOI

Yalcinkaya B., Yalcinkaya F., Chaloupek J. Thin Film Nanofibrous composite membrane for dead-end seawater desalination. J. Nanomater. 2016;2016:1–12.

Kadam V.V., Wang L., Padhye R. Electrospun nanofibre materials to filter air pollutants—A review. J. Ind. Text. 2018;47:2253–2280.

Roche R., Yalcinkaya F. Incorporation of PVDF nanofibre multilayers into functional structure for filtration applications. Nanomaterials. 2018;8:771. doi: 10.3390/nano8100771. PubMed DOI PMC

Yusof M.R., Shamsudin R., Abdullah Y., Yalcinkaya F., Yaacob N. Electrospinning of carboxymethyl starch/poly(L-lactide acid) composite nanofiber. Polym. Advan. Technol. 2018;29:1843–1851.

Yalcin Enis I., Gok Sadikoglu T. Design parameters for electrospun biodegradable vascular grafts. J. Ind. Text. 2016 doi: 10.1177/1528083716654470. DOI

Macagnano A., Perri V., Zampetti E., Bearzotti A., De Cesare F., Sprovieri F., Pirrone N. A smart nanofibrous material for adsorbing and detecting elemental mercury in air. Atmos. Chem. Phys. 2017;17:6883–6893. doi: 10.5194/acp-17-6883-2017. DOI

Liu P., Wu S., Zhang Y., Zhang H., Qin X. A Fast Response ammonia sensor based on coaxial PPy–PAN nanofiber yarn. Nanomaterials. 2016;6:121. PubMed PMC

Gopalan A.I., Santhosh P., Manesh K.M., Nho J.H., Kim S.H., Hwang C.G., Lee K.P. Development of electrospun PVdF-PAN membrane-based polymer electrolytes for lithium batteries. J. Memb. Sci. 2008;325:683–690.

Aydın H., Çelik S.Ü., Bozkurt A. Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application. Solid State Ionics. 2017;309:71–76. doi: 10.1016/j.ssi.2017.07.004. DOI

Döpke C., Grothe T., Steblinski P., Klöcker M., Sabantina L., Kosmalska D., Blachowicz T., Ehrmann A. Magnetic nanofiber mats for data storage and transfer. Nanomaterials. 2019;9:92. doi: 10.3390/nano9010092. PubMed DOI PMC

Juhász Junger I., Wehlage D., Böttjer R., Grothe T., Juhász L., Grassmann C., Blachowicz T., Ehrmann A. Dye-sensitized solar cells with electrospun nanofiber mat-based counter electrodes. Materials. 2018;11:1604. doi: 10.3390/ma11091604. PubMed DOI PMC

Grothe T., Sabantina L., Klöcker M., Junger I., Döpke C., Ehrmann A. Wet relaxation of electrospun nanofiber mats. Technologies. 2019;7:23.

Yalcinkaya F. Preparation of various nanofiber layers using wire electrospinning system. Arab. J. Chem. 2016 doi: 10.1016/j.arabjc.2016.12.012. DOI

Turky A.O., Barhoum A., MohamedRashad M., Bechlany M. Enhanced the structure and optical properties for ZnO/PVP nanofibers fabricated via electrospinning technique. J. Mater. Sci. Mater. Electron. 2017;28:17526–17532. doi: 10.1007/s10854-017-7688-6. DOI

Jahanbaani A.R., Behzad T., Borhani S., Darvanjooghi M.H.K. Electrospinning of cellulose nanofibers mat for laminated epoxy composite production. Fiber. Polym. 2016;17:1438–1448.

Yalcinkaya F., Hruza J. Effect of Laminating pressure on polymeric multilayer nanofibrous membranes for liquid filtration. Nanomaterials. 2018;8:272. PubMed PMC

Charles L.F., Shaw M.T., Olson J.R., Wei M. Fabrication and mechanical properties of PLLA/PCL/HA composites via a biomimetic, dip coating, and hot compression procedure. J. Mater. Sci. Mater. Med. 2010;21:1845–1854. doi: 10.1007/s10856-010-4051-3. PubMed DOI

Wirth E., Sabantina L., Weber M., Finsterbusch K., Ehrmann A. Preliminary study of ultrasonic welding as a joining process for electrospun nanofiber mats. Nanomaterials. 2018;8:746. doi: 10.3390/nano8100746. PubMed DOI PMC

Wang X., Zhang K., Zhu M., Yu H., Zhou Z., Chen Y., Hsiao B.S. Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method. Polymer. 2008;49:2755–2761.

