A Novel Organic-Inorganic-Nanocomposite-Based Reduced Graphene Oxide as an Efficient Nanosensor for NO2 Detection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39728519
PubMed Central
PMC11728541
DOI
10.3390/nano14241983
PII: nano14241983
Knihovny.cz E-zdroje
- Klíčová slova
- nanocomposite, nanosensor, nitrous oxide (NO2), reduced graphene oxide, toxic gas detection,
- Publikační typ
- časopisecké články MeSH
There are three components to every environmental protection system: monitoring, estimation, and control. One of the main toxic gases with considerable effects on human health is NO2, which is released into the atmosphere by industrial activities and the transportation network. In the present research, a NO2 sensor is designed based on Fe3O4 piperidine-4-sulfonic acid grafted onto a reduced graphene oxide Fe3O4@rGO-N-(piperidine-4-SO3H) nanocomposite, due to the highly efficient detection of pollution in the air. In the first phase of the present study, the nanocomposite synthesis is performed in four steps. Afterward, the novel fabricated nanosensor is characterized through energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Raman, surface area analysis, and field emission scanning electron microscopy (FE-SEM). To determine the optimal condition for sensor performance, graphene-based nanosensors are prepared with various weight percentages (wt%) of rGO-N-(piperidine-4-SO3H) (1 wt%, 5 wt%, 10 wt%, and 15 wt%). During the experimental process, the performance of the sensors, in terms of the sensitivity and response time, is investigated at different NO2 concentrations, between 2.5 and 50 ppm. The outputs of this study demonstrate that the synthesized nanosensor has the best efficiency at more than a 5 ppm contamination concentration and with at least 15 wt% of rGO-N-(piperidine-4-SO3H).
Association of Talent under Liberty in Technology Sõpruse pst 10615 Tallinn Estonia
Energy Safety Research Institute Swansea University Bay Campus Swansea SA1 8EN UK
Faculty of Chemical Petroleum and Gas Eng Semnan University Semnan 35196 Iran
Zobrazit více v PubMed
Zheng Z., Yang Z., Wu Z., Marinello F. Spatial Variation of NO2 and Its Impact Factors in China: An Application of Sentinel-5P Products. Remote Sens. 2019;11:1939. doi: 10.3390/rs11161939. DOI
Chen X., Leishman M., Bagnall D., Nasiri N. Nanostructured Gas Sensors: From Air Quality and Environmental Monitoring to Healthcare and Medical Applications. Nanomaterials. 2021;11:1927. doi: 10.3390/nano11081927. PubMed DOI PMC
Gholami F., Tomas M., Gholami Z., Vakili M. Technologies for the Nitrogen Oxides Reduction from Flue Gas: A Review. Sci. Total Environ. 2020;714:136712. doi: 10.1016/j.scitotenv.2020.136712. PubMed DOI
Wiatros-Motyka M. NOx control for high-ash coal-fired power plants in India. Clean Energy. 2019;3:24–33. doi: 10.1093/ce/zky018. DOI
Seesaard T., Kamjornkittikoon K., Wongchoosuk C. A Comprehensive Review on Advancements in Sensors for Air Pollution Applications. Sci. Total Environ. 2024;951:175696. doi: 10.1016/j.scitotenv.2024.175696. PubMed DOI
