Novel Polyvinyl Butyral/Monoacylglycerol Nanofibrous Membrane with Antifouling Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTC 19034
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32825117
PubMed Central
PMC7504434
DOI
10.3390/ma13173662
PII: ma13173662
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial, antifouling activity, monoacylglycerols, nanofibrous membranes, polyvinyl butyral, wettability,
- Publikační typ
- časopisecké články MeSH
Monoacylglycerols (MAGs) have proven of great interest to the foodstuffs industry due to the promising antibacterial activity they show for controlling microbial contamination. Prior to this paper, this antibacterial agent had not been incorporated in a nanofibrous membrane. This study details convenient fabrication of nanofibrous membranes based on polyvinyl butyral (PVB) containing various concentrations of monocaprin (MAG 10) by an electrospinning process. Increasing the concentration of MAG 10 caused differences to appear in the shape of the nanofibers, in addition to which the level of wettability was heightened. Besides exhibiting antibacterial properties, the functional membranes demonstrated especially good antifouling activity. The novel and efficient nanofibrous membranes described have the potential to find eventual application in medical or environmental fields.
Zobrazit více v PubMed
Cai N., Li C., Han C., Luo X., Shen L., Xue Y. Tailoring mechanical and antibacterial properties of chitosan/gelatinnanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application. Appl. Surf. Sci. 2016;369:92–500. doi: 10.1016/j.apsusc.2016.02.053. DOI
Peer P., Polaskova M., Musilova L. Superhydrophobic poly (vinyl butyral) nanofibrous membrane containing various silica nanoparticles. J. Text. Inst. 2019;110:1508–1514. doi: 10.1080/00405000.2019.1605658. DOI
Panthi G., Park M., Kim H.Y., Park S.J. Electrospun polymeric nanofibers encapsulated with nanostructured materials and their applications: A review. J. Ind. Eng. Chem. 2015;242:1–13. doi: 10.1016/j.jiec.2014.09.011. DOI
Al-Enizi A.M., Zagho M.M., Elzatahry A.A. Polymer-based electrospun nanofibers for biomedical applications. Nanomaterials. 2018;8:259. doi: 10.3390/nano8040259. PubMed DOI PMC
Ge L., Zhao Y.S., Mo T., Li J.R., Li P. Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation. Food Control. 2012;26:88–193. doi: 10.1016/j.foodcont.2012.01.022. DOI
Rasouli R., Barhoum A., Bechelany M., Dufresne A. Nanofibers for biomedical and healthcare applications. Macromol. Biosci. 2019;19:1800256. doi: 10.1002/mabi.201800256. PubMed DOI
Rivero P.J., Urrutia A., Goicoechea J., Arregui F.J. Nanomaterials for functional textliles and fibers. Nanoscale Res. Lett. 2015;10:501. doi: 10.1186/s11671-015-1195-6. PubMed DOI PMC
Shahkaramipour N., Tran T.N., Ramanan S., Lin H. Membranes with surface-enhanced antifouling properties for water purification. Membranes. 2017;7:7010013. doi: 10.3390/membranes7010013. PubMed DOI PMC
Hu M., Li C.W., Li X., Zhou M., Sun J.B., Sheng F.F., Shi S.J., Lu L.C. Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibers for improved antibacterial activity. Artif. Cell Nanomed. Biotechnol. 2018;46:1248–1257. doi: 10.1080/21691401.2017.1366339. PubMed DOI
Machado R., Da Costa A., Silva D.M., Gomes A.C., Casal M., Sencadas V. Antibacterial and antifungal activity of poly(lactic acid)-bovine lactoferrin nanofiber membranes. Macromol. Biosci. 2018;18:1700324. doi: 10.1002/mabi.201700324. PubMed DOI
Rieger K.A., Schiffman J.D. Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly (ethylene oxide) nanofibers. Carbohydr. Polym. 2014;113:561–568. doi: 10.1016/j.carbpol.2014.06.075. PubMed DOI
Fan X.Y., Yin M.L., Jiang Z.M., Pan N.Y., Ren X.H., Huang T.S. Antibacterial poly(3-hydroxybutyrate-co-4-hydroxybutyrate) fibrous membranes containing quaternary ammonium salts. Polym. Adv. Technol. 2016;27:1617–1624. doi: 10.1002/pat.3839. DOI
Kurtz I.S., Schiffman J.D. Current and emerging approaches to engineer antibacterial and antifouling electrospun nanofibers. Materials. 2018;11:1059. doi: 10.3390/ma11071059. PubMed DOI PMC
Dolezalova I., Janis R., Bunkova L., Slobodian P., Vicha R. Preparation, characterization and antibacterial activity of 1-monoacylglycerol of adamantane-1-carboxylic acid. J. Food Biochem. 2013;34:544–553.