Khil M.S., Bhattarai S.R., Kim H.Y., Kim S.Z., Lee K.H. Novel fabricated matrix via electrospinning for tissue engineering. J. Biomed. Mater. Res. B. 2005;72:117–124. doi: 10.1002/jbm.b.30122. PubMed DOI

Smit E., Buttner U., Sanderson R.D. Continuous yarns from electrospun fibers. Polymer. 2005;46:2419–2423. doi: 10.1016/j.polymer.2005.02.002. DOI

Teo W.E., Gopal R., Ramaseshan R., Fujihara K., Ramakrishna S. A dynamic liquid support system for continuous electrospun yarn fabrication. Polymer. 2007;48:3400–3405.

Jin S., Xin B., Zheng Y., Liu S. Effect of electric field on the directly electrospun nanofiber yarns: Simulation and experimental study. Fiber. Polym. 2018;19:116–124. doi: 10.1007/s12221-018-7734-2. DOI

Levitt A.S., Vallett R., Dion G., Schauer C.L. Effect of electrospinning processing variables on polyacrylonitrile nanoyarns. J. Appl. Polym. Sci. 2018;135:46404. doi: 10.1002/app.46404. DOI

Shuakat M.N., Lin T. Highly-twisted, continuous nanofibre yarns prepared by a hybrid needle-needleless electrospinning technique. RSC Adv. 2015;5:33930–33937.

Pokorny P., Kostakova E., Sanetrnik F., Mikes P., Chvojka J., Kalous T., Bilek M., Pejchar K., Valtera J., Lukas D. Effective AC needleless and collectorless electrospinning for yarn production. Phys. Chem. Chem. Phys. 2014;16:26816–26822. doi: 10.1039/C4CP04346D. PubMed DOI

Yener F., Jirsak O., Gemci R. Using a range of PVB spinning solution to acquire diverse morphology for electrospun nanofibres. Iran. J. Chem. Chem. Eng. 2012;31:49–58.

Yener F., Yalcinkaya B. Electrospinning of polyvinyl butyral in different solvents. E-Polymers. 2013;13:229–242. doi: 10.1515/epoly-2013-0121. DOI

Xu X., Shen J., Qin J., Duan H., He G., Chen H. Cytotoxicity of bacteriostatic reduced graphene oxide-based copper oxide nanocomposites. JOM. 2019;71:294–301.

Khatoon U.T., Mohan Mantravadi K., Nageswara Rao G.V.S. Strategies to synthesise copper oxide nanoparticles and their bio applications–a review. Mater. Sci. Technol. 2018;34:2214–2222. doi: 10.1080/02670836.2018.1482600. DOI

Dhayal Raj A., Pazhanivel T., Suresh Kumar P., Mangalaraj D., Nataraj D., Ponpandian N. Self assembled V2O5 nanorods for gas sensors. Curr. Appl. Phys. 2010;10:531–537.

Pan A., Zhang J.G., Nie Z., Cao G., Arey B.W., Li G., Liang S.Q., Liu J. Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater. Chem. 2010;20:9193–9199. doi: 10.1039/c0jm01306d. DOI

Elbohy H., Thapa A., Poudel P., Adhikary N., Venkatesan S., Qiao Q. Vanadium oxide as new charge recombination blocking layer for high efficiency dye-sensitized solar cells. Nano Energy. 2015;13:368–375. doi: 10.1016/j.nanoen.2014.09.008. DOI

Ottaviano L., Pennisi A., Simone F., Salvi A.M. RF sputtered electrochromic V2O5 films. Opt. Mater. 2004;27:307–313. doi: 10.1016/j.optmat.2004.04.001. DOI

Pan K.-Y., Wei D.-H. Optoelectronic and electrochemical properties of vanadium pentoxide nanowires synthesized by vapor-solid process. Nanomaterials. 2016;6:140. doi: 10.3390/nano6080140. PubMed DOI PMC

Raj S., Kumar S., Chatterjee K. Facile synthesis of vanadia nanoparticles and assessment of antibacterial activity and cytotoxicity. Mater. Technol. 2016;31:562–573. doi: 10.1080/10667857.2016.1147130. DOI

Coliform Bacteria in Drinking Water Supplies. [(accessed on 29 July 2019)]; Available online: https://www.health.ny.gov/environmental/water/drinking/coliform_bacteria.htm.