Lin C.-Y., Fang Y.-Y., Lin C.-W., Tunney J.J., Ho K.-C. Fabrication of NOx Gas Sensors Using In2O3–ZnO Composite Films. Sens. Actuators B Chem. 2010;146:28–34. doi: 10.1016/j.snb.2010.02.040. DOI
Das S., Sen B., Debnath N. Recent Trends in Nanomaterials Applications in Environmental Monitoring and Remediation. Environ. Sci. Pollut. Res. 2015;22:18333–18344. doi: 10.1007/s11356-015-5491-6. PubMed DOI
Sepahvand S., Bahrami M., Fallah N. Photocatalytic degradation of 2,4-DNT in simulated wastewater by magnetic CoFe2O4/SiO2/TiO2 nanoparticles. Environ. Sci. Pollut. Res. 2022;29:6479–6490. doi: 10.1007/s11356-021-13690-3. PubMed DOI
Taghavian H., Černík M., Dvořák L. Advanced (bio)fouling resistant surface modification of PTFE hollow-fiber membranes for water treatment. Sci. Rep. 2023;13:11871. doi: 10.1038/s41598-023-38764-9. PubMed DOI PMC
Wang B., Sun Y., Dong Y., Hou Y., Lu Z., Wei Z., Zhang W., Suematsu K., Hu J. Chemiresistive flexible gas sensor for NO2 sensing at room-temperature using in situ constructed Au@In2S3/In2O3 hybrid microflowers. Sens. Actuators B Chem. 2025;422:136666. doi: 10.1016/j.snb.2024.136666. DOI
Gopinath K.P., Vo D.-V.N., Gnana Prakash D., Adithya Joseph A., Viswanathan S., Arun J. Environmental Applications of Carbon-Based Materials: A Review. Environ. Chem. Lett. 2021;19:557–582. doi: 10.1007/s10311-020-01084-9. DOI
Li X., Chen Y., Huang H., Mai Y.-W., Zhou L. Electrospun Carbon-Based Nanostructured Electrodes for Advanced Energy Storage—A Review. Energy Stor. Mater. 2016;5:58–92. doi: 10.1016/j.ensm.2016.06.002. DOI
Centi G., Perathoner S. Problems and Perspectives in Nanostructured Carbon-Based Electrodes for Clean and Sustainable Energy. Catal. Today. 2010;150:151–162. doi: 10.1016/j.cattod.2009.09.009. DOI
Yang Y., Sun L., Dong X., Yu H., Wang T., Wang J., Wang R., Yu W., Liu G. Fe3O4/rGO nanocomposite: Synthesis and enhanced NOx gas-sensing properties at room temperature. RSC Adv. 2016;6:37085–37092. doi: 10.1039/C6RA02306A. DOI
Abbasabadi M.K., Zand H.R.Z., Khodabakhshi S., Gholami P., Rashidi A. Synthesis of new functionalized reduced graphene oxide quantum dot composite for high-performance NO2 gas sensor. Res. Chem. Intermed. 2021;47:2279–2296. doi: 10.1007/s11164-020-04393-4. DOI
Gholami P., Rashidi A., Khaleghi Abbasabadi M., Pourkhalil M., Jahangiri M., Izadi N. Synthesis and characterization of ZnO-functionalized multiwall carbon nanotubes nanocomposite as NOx gas sensor. Res. Chem. Intermed. 2020;46:3911–3927. doi: 10.1007/s11164-020-04181-0. DOI
Li Z., Liu Y., Guo D., Guo J., Su Y. Room-temperature synthesis of CuO/reduced graphene oxide nanohybrids for high-performance NO2 gas sensor. Sens. Actuators B Chem. 2018;271:306–310. doi: 10.1016/j.snb.2018.05.097. DOI
Ngo Y.-L.T., Hur S.H. Low-temperature NO2 gas sensor fabricated with NiO and reduced graphene oxide hybrid structure. Mater. Res. Bull. 2016;84:168–176. doi: 10.1016/j.materresbull.2016.08.004. DOI
Imamura G., Minami K., Shiba K., Mistry K., Musselman K.P., Yavuz M., Yoshikawa G., Saiki K., Obata S. Graphene Oxide as a Sensing Material for Gas Detection Based on Nanomechanical Sensors in the Static Mode. Chemosensors. 2020;8:82. doi: 10.3390/chemosensors8030082. DOI