Sevcikova P., Kasparkova V., Hauerlandova I., Humpolicek P., Kucekova Z., Bunkova L. Formulation, antibacterial activity, and cytotoxicity of 1-monoacylglycerol microemulsions. Eur. J. Lipid Sci. Technol. 2014;116:448–457.
Vltavska P., Kasparkova V., Janis R., Bunkova L. Antifungal and antibacterial effects of 1-monocaprylin on textile materials. Eur. J. Lipid Sci. Technol. 2012;114:849–856. doi: 10.1002/ejlt.201100229. DOI
Preuss H.G., Echard B., Enig M., Brook I., Elliott T.B. Minimum inhibitory concentrations of herbal essential oils and monolaurin for gram-positive and gram-negative bacteria. Mol. Cell. Biochem. 2005;272:29–34. doi: 10.1007/s11010-005-6604-1. PubMed DOI
Altieri C., Bevilacqua A., Cardillo D., Sinigaglia M. Effectiveness of fatty acids and their monoglycerides against gram-negative pathogens. Int. J. Food Sci. Technol. 2009;44:359–366. doi: 10.1111/j.1365-2621.2008.01744.x. DOI
Bunkova L., Krejci J., Janis R., Kasparkova V., Vltavska P., Kulendova L., Bunka F. Influence of monoacylglycerols on growth inhibition of micromycetes in vitro and on bread. Eur. J. Lipid Sci. Technol. 2010;112:173–179. doi: 10.1002/ejlt.200900070. DOI
Norn V. Emulsifiers in Food Technology. 2nd ed. Wiley Blackwell Publishing; Juelsminde, Denmark: 2015.
Jackman J., Yoon B.K., Li D., Cho N. Nanotechnology formulations for antibacterial free fatty acids and monoglycerides. Molecules. 2016;21:305. doi: 10.3390/molecules21030305. PubMed DOI PMC
Thormar H., Hilmarsson H. Glycerol monocaprate (monocaprin) reduces contamination by Escherichia coli and Salmonella enteritidis in hard surfaces. Food Control. 2012;25:505–510. doi: 10.1016/j.foodcont.2011.11.024. DOI
Araujo E.S., Nascimento M.L.F., De Oliveira H.P. Influence of triton X-100 on PVA fibers production by the electrospinning technique. Fibres Text. East. Eur. 2013;100:39–43.
Lin T., Wang H., Wang X. The charge effect of cationic surfactants on the elimination of fiber beads in the electrospinning of polystyrene. Nanotechnology. 2004;15:1375–1381. doi: 10.1088/0957-4484/15/9/044. DOI
Park J.A., Kim S.B. Anti-biofouling enhancement of a polycarbonate membrane with functionalized poly (vinyl alcohol) electrospun nanofibers: Permeation flux, biofilm formation, contact, and regeneration tests. J. Membr. Sci. 2017;540:192–199. doi: 10.1016/j.memsci.2017.06.071. DOI
Francolini I., Vuotto C., Piozzi A., Donelli G. Antifouling and antimicrobial biomaterials: An overview. APMIS. 2017;125:392–417. doi: 10.1111/apm.12675. PubMed DOI
Nthunya L.N., Gutierrez L., Nxumalo E.N. f-MWCNTs/AgNPs-coated superhydrophobic PVDF nanofiber membrane for organic, colloidal, and biofouling mitigation in direct contact membrane distillation. J. Environ. Chem. Eng. 2020;8:103654. doi: 10.1016/j.jece.2020.103654. DOI
Spasova M., Manolova N., Markova N., Rashkov I. Superhydrophobic PVDF and PVDF-HFP nanofibrous mats with antibacterial and antibiofouling properties. Appl. Surf. Sci. 2016;363:363–371. doi: 10.1016/j.apsusc.2015.12.049. DOI
Goetz L.A., Jalvo B., Rosal R., Mathew A.P. Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J. Membr. Sci. 2016;510:238–248. doi: 10.1016/j.memsci.2016.02.069. DOI
Pan S., Ke X., Wang T.Y., Liu Q., Zhong L.B., Zheng Y.M. Synthesis of silver nanoparticles embedded electrospun PAN nanofiber thin-film composite forward osmosis membrane to enhance performance and antimicrobial activity. Ind. Eng. Chem. Res. 2019;58:984–993. doi: 10.1021/acs.iecr.8b04893. DOI
Sallem H., Trabzon L., Kilic A., Zaidi S.J. Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination. Desalination. 2020;478:114178. doi: 10.1016/j.desal.2019.114178. DOI
Yalcinkaya F. Experimental study on electrospun polyvinyl butyral nanofibers using a non-solvent system. Fibers Polym. 2015;16:2544–2551. doi: 10.1007/s12221-015-5525-1. DOI
