Novel Polyvinyl Butyral/Monoacylglycerol Nanofibrous Membrane with Antifouling Activity

. 2020 Aug 19 ; 13 (17) : . [epub] 20200819

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32825117

Grantová podpora
LTC 19034 Ministerstvo Školství, Mládeže a Tělovýchovy

Monoacylglycerols (MAGs) have proven of great interest to the foodstuffs industry due to the promising antibacterial activity they show for controlling microbial contamination. Prior to this paper, this antibacterial agent had not been incorporated in a nanofibrous membrane. This study details convenient fabrication of nanofibrous membranes based on polyvinyl butyral (PVB) containing various concentrations of monocaprin (MAG 10) by an electrospinning process. Increasing the concentration of MAG 10 caused differences to appear in the shape of the nanofibers, in addition to which the level of wettability was heightened. Besides exhibiting antibacterial properties, the functional membranes demonstrated especially good antifouling activity. The novel and efficient nanofibrous membranes described have the potential to find eventual application in medical or environmental fields.

Zobrazit více v PubMed

Cai N., Li C., Han C., Luo X., Shen L., Xue Y. Tailoring mechanical and antibacterial properties of chitosan/gelatinnanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application. Appl. Surf. Sci. 2016;369:92–500. doi: 10.1016/j.apsusc.2016.02.053. DOI

Peer P., Polaskova M., Musilova L. Superhydrophobic poly (vinyl butyral) nanofibrous membrane containing various silica nanoparticles. J. Text. Inst. 2019;110:1508–1514. doi: 10.1080/00405000.2019.1605658. DOI

Panthi G., Park M., Kim H.Y., Park S.J. Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: A review. J. Ind. Eng. Chem. 2015;242:1–13. doi: 10.1016/j.jiec.2014.09.011. DOI

Al-Enizi A.M., Zagho M.M., Elzatahry A.A. Polymer-based electrospun nanofibers for biomedical applications. Nanomaterials. 2018;8:259. doi: 10.3390/nano8040259. PubMed DOI PMC

Ge L., Zhao Y.S., Mo T., Li J.R., Li P. Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation. Food Control. 2012;26:88–193. doi: 10.1016/j.foodcont.2012.01.022. DOI

Rasouli R., Barhoum A., Bechelany M., Dufresne A. Nanofibers for biomedical and healthcare applications. Macromol. Biosci. 2019;19:1800256. doi: 10.1002/mabi.201800256. PubMed DOI

Rivero P.J., Urrutia A., Goicoechea J., Arregui F.J. Nanomaterials for functional textliles and fibers. Nanoscale Res. Lett. 2015;10:501. doi: 10.1186/s11671-015-1195-6. PubMed DOI PMC

Shahkaramipour N., Tran T.N., Ramanan S., Lin H. Membranes with surface-enhanced antifouling properties for water purification. Membranes. 2017;7:7010013. doi: 10.3390/membranes7010013. PubMed DOI PMC

Hu M., Li C.W., Li X., Zhou M., Sun J.B., Sheng F.F., Shi S.J., Lu L.C. Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibers for improved antibacterial activity. Artif. Cell Nanomed. Biotechnol. 2018;46:1248–1257. doi: 10.1080/21691401.2017.1366339. PubMed DOI

Machado R., Da Costa A., Silva D.M., Gomes A.C., Casal M., Sencadas V. Antibacterial and antifungal activity of poly(lactic acid)-bovine lactoferrin nanofiber membranes. Macromol. Biosci. 2018;18:1700324. doi: 10.1002/mabi.201700324. PubMed DOI

Rieger K.A., Schiffman J.D. Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly (ethylene oxide) nanofibers. Carbohydr. Polym. 2014;113:561–568. doi: 10.1016/j.carbpol.2014.06.075. PubMed DOI

Fan X.Y., Yin M.L., Jiang Z.M., Pan N.Y., Ren X.H., Huang T.S. Antibacterial poly(3-hydroxybutyrate-co-4-hydroxybutyrate) fibrous membranes containing quaternary ammonium salts. Polym. Adv. Technol. 2016;27:1617–1624. doi: 10.1002/pat.3839. DOI

Kurtz I.S., Schiffman J.D. Current and emerging approaches to engineer antibacterial and antifouling electrospun nanofibers. Materials. 2018;11:1059. doi: 10.3390/ma11071059. PubMed DOI PMC

Dolezalova I., Janis R., Bunkova L., Slobodian P., Vicha R. Preparation, characterization and antibacterial activity of 1-monoacylglycerol of adamantane-1-carboxylic acid. J. Food Biochem. 2013;34:544–553.