Cho B., Yoon J., Hahm M.G., Kim D.-H., Kim A.R., Kahng Y.H., Park S.-W., Lee Y.-J., Park S.-G., Kwon J.-D., et al. Graphene-based gas sensor: Metal decoration effect and application to a flexible device. J. Mater. Chem. C. 2014;2:5280–5285. doi: 10.1039/C4TC00510D. DOI
Gupta Chatterjee S., Chatterjee S., Ray A.K., Chakraborty A.K. Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sens. Actuators B Chem. 2015;221:1170–1181. doi: 10.1016/j.snb.2015.07.070. DOI
Wan X., Huang Y., Chen Y. Focusing on Energy and Optoelectronic Applications: A Journey for Graphene and Graphene Oxide at Large Scale. Acc. Chem. Res. 2012;45:598–607. doi: 10.1021/ar200229q. PubMed DOI
Seekaew Y., Phokharatkul D., Wisitsoraat A., Wongchoosuk C. Highly sensitive and selective room-temperature NO2 gas sensor based on bilayer transferred chemical vapor deposited graphene. Appl. Surf. Sci. 2017;404:357–363. doi: 10.1016/j.apsusc.2017.01.286. DOI
Thangamani G.J., Deshmukh K., Kovářík T., Nambiraj N.A., Ponnamma D., Sadasivuni K.K., Khalil H.P.S.A., Pasha S.K.K. Graphene oxide nanocomposites based room temperature gas sensors: A review. Chemosphere. 2021;280:130641. doi: 10.1016/j.chemosphere.2021.130641. PubMed DOI
Liu S., Yu B., Zhang H., Fei T., Zhang T. Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B Chem. 2014;202:272–278. doi: 10.1016/j.snb.2014.05.086. DOI
Yuan W., Huang L., Zhou Q., Shi G. Ultrasensitive and Selective Nitrogen Dioxide Sensor Based on Self-Assembled Graphene/Polymer Composite Nanofibers. ACS Appl. Mater. Interfaces. 2014;6:17003–17008. doi: 10.1021/am504616c. PubMed DOI
Yang Y., Zhu M., Zhang H., Wang B., Chen C., Li J., Wang Y., Hao J. Room temperature gas sensor based on rGO/Bi2S3 heterostructures for ultrasensitive and rapid NO2 detection. Chem. Eng. J. 2024;490:151872. doi: 10.1016/j.cej.2024.151872. DOI
Hummers W.S., Jr., Offeman R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Rodrigo E., Alcubilla B.G., Sainz R., Fierro J.L.G., Ferritto R., Cid M.B. Reduced graphene oxide supported piperazine in aminocatalysis. Chem. Commun. 2014;50:6270–6273. doi: 10.1039/c4cc02701a. PubMed DOI
Khaleghi Abbasabadi M., Khodabakhshi S., Esmaili Zand H.R., Rashidi A., Gholami P., Sherafati Z. Covalent modification of reduced graphene oxide with piperazine as a novel nanoadsorbent for removal of H2S gas. Res. Chem. Intermed. 2020;46:4447–4463. doi: 10.1007/s11164-020-04214-8. DOI
Kassaee M.Z., Motamedi E., Majdi M. Magnetic Fe3O4-graphene oxide/polystyrene: Fabrication and characterization of a promising nanocomposite. Chem. Eng. J. 2011;172:540–549. doi: 10.1016/j.cej.2011.05.093. DOI
Azarifar D., Khaleghi-Abbasabadi M. Fe3O4-Supported N-Pyridin-4-Amine-Grafted Graphene Oxide as Efficient and Magnetically Separable Novel Nanocatalyst for Green Synthesis of 4H-Chromenes and Dihydropyrano[2,3-c]Pyrazole Derivatives in Water. Res. Chem. Intermed. 2019;45:199–222. doi: 10.1007/s11164-018-3597-4. DOI
Nethravathi C., Rajamathi M. Chemically Modified Graphene Sheets Produced by the Solvothermal Reduction of Colloidal Dispersions of Graphite Oxide. Carbon. 2008;46:1994–1998. doi: 10.1016/j.carbon.2008.08.013. DOI
