Highly Stable, Flexible, Anticorrosive Coating of Metalized Nonwoven Textiles for Durable EMI Shielding and Thermal Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40060800
PubMed Central
PMC11886917
DOI
10.1021/acsomega.4c09467
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In the present research, an advanced silane-bonded polydopamine (PDA) coating through a simple, low-cost, and highly effective technique was employed to enhance the stability of copper-coated electromagnetic shielding fabrics. Coating the metalized nonwoven PET fabric with PDA can protect it from oxidation, mechanical forces, and extreme chemical conditions such as acid and alkali corrosion. The coated nonwoven fabric retained its excellent electromagnetic shielding effect even after machine- and handwashing cycles, showing average shielding effectiveness (SE) values above 41 dB for PDA@MEFTEX and Si-QAC/PDA@MEFTEX samples, and the average SE remained consistently above 39 dB under acidic and alkaline conditions. The PDA-coated MEFTEX did not significantly increase the surface and volume resistivities and exhibited excellent thermal insulation properties. In addition, silane-bonded PDA coating increased the softness, acted as a barrier, and provided a perfect interface that inhibits the penetration of corrosive ions from the surroundings. This outcome further highlights the promising impact of the novel coating, serving as protective coverage for metalized nonwoven fabric and providing good physical and thermal properties. This method can effectively protect electromagnetic shielding cloth, prolong the use time of shielding material, and expand its scope of application.
Zobrazit více v PubMed
Hu D.; Huang X.; Li S.; Jiang P. Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2020, 188 (December 2019), 107995.10.1016/j.compscitech.2020.107995. DOI
Liu H.; Fu R.; Su X.; Wu B.; Wang H.; Xu Y.; Liu X. Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application. Compos. Commun. 2021, 23 (September 2020), 100593.10.1016/j.coco.2020.100593. DOI
Zecchi S.; Cristoforo G.; Bartoli M.; Tagliaferro A.; Torsello D.; Rosso C.; Boccaccio M.; Acerra F. A Comprehensive Review of Electromagnetic Interference Shielding Composite Materials. Micromachines 2024, 15 (2), 187.10.3390/mi15020187. PubMed DOI PMC
Cheng J.; Li C.; Xiong Y.; Zhang H.; Raza H.; Ullah S.; Wu J.; Zheng G.; Cao Q.; Zhang D.; et al. Recent Advances in Design Strategies and Multifunctionality of Flexible Electromagnetic Interference Shielding Materials. Nano-Micro Lett. 2022, 14, 80.10.1007/s40820-022-00823-7. PubMed DOI PMC
Chen Y.; Luo H.; Guo H.; Liu K.; Mei C.; Li Y.; Duan G.; He S.; Han J.; Zheng J.; Shiju E.; Jiang S. Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohydr. Polym. 2022, 276 (August 2021), 118799.10.1016/j.carbpol.2021.118799. PubMed DOI
Wei J.; Dai L.; Xi X.; Chen Z.; Zhu M.; Dong C.; Ding S.; Lei T. Robust, ultrathin and flexible electromagnetic interference shielding paper designed with all-polysaccharide hydrogel and MXene. Carbohydr. Polym. 2024, 323 (September 2023), 121447.10.1016/j.carbpol.2023.121447. PubMed DOI