Sevcikova P., Kasparkova V., Hauerlandova I., Humpolicek P., Kucekova Z., Bunkova L. Formulation, antibacterial activity, and cytotoxicity of 1-monoacylglycerol microemulsions. Eur. J. Lipid Sci. Technol. 2014;116:448–457.

Vltavska P., Kasparkova V., Janis R., Bunkova L. Antifungal and antibacterial effects of 1-monocaprylin on textile materials. Eur. J. Lipid Sci. Technol. 2012;114:849–856. doi: 10.1002/ejlt.201100229. DOI

Preuss H.G., Echard B., Enig M., Brook I., Elliott T.B. Minimum inhibitory concentrations of herbal essential oils and monolaurin for gram-positive and gram-negative bacteria. Mol. Cell. Biochem. 2005;272:29–34. doi: 10.1007/s11010-005-6604-1. PubMed DOI

Altieri C., Bevilacqua A., Cardillo D., Sinigaglia M. Effectiveness of fatty acids and their monoglycerides against gram-negative pathogens. Int. J. Food Sci. Technol. 2009;44:359–366. doi: 10.1111/j.1365-2621.2008.01744.x. DOI

Bunkova L., Krejci J., Janis R., Kasparkova V., Vltavska P., Kulendova L., Bunka F. Influence of monoacylglycerols on growth inhibition of micromycetes in vitro and on bread. Eur. J. Lipid Sci. Technol. 2010;112:173–179. doi: 10.1002/ejlt.200900070. DOI

Norn V. Emulsifiers in Food Technology. 2nd ed. Wiley Blackwell Publishing; Juelsminde, Denmark: 2015.

Jackman J., Yoon B.K., Li D., Cho N. Nanotechnology formulations for antibacterial free fatty acids and monoglycerides. Molecules. 2016;21:305. doi: 10.3390/molecules21030305. PubMed DOI PMC

Thormar H., Hilmarsson H. Glycerol monocaprate (monocaprin) reduces contamination by Escherichia coli and Salmonella enteritidis in hard surfaces. Food Control. 2012;25:505–510. doi: 10.1016/j.foodcont.2011.11.024. DOI

Araujo E.S., Nascimento M.L.F., De Oliveira H.P. Influence of triton X-100 on PVA fibers production by the electrospinning technique. Fibres Text. East. Eur. 2013;100:39–43.

Lin T., Wang H., Wang X. The charge effect of cationic surfactants on the elimination of fiber beads in the electrospinning of polystyrene. Nanotechnology. 2004;15:1375–1381. doi: 10.1088/0957-4484/15/9/044. DOI

Park J.A., Kim S.B. Anti-biofouling enhancement of a polycarbonate membrane with functionalized poly (vinyl alcohol) electrospun nanofibers: Permeation flux, biofilm formation, contact, and regeneration tests. J. Membr. Sci. 2017;540:192–199. doi: 10.1016/j.memsci.2017.06.071. DOI

Francolini I., Vuotto C., Piozzi A., Donelli G. Antifouling and antimicrobial biomaterials: An overview. APMIS. 2017;125:392–417. doi: 10.1111/apm.12675. PubMed DOI

Nthunya L.N., Gutierrez L., Nxumalo E.N. f-MWCNTs/AgNPs-coated superhydrophobic PVDF nanofiber membrane for organic, colloidal, and biofouling mitigation in direct contact membrane distillation. J. Environ. Chem. Eng. 2020;8:103654. doi: 10.1016/j.jece.2020.103654. DOI

Spasova M., Manolova N., Markova N., Rashkov I. Superhydrophobic PVDF and PVDF-HFP nanofibrous mats with antibacterial and antibiofouling properties. Appl. Surf. Sci. 2016;363:363–371. doi: 10.1016/j.apsusc.2015.12.049. DOI

Goetz L.A., Jalvo B., Rosal R., Mathew A.P. Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J. Membr. Sci. 2016;510:238–248. doi: 10.1016/j.memsci.2016.02.069. DOI

Pan S., Ke X., Wang T.Y., Liu Q., Zhong L.B., Zheng Y.M. Synthesis of silver nanoparticles embedded electrospun PAN nanofiber thin-film composite forward osmosis membrane to enhance performance and antimicrobial activity. Ind. Eng. Chem. Res. 2019;58:984–993. doi: 10.1021/acs.iecr.8b04893. DOI

Sallem H., Trabzon L., Kilic A., Zaidi S.J. Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination. Desalination. 2020;478:114178. doi: 10.1016/j.desal.2019.114178. DOI

