Advanced (bio)fouling resistant surface modification of PTFE hollow-fiber membranes for water treatment

. 2023 Jul 22 ; 13 (1) : 11871. [epub] 20230722

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37481651
Odkazy

PubMed 37481651
PubMed Central PMC10363105
DOI 10.1038/s41598-023-38764-9
PII: 10.1038/s41598-023-38764-9
Knihovny.cz E-zdroje

Membrane surface treatment to modify anti-(bio)fouling resistivity plays a key role in membrane technology. This paper reports on the successful use of air-stimulated surface polymerization of dopamine hydrochloride incorporated ZnO nanoparticles (ZnO NPs) for impeding the intrinsic hydrophobicity and low anti-(bio)fouling resistivity of polytetrafluoroethylene (PTFE) hollow-fiber membranes (HFMs). The study involved the use of pristine and polydopamine (Pdopa) coated PTFE HFMs, both with and without the presence of an air supply and added ZnO NPs. Zeta potential measurements were performed to evaluate the dispersion stability of ZnO NPs prior to immobilization, while morphological characterization and time-dependency of the Pdopa growth layer were illustrated through scanning electron microscopy. Pdopa surface polymerization and ZnO NPs immobilization were confirmed using FT-IR and EDX spectroscopy. Transformation of the PTFE HFM surface features to superhydrophilic was demonstrated through water contact angle analysis and the stability of immobilized ZnO NPs assessed by ICP analysis. Anti-fouling criteria and (bio)fouling resistivity performance of the surface-modified membranes were assessed through flux recovery determination of bovine serum albumin in dead-end filtration as well as dynamic-contact-condition microbial evaluation against Staphylococcus spp. and Escherichia coli, respectively. The filtration recovery ratio and antimicrobial results suggested promising surface modification impacts on the anti-fouling properties of PTFE HFM. As such, the method represents the first successful use of air-stimulated Pdopa coating incorporating ZnO NPs to induce superhydrophilic PTFE HFM surface modification. Such a method can be extended to the other membranes associated with water treatment processes.

Zobrazit více v PubMed

Kim S, et al. Review of adsorption–membrane hybrid systems for water and wastewater treatment. Chemosphere. 2022;286:131916. doi: 10.1016/j.chemosphere.2021.131916. PubMed DOI

Sengur-Tasdemir R, Urper-Bayram GM, Turken T, Ates-Genceli E, Tarabara VV, Koyuncu I. Hollow fiber nanofiltration membranes for surface water treatment: Performance evaluation at the pilot scale. J. Water Process Eng. 2021;42:102100. doi: 10.1016/j.jwpe.2021.102100. DOI

Zakria HS, et al. Removal of bisphenol A from synthetic and treated sewage wastewater using magnetron sputtered CuxO/PVDF thin film photocatalytic hollow fiber membrane. J. Water Process Eng. 2023;51:103425. doi: 10.1016/j.jwpe.2022.103425. DOI

Zhang L, et al. The performance of electrode ultrafiltration membrane bioreactor in treating cosmetics wastewater and its anti-fouling properties. Environ. Res. 2022;206:112629. doi: 10.1016/j.envres.2021.112629. PubMed DOI

Isik O, et al. Impact of different inoculum sources on the performance of membrane bioreactors for municipal wastewater treatment: Dynamic membrane versus ultrafiltration membrane. J. Water Process Eng. 2022;46:102549. doi: 10.1016/j.jwpe.2021.102549. DOI

Kim I, et al. An efficient continuous quorum quenching feed to mitigate membrane biofouling in membrane bioreactors: Strain 1A1 (extracellular) versus strain BH4 (intracellular) J. Water Process Eng. 2023;52:103594. doi: 10.1016/j.jwpe.2023.103594. DOI

Dolatkhah F, Mohammadi T, Tofighy MA. Polysulfone hollow fiber membrane containing charcoal-carbon nanomaterial for wastewater treatment in membrane bioreactor. J. Water Process Eng. 2022;50:103222. doi: 10.1016/j.jwpe.2022.103222. DOI