Basturk E., Cakmakci E., Madakbas S., Kahraman M.V. Surface and proton conductivity properties of electrospun poly (vinyl butyral)/polyaniline nanofibers. Adv. Polym. Technol. 2018;37:1774–1781. doi: 10.1002/adv.21836. DOI
Park S.W., Kim J.C., Dar M.A., Shim H.W., Kim D.W. Superior lithium storage in nitrogen-doped carbon nanofibers with open-channels. Chem. Eng. J. 2017;315:1–9. doi: 10.1016/j.cej.2017.01.005. DOI
Li Y., Jiao M., Zhao H., Yang M. Humidity sensing properties of the composite of electrospun crosslinked polyelectrolyte nanofibers decorated with Ag nanoparticles. Sens. Actuators B Chem. 2018;273:133–142. doi: 10.1016/j.snb.2018.06.009. DOI
Peer P., Cvek M., Urbanek M., Sedlacik M. Preparation of electrospun magnetic polyvinyl butyral/Fe2O3 nanofubrous membranes for effective removal of iron irons from groundwater. J. Appl. Polym. Sci. 2020:e49576. doi: 10.1002/app.49576. DOI
Yalcinkaya F., Komarek M. Polyvinyl butyral (PVB) nanofiber/nanoparticle-covered yarns for antibacterial textile surfaces. Int. J. Mol. Sci. 2019;20:4317. doi: 10.3390/ijms20174317. PubMed DOI PMC
Janis R., Klasek A., Krejci J., Bobalova J. Influence of some chromium complexes on the conversion rate of glycidol—Fatty acid reaction. Tenside Urfactants Deterg. 2005;42:44–48. doi: 10.3139/113.100250. DOI
Bunkova L., Bunka F., Janis R., Krejci J., Dolezalkova I., Pospisil Z., Ruzicka J., Tremlova B. Comparison of antibacterial effect of seven 1-monoglycerides on food-borne pathogens or spoilage bacteria. Acta Vet. Brno. 2011;80:29–39. doi: 10.2754/avb201180010029. DOI
Peer P., Stenicka M., Pavlinek V., Filip P. An electrorheological investigation of PVB solutions in connection with their electrospinning qualities. Polym. Test. 2014;39:115–121. doi: 10.1016/j.polymertesting.2014.07.016. DOI
Peer P., Stenicka M., Pavlinek V., Filip P. The storage ability of polyvinylbutyral solutions from an electrospinnability standpoint. Polym. Degrad. Stab. 2014;105:134–139. doi: 10.1016/j.polymdegradstab.2014.04.015. DOI
Merchan M., Sedlarikova J., Friedrich M., Sedlarik V., Saha P. Thermoplastic modification of medical grade polyvinyl chloride with various antibiotics: Effect of antibiotic chemical structure on mechanical, antibacterial properties, and release activity. Polym. Bull. 2011;67:997–1016. doi: 10.1007/s00289-011-0474-3. DOI
ISO 22196 . Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. International Organization for Standardization; Geneva, Switzerland: 2011.
Michalska-Sionkowska M., Walczak M., Sionkowska A. Antimicrobial activity of collagen material with thymol addition for potential application as wound dressing. Polym. Test. 2017;63:360–366. doi: 10.1016/j.polymertesting.2017.08.036. DOI
Park J., Kim S. Preparation and characterization of antimicrobial electrospun poly (vinyl alcohol) nanofibers containing benzyl triethylammonium chloride. React. Funct. Polym. 2015;93:30–37. doi: 10.1016/j.reactfunctpolym.2015.05.008. DOI
Theron S.A., Zussman E., Yarin A.L. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer. 2004;45:2017–2030. doi: 10.1016/j.polymer.2004.01.024. DOI
Juang Y.H., Kim H.Y., Lee D.R., Park S.Y. Characterization of PVOH nonwoven mats prepared from surfactant-polymer system via electrospinning. Macromol. Res. 2005;13:385–390. doi: 10.1007/BF03218470. DOI
Fang W., Yang S., Yuan T.Q., Charlton A., Sun R.C. Effect of various surfactants on alkali lignin electrospinning ability and spun fibers. Ind. Eng. Chem. Res. 2017;56:9551–9559. doi: 10.1021/acs.iecr.7b02494. DOI
Chinatangul N., Limmatvapirat C., Nunthanid J., Luangtana-Anan M., Sriamornsak P., Limmatvapirat S. Design and characterization of monolaurin loaded electrospun shellac nanofibers with antimicrobial activity. Asian J. Pharm. Sci. 2018;13:459–471. doi: 10.1016/j.ajps.2017.12.006. PubMed DOI PMC