Yalcinkaya F. Experimental study on electrospun polyvinyl butyral nanofibers using a non-solvent system. Fibers Polym. 2015;16:2544–2551. doi: 10.1007/s12221-015-5525-1. DOI

Basturk E., Cakmakci E., Madakbas S., Kahraman M.V. Surface and proton conductivity properties of electrospun poly (vinyl butyral)/polyaniline nanofibers. Adv. Polym. Technol. 2018;37:1774–1781. doi: 10.1002/adv.21836. DOI

Park S.W., Kim J.C., Dar M.A., Shim H.W., Kim D.W. Superior lithium storage in nitrogen-doped carbon nanofibers with open-channels. Chem. Eng. J. 2017;315:1–9. doi: 10.1016/j.cej.2017.01.005. DOI

Li Y., Jiao M., Zhao H., Yang M. Humidity sensing properties of the composite of electrospun crosslinked polyelectrolyte nanofibers decorated with Ag nanoparticles. Sens. Actuators B Chem. 2018;273:133–142. doi: 10.1016/j.snb.2018.06.009. DOI

Peer P., Cvek M., Urbanek M., Sedlacik M. Preparation of electrospun magnetic polyvinyl butyral/Fe2O3 nanofubrous membranes for effective removal of iron irons from groundwater. J. Appl. Polym. Sci. 2020:e49576. doi: 10.1002/app.49576. DOI

Yalcinkaya F., Komarek M. Polyvinyl butyral (PVB) nanofiber/nanoparticle-covered yarns for antibacterial textile surfaces. Int. J. Mol. Sci. 2019;20:4317. doi: 10.3390/ijms20174317. PubMed DOI PMC

Janis R., Klasek A., Krejci J., Bobalova J. Influence of some chromium complexes on the conversion rate of glycidol—Fatty acid reaction. Tenside Urfactants Deterg. 2005;42:44–48. doi: 10.3139/113.100250. DOI

Bunkova L., Bunka F., Janis R., Krejci J., Dolezalkova I., Pospisil Z., Ruzicka J., Tremlova B. Comparison of antibacterial effect of seven 1-monoglycerides on food-borne pathogens or spoilage bacteria. Acta Vet. Brno. 2011;80:29–39. doi: 10.2754/avb201180010029. DOI

Peer P., Stenicka M., Pavlinek V., Filip P. An electrorheological investigation of PVB solutions in connection with their electrospinning qualities. Polym. Test. 2014;39:115–121. doi: 10.1016/j.polymertesting.2014.07.016. DOI

Peer P., Stenicka M., Pavlinek V., Filip P. The storage ability of polyvinylbutyral solutions from an electrospinnability standpoint. Polym. Degrad. Stab. 2014;105:134–139. doi: 10.1016/j.polymdegradstab.2014.04.015. DOI

Merchan M., Sedlarikova J., Friedrich M., Sedlarik V., Saha P. Thermoplastic modification of medical grade polyvinyl chloride with various antibiotics: Effect of antibiotic chemical structure on mechanical, antibacterial properties, and release activity. Polym. Bull. 2011;67:997–1016. doi: 10.1007/s00289-011-0474-3. DOI

ISO 22196 . Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. International Organization for Standardization; Geneva, Switzerland: 2011.

Michalska-Sionkowska M., Walczak M., Sionkowska A. Antimicrobial activity of collagen material with thymol addition for potential application as wound dressing. Polym. Test. 2017;63:360–366. doi: 10.1016/j.polymertesting.2017.08.036. DOI

Park J., Kim S. Preparation and characterization of antimicrobial electrospun poly (vinyl alcohol) nanofibers containing benzyl triethylammonium chloride. React. Funct. Polym. 2015;93:30–37. doi: 10.1016/j.reactfunctpolym.2015.05.008. DOI

Theron S.A., Zussman E., Yarin A.L. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer. 2004;45:2017–2030. doi: 10.1016/j.polymer.2004.01.024. DOI

Juang Y.H., Kim H.Y., Lee D.R., Park S.Y. Characterization of PVOH nonwoven mats prepared from surfactant-polymer system via electrospinning. Macromol. Res. 2005;13:385–390. doi: 10.1007/BF03218470. DOI

Fang W., Yang S., Yuan T.Q., Charlton A., Sun R.C. Effect of various surfactants on alkali lignin electrospinning ability and spun fibers. Ind. Eng. Chem. Res. 2017;56:9551–9559. doi: 10.1021/acs.iecr.7b02494. DOI

Chinatangul N., Limmatvapirat C., Nunthanid J., Luangtana-Anan M., Sriamornsak P., Limmatvapirat S. Design and characterization of monolaurin loaded electrospun shellac nanofibers with antimicrobial activity. Asian J. Pharm. Sci. 2018;13:459–471. doi: 10.1016/j.ajps.2017.12.006. PubMed DOI PMC

