Highly Stable, Flexible, Anticorrosive Coating of Metalized Nonwoven Textiles for Durable EMI Shielding and Thermal Properties

. 2025 Mar 04 ; 10 (8) : 8127-8139. [epub] 20250219

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40060800

In the present research, an advanced silane-bonded polydopamine (PDA) coating through a simple, low-cost, and highly effective technique was employed to enhance the stability of copper-coated electromagnetic shielding fabrics. Coating the metalized nonwoven PET fabric with PDA can protect it from oxidation, mechanical forces, and extreme chemical conditions such as acid and alkali corrosion. The coated nonwoven fabric retained its excellent electromagnetic shielding effect even after machine- and handwashing cycles, showing average shielding effectiveness (SE) values above 41 dB for PDA@MEFTEX and Si-QAC/PDA@MEFTEX samples, and the average SE remained consistently above 39 dB under acidic and alkaline conditions. The PDA-coated MEFTEX did not significantly increase the surface and volume resistivities and exhibited excellent thermal insulation properties. In addition, silane-bonded PDA coating increased the softness, acted as a barrier, and provided a perfect interface that inhibits the penetration of corrosive ions from the surroundings. This outcome further highlights the promising impact of the novel coating, serving as protective coverage for metalized nonwoven fabric and providing good physical and thermal properties. This method can effectively protect electromagnetic shielding cloth, prolong the use time of shielding material, and expand its scope of application.

Zobrazit více v PubMed

Hu D.; Huang X.; Li S.; Jiang P. Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2020, 188 (December 2019), 107995.10.1016/j.compscitech.2020.107995. DOI

Liu H.; Fu R.; Su X.; Wu B.; Wang H.; Xu Y.; Liu X. Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application. Compos. Commun. 2021, 23 (September 2020), 100593.10.1016/j.coco.2020.100593. DOI

Zecchi S.; Cristoforo G.; Bartoli M.; Tagliaferro A.; Torsello D.; Rosso C.; Boccaccio M.; Acerra F. A Comprehensive Review of Electromagnetic Interference Shielding Composite Materials. Micromachines 2024, 15 (2), 187.10.3390/mi15020187. PubMed DOI PMC

Cheng J.; Li C.; Xiong Y.; Zhang H.; Raza H.; Ullah S.; Wu J.; Zheng G.; Cao Q.; Zhang D.; et al. Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials. Nano-Micro Lett. 2022, 14, 80.10.1007/s40820-022-00823-7. PubMed DOI PMC

Chen Y.; Luo H.; Guo H.; Liu K.; Mei C.; Li Y.; Duan G.; He S.; Han J.; Zheng J.; Shiju E.; Jiang S. Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohydr. Polym. 2022, 276 (August 2021), 118799.10.1016/j.carbpol.2021.118799. PubMed DOI

Wei J.; Dai L.; Xi X.; Chen Z.; Zhu M.; Dong C.; Ding S.; Lei T. Robust, ultrathin and flexible electromagnetic interference shielding paper designed with all-polysaccharide hydrogel and MXene. Carbohydr. Polym. 2024, 323 (September 2023), 121447.10.1016/j.carbpol.2023.121447. PubMed DOI

Geetha S.; Kumar K. K. S.; Rao C. R. K.; Vijayan M.; Trivedi D. C. EMI Shielding: Methods and Materials—A Review. J. Appl. Polym. Sci. 2009, 112 (1), 2073–2086. 10.1002/app.29812. DOI

Kim K.; Young J.; Cheol Y. Direct coating of copper nanoparticles on flexible substrates from copper precursors using underwater plasma and their EMI performance. Mater. Sci. Eng., B 2021, 265 (December 2020), 114995.10.1016/j.mseb.2020.114995. DOI

Zhang X.; Miao D.; Ning X.; Cai M.; Tian Y.; Zhao H.; Jiang S. The stability study of copper sputtered polyester fabrics in synthetic perspiration. Vacuum 2019, 164 (January), 205–211. 10.1016/j.vacuum.2019.03.023. DOI