Peer P., Polaskova M., Suly P. Rheology of poly (vinyl butyral) solution containing fumed silica in correlation with electrospinning. Chin. J. Polym. Sci. 2018;36:742–748. doi: 10.1007/s10118-018-2077-z. DOI
Jia L., Qin X. The effect of different surfactants on the electrospinning poly (vinyl alcohol) (PVA) nanofibers. J. Therm. Anal. Calorim. 2012;112:595–605. doi: 10.1007/s10973-012-2607-9. DOI
Yener F., Yalcinkaya B. Electrospinning of polyvinyl butyral in different solvents. E-Polym. 2013;21:229–242. doi: 10.1515/epoly-2013-0121. DOI
Abutaleb S., Lolla D., Aljuhani A., Shin H.U., Rajala J.W., Chase G. Effects of surfactants on the morphology and properties of electrosupn polyetherimide fibers. Fibers. 2017;5:33. doi: 10.3390/fib5030033. DOI
Clarizia G., Tasselli F., Simari C., Nicotera I., Bernardo P. Solution casting blending: An effective way for tailoring gas transport and mechanical properties of poly (vinyl butyral) and Pebax2533. J. Phys. Chem. C. 2019;123:11264–11272. doi: 10.1021/acs.jpcc.9b01459. DOI
Kaewmanee P.C., Wongsatayanon B., Durand A. Encapsulation of bioactive compounds (monocaprin and monolaurin) into polymeric nanoparticles. Mater. Sci. Forum. 2018;916:147–152. doi: 10.4028/www.scientific.net/MSF.916.147. DOI
Vasoya J., Desai H.H., Gumaste S.G., Tillotson J., Kelemen D., Dalrymple D.M., Serajuddin A.T. Development of solid dispersion by holt melt extrusion using mixtures of polyoxyglycerides with polymers as carriers for increasing dissolution rate of a model poorly soluble drugs. J. Pharm. Sci. 2018;108:888–896. doi: 10.1016/j.xphs.2018.09.019. PubMed DOI
Tlili I., Alkanhal T.A. Nanotechnology for water purification: Electrospun nanofibrous membrane in water and wastewater treatment. J. Water Reuse Desalin. 2019;9:232–248. doi: 10.2166/wrd.2019.057. DOI
Peer P., Cmarova A., Stenicka M. Surface wettability of polyvinyl butyral nanofibrous membranes. World J. Text. Eng. 2018;4:8–14.
Beigmoradi R., Samimi A., Mohebbi-Kalhori D. Fabrication of polymeric nanofibrous mats with controllable structure and enhanced wetting behavior using one-step electrospinning. Polymer. 2018;143:271–280. doi: 10.1016/j.polymer.2018.04.025. DOI
Chen S., Liu G., He H., Zhou C., Yan X., Zhang J. Physical structure induced hydrophobicity analyzed from electrospinning and coating polyvinyl butyral films. Adv. Condens. Matter Phys. 2019;23:1–5. doi: 10.1155/2019/6179456. DOI
Yoon B.K., Jackman J.A., Valle-Gonzales E., Cho N.J. Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 2018;19:1114. doi: 10.3390/ijms19041114. PubMed DOI PMC
Thormar H., Hilmarsson H., Bergsson G. Stable concentrated emulsions of the 1-monoglyceride of capric acid (monocaprin) with microbicidal activities against the food-borne bacteria campylobacter jejuni, Salmonella spp., and Escherichia coli. Appl. Environ. Microb. 2016;72:522–526. doi: 10.1128/AEM.72.1.522-526.2006. PubMed DOI PMC
Jones A. Killer plastics: Antimicrobial additives for polymers. Plast. Eng. 2008;64:34–40. doi: 10.1002/j.1941-9635.2008.tb00362.x. DOI
Peliskova M., Slobodian P., Sedlarik V., Zatloukal M., Kuritka I. Electrospun polyurethane membrane with Ag/ZnO microparticles as an antibacterial surface on polyurethane sheets. J. Appl. Polym. Sci. 2016;133:43020. doi: 10.1002/app.43020. DOI
Nguyen T., Roddick F., Fan L. Biofouling of water treatment membranes: A review of the underlying causes, monitoring techniques and control measures. Membranes. 2012;2:804–840. doi: 10.3390/membranes2040804. PubMed DOI PMC
Focarete M.L., Gualandi C., Ramakrishna S. Filtering Media by Electrospinning. Springer International Publishing; Cham, Switzerland: 2018.
Reuse of Textile Waste to Production of the Fibrous Antibacterial Membrane with Filtration Potential