Yang Z, Tran QN, Jin X. Ultrafiltration of aerobic granular sludge bioreactor effluent: Fouling potentials and properties. J. Water Process Eng. 2022;47:102805. doi: 10.1016/j.jwpe.2022.102805. DOI

Wardani AK, Ariono D, Subagjo S, Wenten IG. Hydrophilic modification of polypropylene ultrafiltration membrane by air-assisted polydopamine coating. Polym. Adv. Technol. 2019;30(4):1148–1155. doi: 10.1002/pat.4549. DOI

Shao L, Wang ZX, Zhang YL, Jiang ZX, Liu YY. A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate. J. Membr. Sci. 2014;461:10–21. doi: 10.1016/j.memsci.2014.03.006. DOI

Song H, Yu H, Zhu L, Xue L, Wu D, Chen H. Durable hydrophilic surface modification for PTFE hollow fiber membranes. React. Funct. Polym. 2017;114:110–117. doi: 10.1016/j.reactfunctpolym.2017.03.010. DOI

An Z, Dai F, Wei C, Zhao Y, Chen L. Polydopamine/cysteine surface modified hemocompatible poly(vinylidene fluoride) hollow fiber membranes for hemodialysis: Polydopamine/cysteine surface modified hemocompatible PVDF. J. Biomed. Mater. Res. 2018;106(8):2869–2877. doi: 10.1002/jbm.b.34106. PubMed DOI

Jenkins, D. & Wanner, J. International water association. In Activated sludge - 100 years and counting: Papers delivered at the Conference ‘Activated Sludge ... 100 Years and Counting!’ held in Essen, Germany, June 12th to 14th, 2014, 1 (IWA Publishing, 2014).

Singh D, et al. Biofouling in membrane bioreactors: Mechanism, interactions and possible mitigation using biosurfactants. Appl. Biochem. Biotechnol. 2022 doi: 10.1007/s12010-022-04261-4. PubMed DOI

Raszka A, Chorvatova M, Wanner J. The role and significance of extracellular polymers in activated sludge. Part I: Literature review. Acta Hydrochim. Hydrobiol. 2006;34(5):411–424. doi: 10.1002/aheh.200500640. DOI

Miller DJ, et al. Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control. Water Res. 2012;46(12):3737–3753. doi: 10.1016/j.watres.2012.03.058. PubMed DOI

Galiano F, et al. Novel low-fouling membranes from lab to pilot application in textile wastewater treatment. J. Colloid Interface Sci. 2018;515:208–220. doi: 10.1016/j.jcis.2018.01.009. PubMed DOI

Johnson D, Galiano F, Deowan SA, Hoinkis J, Figoli A, Hilal N. Adhesion forces between humic acid functionalized colloidal probes and polymer membranes to assess fouling potential. J. Membr. Sci. 2015;484:35–46. doi: 10.1016/j.memsci.2015.03.018. DOI

Liu Z, et al. Improvement of permeability and antifouling performance of PVDF membranes via dopamine-assisted deposition of zwitterionic copolymer. Colloids Surf. A Physicochem. Eng. Asp. 2023;656:130505. doi: 10.1016/j.colsurfa.2022.130505. DOI

Yang Y, et al. Insights into the impact of polydopamine modification on permeability and anti-fouling performance of forward osmosis membrane. Chemosphere. 2022;291:132744. doi: 10.1016/j.chemosphere.2021.132744. PubMed DOI

da Silva AFV, Cesca K, Ambrosi A, Zin G, Di Luccio M, Oliveira JV. An expedite facile method for modification of PVDF membranes with polydopamine and TiO2 to improve water permeation. Mater. Lett. 2022;324:132611. doi: 10.1016/j.matlet.2022.132611. DOI