Tawade A.K., Kamble B.B., Sharma K.K.K., Tayade S.N. Simultaneous Electrochemical Investigations of Dopamine and Uric Acid by in Situ Amino Functionalized Reduced Grahene Oxide. SN Appl. Sci. 2020;2:1082. doi: 10.1007/s42452-020-2806-0. DOI
Wang J., Peng R., Yang J., Liu Y., Hu X. Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions. Carbohydr. Polym. 2011;84:1169–1175. doi: 10.1016/j.carbpol.2011.01.007. DOI
Zhang Z., Qiu Y., Dai Y., Wang P., Gao B., Dong Z., Cao X., Liu Y., Le Z. Synthesis and Application of Sulfonated Graphene Oxide for the Adsorption of Uranium(VI) from Aqueous Solutions. J. Radioanal. Nucl. Chem. 2016;310:547–557. doi: 10.1007/s10967-016-4813-6. DOI
Hayyan M., Abo-Hamad A., AlSaadi M.A., Hashim M.A. Functionalization of Graphene Using Deep Eutectic Solvents. Nanoscale Res. Lett. 2015;10:324. doi: 10.1186/s11671-015-1004-2. PubMed DOI PMC
Gul W., Alrobei H. Effect of Graphene Oxide Nanoparticles on the Physical and Mechanical Properties of Medium Density Fiberboard. Polymers. 2021;13:1818. doi: 10.3390/polym13111818. PubMed DOI PMC
Dong Y., Zhang Z., Xia Y., Chui Y.-S., Lee J.-M., Zapien J.A. Green and facile synthesis of Fe3O4 and graphene nanocomposites with enhanced rate capability and cycling stability for lithium ion batteries. J. Mater. Chem. A. 2015;3:16206–16212. doi: 10.1039/C5TA03690A. DOI
Muhammad Hafiz S., Ritikos R., Whitcher T.J., Razib N.M., Bien D.C.S., Chanlek N., Nakajima H., Saisopa T., Songsiriritthigul P., Huang N.M., et al. A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sens. Actuators B Chem. 2014;193:692–700. doi: 10.1016/j.snb.2013.12.017. DOI
Haidari M.M., Kim H., Kim J.H., Park M., Lee H., Choi J.S. Doping effect in graphene-graphene oxide interlayer. Sci. Rep. 2020;10:8258. doi: 10.1038/s41598-020-65263-y. PubMed DOI PMC
Jiang Y., Jiang Z.-J., Yang L., Cheng S., Liu M. A high-performance anode for lithium ion batteries: Fe3O4 microspheres encapsulated in hollow graphene shells. J. Mater. Chem. A. 2015;3:11847–11856. doi: 10.1039/C5TA01848J. DOI
Benjwal P., Kumar M., Chamoli P., Kar K.K. Enhanced photocatalytic degradation of methylene blue and adsorption of arsenic(III) by reduced graphene oxide (rGO)–metal oxide (TiO2/Fe3O4) based nanocomposites. RSC Adv. 2015;5:73249–73260. doi: 10.1039/C5RA13689J. DOI
Mahmoudi-Gom Yek S., Azarifar D., Khaleghi-Abbasabadi M., Keypour H., Mahmoudabadi M. Heterogenized magnetic graphene oxide-supported N6-Schiff base Cu (II) complex as an exclusive nanocatalyst for synthesis of new pyrido[2,3-d]pyrimidine-7-carbonitrile derivatives. Appl. Organomet. Chem. 2020;34:e5989. doi: 10.1002/aoc.5989. DOI
Khaleghi-Abbasabadi M., Azarifar D. Magnetic Fe3O4-supported sulfonic acid-functionalized graphene oxide (Fe3O4@GO-naphthalene-SO3H): A novel and recyclable nanocatalyst for green one-pot synthesis of 5-oxo-dihydropyrano[3,2-c]chromenes and 2-amino-3-cyano-1,4,5,6-tetrahydropyrano[3,2-c]quinolin-5-ones. Res. Chem. Intermed. 2019;45:2095–2118. doi: 10.1007/s11164-018-03722-y. DOI