Esen M.; İlhan I. ˙.; Karaaslan M.; Esen R. Investigation of electromagnetic and ultraviolet properties of nano - metal - coated textile surfaces. Appl. Nanosci. 2020, 10, 551–561. 10.1007/s13204-019-01122-1. DOI

He Q.; Tao J.; Yang D.; Yang Y.; Wang M. Surface wrinkles enhancing electromagnetic interference shielding of copper coated polydimethylsiloxane: A simulation and experimental study. Chem. Eng. J. 2023, 454 (P2), 140162.10.1016/j.cej.2022.140162. DOI

Kim D.; Kim Y.; Kim J. Transparent and fl exible fi lm for shielding electromagnetic interference. Mater. Des. 2016, 89, 703–707. 10.1016/j.matdes.2015.09.142. DOI

Jiang S.; Miao D.; Li A.; Guo R.; Shang S. Adhesion and Durability of Cu Film on Polyester Fabric Prepared by Finishing Treatment with Polyester-polyurethane and Aqueous Acrylate. Fibers Polym. 2016, 17 (9), 1397–1402. 10.1007/s12221-016-6254-9. DOI

Yang Z.; Liu X.; Tian Y. Fabrication of super-hydrophobic nickel film on copper substrate with improved corrosion inhibition by electrodeposition process. Colloids Surf., A 2019, 560 (August 2018), 205–212. 10.1016/j.colsurfa.2018.10.024. DOI

Wu Y.; Huang K.; Weng X.; Wang R.; Du P.; Liu J.; Lin S.; Huang K.; Yang H.; Lei M. PVB coating efficiently improves the high stability of EMI shielding fabric with Cu/Ni. Adv. Compos. Hybrid Mater. 2022, 5, 71–82. 10.1007/s42114-021-00401-2. DOI

Liu Y.; Han Y.; Chen R.; Zhang H.; Liu S.; Liang F. In situ Immobilization of Copper Nanoparticles on Polydopamine Coated Graphene Oxide for H 2 O 2 Determination. PLoS One 2016, 11 (7), e015792610.1371/journal.pone.0157926. PubMed DOI PMC

Feng M.; Li W.; Liu X.; Huang M.; Yang J. Copper-polydopamine composite coating decorating UHMWPE fibers for enhancing the strength and toughness of rigid polyurethane composites. Polym. Test. 2021, 93 (September 2020), 106883.10.1016/j.polymertesting.2020.106883. DOI

Heliopoulos N. S.; Papageorgiou S. K.; Galeou A.; Favvas E. P.; Katsaros F. K.; Stamatakis K. Effect of copper and copper alginate treatment on wool fabric. Study of textile and antibacterial properties. Surf. Coat. Technol. 2013, 235, 24–31. 10.1016/j.surfcoat.2013.07.009. DOI

Zhao H.; Hou L.; Lu Y. Electromagnetic shielding effectiveness and serviceability of the multilayer structured cuprammonium fabric/polypyrrole/copper (CF/PPy/Cu) composite. Chem. Eng. J. 2016, 297, 170–179. 10.1016/j.cej.2016.04.004. DOI

Lee J.; Liu Y.; Liu Y.; Park S.-J.; Park M.; Kim H. Y. Ultrahigh electromagnetic interference shielding performance of lightweight, flexible, and highly conductive copper-clad carbon fiber nonwoven fabrics. J. Mater. Chem. C 2017, 5, 7853–7861. 10.1039/c7tc02074k. DOI

Du Q.; Zhang X.; Cao H.; Huang Y. Polydopamine coated copper nanoclusters with aggregation-induced emission for fluorometric determination of phosphate ion and acid phosphatase activity. Microchim. Acta 2020, 187, 357.10.1007/s00604-020-04335-2. PubMed DOI