Geetha S.; Kumar K. K. S.; Rao C. R. K.; Vijayan M.; Trivedi D. C. EMI Shielding: Methods and Materials—A Review. J. Appl. Polym. Sci. 2009, 112 (1), 2073–2086. 10.1002/app.29812. DOI
Kim K.; Young J.; Cheol Y. Direct coating of copper nanoparticles on flexible substrates from copper precursors using underwater plasma and their EMI performance. Mater. Sci. Eng., B 2021, 265 (December 2020), 114995.10.1016/j.mseb.2020.114995. DOI
Zhang X.; Miao D.; Ning X.; Cai M.; Tian Y.; Zhao H.; Jiang S. The stability study of copper sputtered polyester fabrics in synthetic perspiration. Vacuum 2019, 164 (January), 205–211. 10.1016/j.vacuum.2019.03.023. DOI
Esen M.; İlhan I. ˙.; Karaaslan M.; Esen R. Investigation of electromagnetic and ultraviolet properties of nano - metal - coated textile surfaces. Appl. Nanosci. 2020, 10, 551–561. 10.1007/s13204-019-01122-1. DOI
He Q.; Tao J.; Yang D.; Yang Y.; Wang M. Surface wrinkles enhancing electromagnetic interference shielding of copper coated polydimethylsiloxane: A simulation and experimental study. Chem. Eng. J. 2023, 454 (P2), 140162.10.1016/j.cej.2022.140162. DOI
Kim D.; Kim Y.; Kim J. Transparent and fl exible fi lm for shielding electromagnetic interference. Mater. Des. 2016, 89, 703–707. 10.1016/j.matdes.2015.09.142. DOI
Jiang S.; Miao D.; Li A.; Guo R.; Shang S. Adhesion and Durability of Cu Film on Polyester Fabric Prepared by Finishing Treatment with Polyester-polyurethane and Aqueous Acrylate. Fibers Polym. 2016, 17 (9), 1397–1402. 10.1007/s12221-016-6254-9. DOI
Yang Z.; Liu X.; Tian Y. Fabrication of super-hydrophobic nickel film on copper substrate with improved corrosion inhibition by electrodeposition process. Colloids Surf., A 2019, 560 (August 2018), 205–212. 10.1016/j.colsurfa.2018.10.024. DOI
Wu Y.; Huang K.; Weng X.; Wang R.; Du P.; Liu J.; Lin S.; Huang K.; Yang H.; Lei M. PVB coating efficiently improves the high stability of EMI shielding fabric with Cu/Ni. Adv. Compos. Hybrid Mater. 2022, 5, 71–82. 10.1007/s42114-021-00401-2. DOI
Liu Y.; Han Y.; Chen R.; Zhang H.; Liu S.; Liang F. In situ Immobilization of Copper Nanoparticles on Polydopamine Coated Graphene Oxide for H 2 O 2 Determination. PLoS One 2016, 11 (7), e015792610.1371/journal.pone.0157926. PubMed DOI PMC
Feng M.; Li W.; Liu X.; Huang M.; Yang J. Copper-polydopamine composite coating decorating UHMWPE fibers for enhancing the strength and toughness of rigid polyurethane composites. Polym. Test. 2021, 93 (September 2020), 106883.10.1016/j.polymertesting.2020.106883. DOI
Heliopoulos N. S.; Papageorgiou S. K.; Galeou A.; Favvas E. P.; Katsaros F. K.; Stamatakis K. Effect of copper and copper alginate treatment on wool fabric. Study of textile and antibacterial properties. Surf. Coat. Technol. 2013, 235, 24–31. 10.1016/j.surfcoat.2013.07.009. DOI
Zhao H.; Hou L.; Lu Y. Electromagnetic shielding effectiveness and serviceability of the multilayer structured cuprammonium fabric/polypyrrole/copper (CF/PPy/Cu) composite. Chem. Eng. J. 2016, 297, 170–179. 10.1016/j.cej.2016.04.004. DOI
Lee J.; Liu Y.; Liu Y.; Park S.-J.; Park M.; Kim H. Y. Ultrahigh electromagnetic interference shielding performance of lightweight, flexible, and highly conductive copper-clad carbon fiber nonwoven fabrics. J. Mater. Chem. C 2017, 5, 7853–7861. 10.1039/c7tc02074k. DOI