Peer P., Polaskova M., Suly P. Rheology of poly (vinyl butyral) solution containing fumed silica in correlation with electrospinning. Chin. J. Polym. Sci. 2018;36:742–748. doi: 10.1007/s10118-018-2077-z. DOI

Jia L., Qin X. The effect of different surfactants on the electrospinning poly (vinyl alcohol) (PVA) nanofibers. J. Therm. Anal. Calorim. 2012;112:595–605. doi: 10.1007/s10973-012-2607-9. DOI

Yener F., Yalcinkaya B. Electrospinning of polyvinyl butyral in different solvents. E-Polym. 2013;21:229–242. doi: 10.1515/epoly-2013-0121. DOI

Abutaleb S., Lolla D., Aljuhani A., Shin H.U., Rajala J.W., Chase G. Effects of surfactants on the morphology and properties of electrosupn polyetherimide fibers. Fibers. 2017;5:33. doi: 10.3390/fib5030033. DOI

Clarizia G., Tasselli F., Simari C., Nicotera I., Bernardo P. Solution casting blending: An effective way for tailoring gas transport and mechanical properties of poly (vinyl butyral) and Pebax2533. J. Phys. Chem. C. 2019;123:11264–11272. doi: 10.1021/acs.jpcc.9b01459. DOI

Kaewmanee P.C., Wongsatayanon B., Durand A. Encapsulation of bioactive compounds (monocaprin and monolaurin) into polymeric nanoparticles. Mater. Sci. Forum. 2018;916:147–152. doi: 10.4028/www.scientific.net/MSF.916.147. DOI

Vasoya J., Desai H.H., Gumaste S.G., Tillotson J., Kelemen D., Dalrymple D.M., Serajuddin A.T. Development of solid dispersion by holt melt extrusion using mixtures of polyoxyglycerides with polymers as carriers for increasing dissolution rate of a model poorly soluble drugs. J. Pharm. Sci. 2018;108:888–896. doi: 10.1016/j.xphs.2018.09.019. PubMed DOI

Tlili I., Alkanhal T.A. Nanotechnology for water purification: Electrospun nanofibrous membrane in water and wastewater treatment. J. Water Reuse Desalin. 2019;9:232–248. doi: 10.2166/wrd.2019.057. DOI

Peer P., Cmarova A., Stenicka M. Surface wettability of polyvinyl butyral nanofibrous membranes. World J. Text. Eng. 2018;4:8–14.

Beigmoradi R., Samimi A., Mohebbi-Kalhori D. Fabrication of polymeric nanofibrous mats with controllable structure and enhanced wetting behavior using one-step electrospinning. Polymer. 2018;143:271–280. doi: 10.1016/j.polymer.2018.04.025. DOI

Chen S., Liu G., He H., Zhou C., Yan X., Zhang J. Physical structure induced hydrophobicity analyzed from electrospinning and coating polyvinyl butyral films. Adv. Condens. Matter Phys. 2019;23:1–5. doi: 10.1155/2019/6179456. DOI

Yoon B.K., Jackman J.A., Valle-Gonzales E., Cho N.J. Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 2018;19:1114. doi: 10.3390/ijms19041114. PubMed DOI PMC

Thormar H., Hilmarsson H., Bergsson G. Stable concentrated emulsions of the 1-monoglyceride of capric acid (monocaprin) with microbicidal activities against the food-borne bacteria campylobacter jejuni, Salmonella spp., and Escherichia coli. Appl. Environ. Microb. 2016;72:522–526. doi: 10.1128/AEM.72.1.522-526.2006. PubMed DOI PMC

Jones A. Killer plastics: Antimicrobial additives for polymers. Plast. Eng. 2008;64:34–40. doi: 10.1002/j.1941-9635.2008.tb00362.x. DOI

Peliskova M., Slobodian P., Sedlarik V., Zatloukal M., Kuritka I. Electrospun polyurethane membrane with Ag/ZnO microparticles as an antibacterial surface on polyurethane sheets. J. Appl. Polym. Sci. 2016;133:43020. doi: 10.1002/app.43020. DOI

Nguyen T., Roddick F., Fan L. Biofouling of water treatment membranes: A review of the underlying causes, monitoring techniques and control measures. Membranes. 2012;2:804–840. doi: 10.3390/membranes2040804. PubMed DOI PMC

Focarete M.L., Gualandi C., Ramakrishna S. Filtering Media by Electrospinning. Springer International Publishing; Cham, Switzerland: 2018.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...