Taghavian H.; Černík M.; Dvořák L. Advanced (bio)fouling resistant surface modification of PTFE hollow-fiber membranes for water treatment. Sci. Rep. 2023, 13 (1), 11871.10.1038/s41598-023-38764-9. PubMed DOI PMC

Wu H.; Zhao C.; Lin K.; Wang X. Mussel-Inspired Polydopamine-Based Multilayered Coatings for Enhanced Bone Formation. Front. Bioeng. Biotechnol. 2022, 10 (July), 952500.10.3389/fbioe.2022.952500. PubMed DOI PMC

Ding Y. H.; Floren M.; Tan W. Mussel-inspired polydopamine for bio-surface functionalization. Biosurf. Biotribol. 2016, 2 (4), 121–136. 10.1016/j.bsbt.2016.11.001. PubMed DOI PMC

Shi Z.; Zeng H.; Yuan Y.; Shi N.; Wen L.; Rong H.; Zhu D.; Hu L.; Ji L.; Zhao L.; Zhang X. Constructing Superhydrophobicity by Self-Assembly of SiO 2 @Polydopamine Core-Shell Nanospheres with Robust Oil-Water Separation Efficiency and Anti-Corrosion Performance. Adv. Funct. Mater. 2023, 33 (16), 2213042.10.1002/adfm.202213042. DOI

Kim Y.-J.; Kim J.-B.; Song C.-S.; Nahm S.-S. Disinfection of various materials with 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride in hatchery facilities. Anim. Biosci. 2022, 35 (4), 631–637. 10.5713/ab.21.0302. PubMed DOI PMC

Huang H.; Hou L.; Du H.; Wei H.; Liu X.; Wang Q.; Wei Y. Efficient dual defense: PDA-Cu coating for simultaneous corrosion resistance and antibacterial protection of Mg alloys. Corros. Sci. 2024, 233 (April), 112103.10.1016/j.corsci.2024.112103. DOI

Militky J.; Kremenakova D.; Venkataraman M.; Večerník J. Exceptional Electromagnetic Shielding Properties of Lightweight and Porous Multifunctional Layers. Appl. Electron. Mater. 2020, 2, 1138–1144. 10.1021/acsaelm.0c00109. DOI

Naeem J.; Mazari A.; Volesky L.; Mazari F. Effect of nano silver coating on thermal protective performance of firefighter protective clothing. J. Text. Inst. 2019, 110 (6), 847–858. 10.1080/00405000.2018.1531461. DOI

Fridrichová L. A new method of measuring the bending rigidity of fabrics and its application to the determination of the their anisotropy. Text. Res. J. 2013, 83 (9), 883–892. 10.1177/0040517512467133. DOI

Khan M. Z.; Militky J.; Baheti V.; Fijalkowski M.; Wiener J.; Voleský L.; Adach K. Growth of ZnO nanorods on cotton fabrics via microwave hydrothermal method: effect of size and shape of nanorods on superhydrophobic and UV-blocking properties. Cellulose 2020, 27 (17), 10519–10539. 10.1007/s10570-020-03495-x. DOI

Daood U.; Yiu C.; Burrow M. F.; Niu L.-N.; Tay F. R. Effect of a novel quaternary ammonium silane on dentin protease activities. J. Dent. 2017, 58, 19–27. 10.1016/j.jdent.2017.01.001. PubMed DOI

Yang P.; Chin M.; Lee C. Interaction of Hyaluronic Acid (HA) with Organosilicon (Si-QAC) Modified Magnetite for HA Recovery. Sep. Sci. Technol. 2007, 42 (8), 1747–1760. 10.1080/01496390701242160. DOI

Mecozzi M.; Nisini L. The differentiation of biodegradable and non-biodegradable polyethylene terephthalate (PET) samples by FTIR spectroscopy: A potential support for the structural differentiation of PET in environmental analysis. Infrared Phys. Technol. 2019, 101, 119–126. 10.1016/j.infrared.2019.06.008. DOI