Kaper J.B. Pathogenic Escherichia coli. Int. J. Med. Microbiol. 2005;295:355–356. doi: 10.1016/j.ijmm.2005.06.008. PubMed DOI

Yener F., Jirsak O. Comparison between the needle and roller electrospinning of polyvinylbutyral. J. Nanomater. 2012;2012:1–6. doi: 10.1155/2012/839317. DOI

Demir D., Güreş D., Tecim T., Genç R., Bölgen N. Magnetic nanoparticle-loaded electrospun poly(ε-caprolactone) nanofibers for drug delivery applications. Appl. Nanosci. 2018;8:1461–1469. doi: 10.1007/s13204-018-0830-9. DOI

Seil J.T., Webster T.J. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomed. 2012;7:2767–2781. PubMed PMC

Padmavathy N., Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles—An antimicrobial study. Sci. Technol. Adv. Mater. 2008;9:035004. doi: 10.1088/1468-6996/9/3/035004. PubMed DOI PMC

Meghana S., Kabra P., Chakraborty S., Padmavathy N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 2015;5:12293–12299. doi: 10.1039/C4RA12163E. DOI

Crans D.C., Smee J.J., Gaidamauskas E., Yang L. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 2004;104:849–902. doi: 10.1021/cr020607t. PubMed DOI

Jayaraj S.K., Sadishkumar V., Arun T., Thangadurai P. Enhanced photocatalytic activity of V2O5 nanorods for the photodegradation of organic dyes: A detailed understanding of the mechanism and their antibacterial activity. Mater. Sci. Semicond. Process. 2018;85:122–133. doi: 10.1016/j.mssp.2018.06.006. DOI

Yalcinkaya F., Komarek M., Lubasova D., Sanetrnik F., Maryska J. Preparation of Antibacterial nanofibre/nanoparticle covered composite yarns. J. Nanomater. 2016;2016:1–7. doi: 10.1155/2016/7565972. DOI

Yalcinkaya F., Komarek M., Lubasova D., Sanetrnik F., Maryska J. Producing antibacterial textile material by weaving PVB/CuO nanocomposite fiber covered yarn. Nanocon 2014, 6th International Conference 2015. [(accessed on 1 May 2019)]; Available online: http://nanocon2014.tanger.cz/en/view-list-of-papers/3255-producing-antibacterial-textile-material-by-weaving-pvb-cuo-nanocomposite-fiber-covered-yarn/

Ungur G., Hrůza J. Modified polyurethane nanofibers as antibacterial filters for air and water purification. RSC Adv. 2017;7:49177–49187. doi: 10.1039/C7RA06317B. DOI

Yalcinkaya F., Lubasova D. Quantitative evaluation of antibacterial activities of nanoparticles (ZnO, TiO2, ZnO/TiO2, SnO2, CuO, ZrO2, and AgNO3) incorporated into polyvinyl butyral nanofibers. Polym. Adv. Technol. 2017;28:137–140. doi: 10.1002/pat.3883. DOI

Homaeigohar S., Zillohu A.U., Abdelaziz R., Hedayati M.K., Elbahri M. A Novel nanohybrid nanofibrous adsorbent for water purification from dye pollutants. Materials (Basel) 2016;9:848. doi: 10.3390/ma9100848. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nano- and Microfiber PVB Patches as Natural Oil Carriers for Atopic Skin Treatment

. 2020 Nov 16 ; 3 (11) : 7666-7676. [epub] 20200818

Novel Polyvinyl Butyral/Monoacylglycerol Nanofibrous Membrane with Antifouling Activity

. 2020 Aug 19 ; 13 (17) : . [epub] 20200819

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...