Bonyadi E, Ashtiani FZ, Ghorabi S, Niknejad AS. Bio-inspired hybrid coating of microporous polyethersulfone membranes by one-step deposition of polydopamine embedded with amino-functionalized SiO2 for high-efficiency oily wastewater treatment. J. Environ. Chem. Eng. 2022;10(1):107121. doi: 10.1016/j.jece.2021.107121. DOI

Pakizeh M, Azinfar F, Safarnia M, Raji F. The effects of TiO2 nanoparticles and polydopamine on the structure, separation, and antifouling properties of PPSU membrane. Sep. Sci. Technol. 2022;57(11):1788–1799. doi: 10.1080/01496395.2021.2006230. DOI

Kim JH, Joshi MK, Lee J, Park CH, Kim CS. Polydopamine-assisted immobilization of hierarchical zinc oxide nanostructures on electrospun nanofibrous membrane for photocatalysis and antimicrobial activity. J. Colloid Interface Sci. 2018;513:566–574. doi: 10.1016/j.jcis.2017.11.061. PubMed DOI

Park C, Kim J-O. Performance of biofouling mitigating feed spacer by surface modification using quorum sensing inhibitor. Desalination. 2022;538:115904. doi: 10.1016/j.desal.2022.115904. DOI

Czieborowski M, Kemperman AJB, Rolevink E, Blom J, Visser T, Philipp B. A two-step bioluminescence assay for optimizing antibacterial coating of hollow-fiber membranes with polydopamine in an integrative approach. J. Microbiol. Methods. 2022;196:106452. doi: 10.1016/j.mimet.2022.106452. PubMed DOI

Karkhanechi H, Takagi R, Matsuyama H. Biofouling resistance of reverse osmosis membrane modified with polydopamine. Desalination. 2014;336:87–96. doi: 10.1016/j.desal.2013.12.033. DOI

Zolghadr E, et al. An ultrasonic-assisted rapid approach for sustainable fabrication of antibacterial and anti-biofouling membranes via metal-organic frameworks. Mater. Today Chem. 2022;26:101044. doi: 10.1016/j.mtchem.2022.101044. DOI

Zhang W, Huang H, Bernstein R. Zwitterionic hydrogel modified reduced graphene oxide/ZnO nanocomposite blended membrane with high antifouling and antibiofouling performances. J. Colloid Interface Sci. 2022;613:426–434. doi: 10.1016/j.jcis.2021.12.194. PubMed DOI

Jahankhah S, Sabzehmeidani MM, Ghaedi M, Dashtian K, Abbasi-Asl H. Fabrication polyvinyl chloride mixed matrix membrane via embedding Fe3O4/ polydopamine/Ag nanocomposite for water treatment. Mater. Sci. Eng. B. 2022;285:115935. doi: 10.1016/j.mseb.2022.115935. DOI

Rani V, Verma Y, Rana SVS. Zinc oxide nanoparticles ameliorate dimethylnitrosamine-induced renal toxicity in rat. Appl. Biochem. Biotechnol. 2022;194(4):1699–1715. doi: 10.1007/s12010-021-03689-4. PubMed DOI

Shen C, James SA, de Jonge MD, Turney TW, Wright PFA, Feltis BN. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol. Sci. 2013;136(1):120–130. doi: 10.1093/toxsci/kft187. PubMed DOI

Raffa V, et al. Zinc oxide nanoparticles as selective killers of proliferating cells. Int. J. Nanomed. 2011;2011:1129. doi: 10.2147/IJN.S16581. PubMed DOI PMC

Zhou Q, Liu S, She J, Wang X, Lu X, Wu C. In-situ aeration-assisted polydopamine/polyethyleneimine copolymerization and deposition for rapid and uniform membrane modification. J. Membr. Sci. 2022;657:120662. doi: 10.1016/j.memsci.2022.120662. DOI

Sun F, Lu J, Wang Y, Xiong J, Gao C, Xu J. Reductant-assisted polydopamine-modified membranes for efficient water purification. Front. Chem. Sci. Eng. 2021;15(1):109–117. doi: 10.1007/s11705-020-1987-9. DOI