Thakur A.; Ranote S.; Kumar D.; Bhardwaj K. K.; Gupta R.; Chauhan G. S. Synthesis of a PEGylated Dopamine Ester with Enhanced Antibacterial and Antifungal Activity. ACS Omega 2018, 3 (7), 7925–7933. 10.1021/acsomega.8b01099. PubMed DOI PMC

Štular D.; Simončič B.; Jerman I.; Tomšič B. Application of Stimuli Responsive Microgel for Creation of Smart Cotton Fabric with Antibacterial Properties. Tekstilec 2016, 59 (2), 142–148. 10.14502/Tekstilec2016.59.142-148. DOI

Li J.; Li S.; Chen C.; Guo H.; Lei B.; Zhang P.; Meng G.; Feng Z. Dopamine self-polymerized sol-gel coating for corrosion protection of AZ31 Mg Alloy. Colloids Surf., A 2023, 666 (February), 131283.10.1016/j.colsurfa.2023.131283. DOI

Khan M. Z.; Baheti V.; Militky J.; Wiener J.; Ali A. Self-cleaning properties of polyester fabrics coated with flower-like TiO 2 particles and trimethoxy (octadecyl)silane. J. Ind. Text. 2020, 50 (4), 543–565. 10.1177/1528083719836938. DOI

Zhang X.; Tong W.; Feng F.; Wang Z.; Wang X.; Zhang Y. Applied Clay Science Polydopamine-assisted load of palygorskite on polyester fabric for moisture absorption and perspiration. Appl. Clay Sci. 2022, 230 (March), 106720.10.1016/j.clay.2022.106720. DOI

Liu Q.; Huang B.; Huang A. Polydopamine-based superhydrophobic membranes for biofuel recovery. J. Mater. Chem. A 2013, 1 (38), 11970–11974. 10.1039/c3ta12001e. DOI

Jia Z.; Li H.; Zhao Y.; Frazer L.; Qian B.; Borguet E.; Ren F.; Dikin D. A. Electrical and mechanical properties of poly(dopamine)-modified copper/reduced graphene oxide composites. J. Mater. Sci. 2017, 52 (19), 11620–11629. 10.1007/s10853-017-1307-z. DOI

Zhang W.; Yang F. K.; Pan Z.; Zhang J.; Zhao B. Bio-Inspired Dopamine Functionalization of Polypyrrole for Improved Adhesion and Conductivity. Macromol. Rapid Commun. 2014, 35, 350–354. 10.1002/marc.201300761. PubMed DOI

Bapat R. A.; Parolia A.; Chaubal T.; Yang H. J.; Kesharwani P.; Phaik K. S.; Lin S. L.; Daood U. Recent Update on Applications of Quaternary Ammonium Silane as an Antibacterial Biomaterial: A Novel Drug Delivery Approach in Dentistry. Front. Microbiol. 2022, 13 (September), 927282.10.3389/fmicb.2022.927282. PubMed DOI PMC

Teng C.; Zhou Y.; Zhang L.; Zhang Y.; Huang X.; Chen J. Improved electrical resistivity-temperature characteristics of insulating epoxy composites filled with polydopamine-coated ceramic particles with positive temperature coefficient. Compos. Sci. Technol. 2022, 221 (December 2021), 109365.10.1016/j.compscitech.2022.109365. DOI

Xu M.; Liu H.; Zhao H.; Li W. How to decrease the viscosity of suspension with the second fluid and nanoparticles?. Sci. Rep. 2013, 3, 3137.10.1038/srep03137. PubMed DOI PMC

Ramlee N. A.; Jawaid M.; Zainudin E. S.; Yamani S. A. K.; Alamery S.; Fouad H.; Santulli C.; Sarmin S. N. Thermal and acoustic properties of silane and hydrogen peroxide treated oil palm/bagasse fiber based biophenolic hybrid composites. Polym. Compos. 2022, 43 (9), 5954–5966. 10.1002/pc.26871. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...