Pham T., Li G., Bekyarova E., Itkis M.E., Mulchandani A. MoS2-Based Optoelectronic Gas Sensor with Sub-parts-per-billion Limit of NO2 Gas Detection. ACS Nano. 2019;13:3196–3205. doi: 10.1021/acsnano.8b08778. PubMed DOI
Chung M.G., Kim D.H., Lee H.M., Kim T., Choi J.H., Seo D.K., Yoo J.-B., Hong S.-H., Kang T.J., Kim Y.H. Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B Chem. 2012;166–167:172–176. doi: 10.1016/j.snb.2012.02.036. DOI
Bai S., Chen L., Li D., Yang W., Yang P., Liu Z., Chen A., Liu C.C. Different morphologies of ZnO nanorods and their sensing property. Sens. Actuators B Chem. 2010;146:129–137. doi: 10.1016/j.snb.2010.02.011. DOI
Abbasabadi M.K., Rashidi A., Safaei-Ghomi J., Khodabakhshi S., Rahighi R. A new strategy for hydrogen sulfide removal by amido-functionalized reduced graphene oxide as a novel metal-free and highly efficient nanoadsorbent. J. Sulfur Chem. 2015;36:660–671. doi: 10.1080/17415993.2015.1079711. DOI
Yun Y.J., Hong W.G., Choi N.-J., Park H.J., Moon S.E., Kim B.H., Song K.-B., Jun Y., Lee H.-K. A 3D scaffold for ultra-sensitive reduced graphene oxide gas sensors. Nanoscale. 2014;6:6511–6514. doi: 10.1039/C4NR00332B. PubMed DOI
Park H.J., Kim W.-J., Lee H.-K., Lee D.-S., Shin J.-H., Jun Y., Yun Y.J. Highly flexible, mechanically stable, and sensitive NO2 gas sensors based on reduced graphene oxide nanofibrous mesh fabric for flexible electronics. Sens. Actuators B Chem. 2018;257:846–852. doi: 10.1016/j.snb.2017.11.032. DOI
Zhang H., Li Q., Huang J., Du Y., Ruan S.C. Reduced Graphene Oxide/Au Nanocomposite for NO2 Sensing at Low Operating Temperature. Sensors. 2016;16:1152. doi: 10.3390/s16071152. PubMed DOI PMC
Fowler J.D., Allen M.J., Tung V.C., Yang Y., Kaner R.B., Weiller B.H. Practical Chemical Sensors from Chemically Derived Graphene. ACS Nano. 2009;3:301–306. doi: 10.1021/nn800593m. PubMed DOI
Ugale A.D., Umarji G.G., Jung S.H., Deshpande N.G., Lee W., Cho H.K., Yoo J.B. ZnO decorated flexible and strong graphene fibers for sensing NO2 and H2S at room temperature. Sens. Actuators B Chem. 2020;308:127690. doi: 10.1016/j.snb.2020.127690. DOI
Li J., Liu X., Sun J. One step solvothermal synthesis of urchin-like ZnO nanorods/graphene hollow spheres and their NO2 gas sensing properties. Ceram. Int. 2016;42:2085–2090. doi: 10.1016/j.ceramint.2015.09.134. DOI
Su P.-G., Peng S.-L. Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta. 2015;132:398–405. doi: 10.1016/j.talanta.2014.09.034. PubMed DOI
Shafiei M., Bradford J., Khan H., Piloto C., Wlodarski W., Li Y., Motta N. Low-operating temperature NO2 gas sensors based on hybrid two-dimensional SnS2-reduced graphene oxide. Appl. Surf. Sci. 2018;462:330–336. doi: 10.1016/j.apsusc.2018.08.115. DOI
Wang Z., Zhang T., Zhao C., Han T., Fei T., Liu S., Lu G. Rational synthesis of molybdenum disulfide nanoparticles decorated reduced graphene oxide hybrids and their application for high-performance NO2 sensing. Sens. Actuators B Chem. 2018;260:508–518. doi: 10.1016/j.snb.2017.12.181. DOI
Gu F., Nie R., Han D., Wang Z. In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens. Actuators B Chem. 2015;219:94–99. doi: 10.1016/j.snb.2015.04.119. DOI