Shahkaramipour N, Tran T, Ramanan S, Lin H. Membranes with surface-enhanced antifouling properties for water purification. Membranes. 2017;7(1):13. doi: 10.3390/membranes7010013. PubMed DOI PMC

Yu X, Fan H, Wang L, Jin Z. Formation of Polydopamine nanofibers with the aid of folic acid. Angew. Chem. Int. Ed. 2014 doi: 10.1002/anie.201404947. PubMed DOI

Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW. Perspectives on poly(dopamine) Chem. Sci. 2013;4(10):3796. doi: 10.1039/c3sc51501j. DOI

Feinberg H, Hanks TW. Polydopamine: A bioinspired adhesive and surface modification platform. Polym. Int. 2022;71(5):578–582. doi: 10.1002/pi.6358. DOI

Bi Y, Han B, Zimmerman S, Perreault F, Sinha S, Westerhoff P. Four release tests exhibit variable silver stability from nanoparticle-modified reverse osmosis membranes. Water Res. 2018;143:77–86. doi: 10.1016/j.watres.2018.06.036. PubMed DOI

Liu S, Fang F, Wu J, Zhang K. The anti-biofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles. Desalination. 2015;375:121–128. doi: 10.1016/j.desal.2015.08.007. DOI

Sianipar M, Kim SH, Min C, Tijing LD, Shon HK. Potential and performance of a polydopamine-coated multiwalled carbon nanotube/polysulfone nanocomposite membrane for ultrafiltration application. J. Ind. Eng. Chem. 2016;34:364–373. doi: 10.1016/j.jiec.2015.11.025. DOI

Sri Abirami Saraswathi M, Kausalya R, Kaleekkal NJ, Rana D, Nagendran A. BSA and humic acid separation from aqueous stream using polydopamine coated PVDF ultrafiltration membranes. J. Environ. Chem. Eng. 2017;5(3):2937–2943. doi: 10.1016/j.jece.2017.05.051. DOI

Zhang P, et al. Modification of PVDF hollow fiber membrane by co-deposition of PDA/MPC-co-AEMA for membrane distillation application with anti-fouling and anti-scaling properties. J. Membr. Sci. 2021;636:119596. doi: 10.1016/j.memsci.2021.119596. DOI

Chen Y, Lu K-J, Liang CZ, Chung T-S. Mechanically strong Janus tri-bore hollow fiber membranes with asymmetric pores for anti-wetting and anti-fouling membrane distillation. Chem. Eng. J. 2022;429:132455. doi: 10.1016/j.cej.2021.132455. DOI

Sun M, Su Y, Mu C, Jiang Z. Improved antifouling property of PES ultrafiltration membranes using additive of silica−PVP nanocomposite. Ind. Eng. Chem. Res. 2010;49(2):790–796. doi: 10.1021/ie900560e. DOI

Zhukov AM, Solodilov VI, Tretyakov IV, Burakova EA, Yurkov GYu. The effect of the structure of iron-containing nanoparticles on the functional properties of composite materials based on high-density polyethylene. Russ. J. Phys. Chem. B. 2022;16(5):926–932. doi: 10.1134/S199079312205013X. DOI

López-R M, Barrios Y, Perez LD, Soto CY, Sierra C. Metal-organic framework (MOFs) tethered to cotton fibers display antimicrobial activity against relevant nosocomial bacteria. Inorg. Chim. Acta. 2022;537:120955. doi: 10.1016/j.ica.2022.120955. DOI

Fonseca S, Cayer M-P, Ahmmed KMT, Khadem-Mohtaram N, Charette SJ, Brouard D. Characterization of the antibacterial activity of an SiO2 nanoparticular coating to prevent bacterial contamination in blood products. Antibiotics. 2022;11(1):107. doi: 10.3390/antibiotics11010107. PubMed DOI PMC

Peer P, Sedlaříková J, Janalíková M, Kučerová L, Pleva P. Novel polyvinyl butyral/monoacylglycerol nanofibrous membrane with antifouling activity. Materials. 2020;13(17):3662. doi: 10.3390/ma13173662. PubMed DOI PMC

Samimi S, Maghsoudnia N, Eftekhari RB, Dorkoosh F. Characterization and biology of nanomaterials for drug delivery. Elsevier; 2019. Lipid-based nanoparticles for drug delivery systems; pp. 47–76.