Du Q.; Zhang X.; Cao H.; Huang Y. Polydopamine coated copper nanoclusters with aggregation-induced emission for fluorometric determination of phosphate ion and acid phosphatase activity. Microchim. Acta 2020, 187, 357.10.1007/s00604-020-04335-2. PubMed DOI
Taghavian H.; Černík M.; Dvořák L. Advanced (bio)fouling resistant surface modification of PTFE hollow-fiber membranes for water treatment. Sci. Rep. 2023, 13 (1), 11871.10.1038/s41598-023-38764-9. PubMed DOI PMC
Wu H.; Zhao C.; Lin K.; Wang X. Mussel-Inspired Polydopamine-Based Multilayered Coatings for Enhanced Bone Formation. Front. Bioeng. Biotechnol. 2022, 10 (July), 952500.10.3389/fbioe.2022.952500. PubMed DOI PMC
Ding Y. H.; Floren M.; Tan W. Mussel-inspired polydopamine for bio-surface functionalization. Biosurf. Biotribol. 2016, 2 (4), 121–136. 10.1016/j.bsbt.2016.11.001. PubMed DOI PMC
Shi Z.; Zeng H.; Yuan Y.; Shi N.; Wen L.; Rong H.; Zhu D.; Hu L.; Ji L.; Zhao L.; Zhang X. Constructing Superhydrophobicity by Self-Assembly of SiO 2 @Polydopamine Core-Shell Nanospheres with Robust Oil-Water Separation Efficiency and Anti-Corrosion Performance. Adv. Funct. Mater. 2023, 33 (16), 2213042.10.1002/adfm.202213042. DOI
Kim Y.-J.; Kim J.-B.; Song C.-S.; Nahm S.-S. Disinfection of various materials with 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride in hatchery facilities. Anim. Biosci. 2022, 35 (4), 631–637. 10.5713/ab.21.0302. PubMed DOI PMC
Huang H.; Hou L.; Du H.; Wei H.; Liu X.; Wang Q.; Wei Y. Efficient dual defense: PDA-Cu coating for simultaneous corrosion resistance and antibacterial protection of Mg alloys. Corros. Sci. 2024, 233 (April), 112103.10.1016/j.corsci.2024.112103. DOI
Militky J.; Kremenakova D.; Venkataraman M.; Večerník J. Exceptional Electromagnetic Shielding Properties of Lightweight and Porous Multifunctional Layers. Appl. Electron. Mater. 2020, 2, 1138–1144. 10.1021/acsaelm.0c00109. DOI
Naeem J.; Mazari A.; Volesky L.; Mazari F. Effect of nano silver coating on thermal protective performance of firefighter protective clothing. J. Text. Inst. 2019, 110 (6), 847–858. 10.1080/00405000.2018.1531461. DOI
Fridrichová L. A new method of measuring the bending rigidity of fabrics and its application to the determination of the their anisotropy. Text. Res. J. 2013, 83 (9), 883–892. 10.1177/0040517512467133. DOI
Khan M. Z.; Militky J.; Baheti V.; Fijalkowski M.; Wiener J.; Voleský L.; Adach K. Growth of ZnO nanorods on cotton fabrics via microwave hydrothermal method: effect of size and shape of nanorods on superhydrophobic and UV-blocking properties. Cellulose 2020, 27 (17), 10519–10539. 10.1007/s10570-020-03495-x. DOI
Daood U.; Yiu C.; Burrow M. F.; Niu L.-N.; Tay F. R. Effect of a novel quaternary ammonium silane on dentin protease activities. J. Dent. 2017, 58, 19–27. 10.1016/j.jdent.2017.01.001. PubMed DOI
Yang P.; Chin M.; Lee C. Interaction of Hyaluronic Acid (HA) with Organosilicon (Si-QAC) Modified Magnetite for HA Recovery. Sep. Sci. Technol. 2007, 42 (8), 1747–1760. 10.1080/01496390701242160. DOI