Selvamani V. Characterization and biology of nanomaterials for drug delivery. Elsevier; 2019. Stability studies on nanomaterials used in drugs; pp. 425–444.

Liu W, Lin H, Wang J, Han Q, Liu F. Polytetrafluoroethylene (PTFE) hollow fibers modified by hydrophilic crosslinking network (HCN) for robust resistance to fouling and harsh chemical cleaning. J. Membr. Sci. 2021;630:119301. doi: 10.1016/j.memsci.2021.119301. DOI

Mohd Ramli MR, Ahmad AL, Leo CP. Surface modification of polytetrafluoroethylene hollow fiber membrane for direct contact membrane distillation through low-density polyethylene solution coating. ACS Omega. 2021;6(7):4609–4618. doi: 10.1021/acsomega.0c05107. PubMed DOI PMC

Thakur A, Ranote S, Kumar D, Bhardwaj KK, Gupta R, Chauhan GS. Synthesis of a PEGylated dopamine ester with enhanced antibacterial and antifungal activity. ACS Omega. 2018;3(7):7925–7933. doi: 10.1021/acsomega.8b01099. PubMed DOI PMC

Kilic A, Emin Karatas M, Beyazsakal L, Okumus V. Preparation and spectral studies of boronate ester modified magnetite iron nanoparticles (Fe3O4@APTES-B) as a new type of biological agents. J. Mol. Liq. 2022;361:119602. doi: 10.1016/j.molliq.2022.119602. DOI

Miller DJ, Paul DR, Freeman BD. An improved method for surface modification of porous water purification membranes. Polymer. 2014;55(6):1375–1383. doi: 10.1016/j.polymer.2014.01.046. DOI

Iyigundogdu Z, et al. Thermoplastic elastomers containing antimicrobial and antiviral additives for mobility applications. Compos. Part B Eng. 2022;242:110060. doi: 10.1016/j.compositesb.2022.110060. PubMed DOI PMC

Francis, V. N., Chong, J. Y., Yang, G., Che, L. & Wang, R. Robust polyamide-PTFE hollow fibre membranes for harsh organic solvent nanofiltration. Chem. Eng. J.452, 139333. 10.1016/j.cej.2022.139333 (2023).

Li, X., Shan, H., Cao, M. & Li, B. Mussel-inspired modification of PTFE membranes in a miscible THF-Tris buffer mixture for oil-in-water emulsions separation. J. Memb. Sci.555, 237–249. 10.1016/j.memsci.2018.03.010 (2018).

Li., Y., Ji, B., Chen, Z. & Zhang, Z. Dopamine-functionalized PTFE membranes with enhanced flux and anti-fouling properties for membrane distillation of secondary effluent. Sep. Purif. Technol.310, 123198. 10.1016/j.seppur.2023.123198 (2023).

Yu, Y., Zhang, L., Li, X., Ye, J. & Meng, J. Multifunctionalization of PTFE membrane surface for biofouling resistance and oil/water separation performance improvement. J. Environ. Chem, Eng.11(1), 109158. 10.1016/j.jece.2022.109158 (2023).

Zhang, W. et al. Preparation Janus membrane via polytetrafluoroethylene membrane modification for enhanced performance of vacuum membrane distillation desalination. Sep. Purif. Technol.313, 123465. 10.1016/j.seppur.2023.123465 (2023).

Zhang, Y., Shen, F., Cao, W. & Wan, Y. Hydrophilic/hydrophobic Janus membranes with a dual-function surface coating for rapid and robust membrane distillation desalination. Desalination491, 114561. 10.1016/j.desal.2020.114561 (2020).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...