Mecozzi M.; Nisini L. The differentiation of biodegradable and non-biodegradable polyethylene terephthalate (PET) samples by FTIR spectroscopy: A potential support for the structural differentiation of PET in environmental analysis. Infrared Phys. Technol. 2019, 101, 119–126. 10.1016/j.infrared.2019.06.008. DOI
Thakur A.; Ranote S.; Kumar D.; Bhardwaj K. K.; Gupta R.; Chauhan G. S. Synthesis of a PEGylated Dopamine Ester with Enhanced Antibacterial and Antifungal Activity. ACS Omega 2018, 3 (7), 7925–7933. 10.1021/acsomega.8b01099. PubMed DOI PMC
Štular D.; Simončič B.; Jerman I.; Tomšič B. Application of Stimuli Responsive Microgel for Creation of Smart Cotton Fabric with Antibacterial Properties. Tekstilec 2016, 59 (2), 142–148. 10.14502/Tekstilec2016.59.142-148. DOI
Li J.; Li S.; Chen C.; Guo H.; Lei B.; Zhang P.; Meng G.; Feng Z. Dopamine self-polymerized sol-gel coating for corrosion protection of AZ31 Mg Alloy. Colloids Surf., A 2023, 666 (February), 131283.10.1016/j.colsurfa.2023.131283. DOI
Khan M. Z.; Baheti V.; Militky J.; Wiener J.; Ali A. Self-cleaning properties of polyester fabrics coated with flower-like TiO 2 particles and trimethoxy (octadecyl)silane. J. Ind. Text. 2020, 50 (4), 543–565. 10.1177/1528083719836938. DOI
Zhang X.; Tong W.; Feng F.; Wang Z.; Wang X.; Zhang Y. Applied Clay Science Polydopamine-assisted load of palygorskite on polyester fabric for moisture absorption and perspiration. Appl. Clay Sci. 2022, 230 (March), 106720.10.1016/j.clay.2022.106720. DOI
Liu Q.; Huang B.; Huang A. Polydopamine-based superhydrophobic membranes for biofuel recovery. J. Mater. Chem. A 2013, 1 (38), 11970–11974. 10.1039/c3ta12001e. DOI
Jia Z.; Li H.; Zhao Y.; Frazer L.; Qian B.; Borguet E.; Ren F.; Dikin D. A. Electrical and mechanical properties of poly(dopamine)-modified copper/reduced graphene oxide composites. J. Mater. Sci. 2017, 52 (19), 11620–11629. 10.1007/s10853-017-1307-z. DOI
Zhang W.; Yang F. K.; Pan Z.; Zhang J.; Zhao B. Bio-Inspired Dopamine Functionalization of Polypyrrole for Improved Adhesion and Conductivity. Macromol. Rapid Commun. 2014, 35, 350–354. 10.1002/marc.201300761. PubMed DOI
Bapat R. A.; Parolia A.; Chaubal T.; Yang H. J.; Kesharwani P.; Phaik K. S.; Lin S. L.; Daood U. Recent Update on Applications of Quaternary Ammonium Silane as an Antibacterial Biomaterial: A Novel Drug Delivery Approach in Dentistry. Front. Microbiol. 2022, 13 (September), 927282.10.3389/fmicb.2022.927282. PubMed DOI PMC
Teng C.; Zhou Y.; Zhang L.; Zhang Y.; Huang X.; Chen J. Improved electrical resistivity-temperature characteristics of insulating epoxy composites filled with polydopamine-coated ceramic particles with positive temperature coefficient. Compos. Sci. Technol. 2022, 221 (December 2021), 109365.10.1016/j.compscitech.2022.109365. DOI
Xu M.; Liu H.; Zhao H.; Li W. How to decrease the viscosity of suspension with the second fluid and nanoparticles?. Sci. Rep. 2013, 3, 3137.10.1038/srep03137. PubMed DOI PMC
Ramlee N. A.; Jawaid M.; Zainudin E. S.; Yamani S. A. K.; Alamery S.; Fouad H.; Santulli C.; Sarmin S. N. Thermal and acoustic properties of silane and hydrogen peroxide treated oil palm/bagasse fiber based biophenolic hybrid composites. Polym. Compos. 2022, 43 (9), 5954–5966. 10.1002/pc.26871. DOI