Tick-borne encephalitis virus seroprevalence and infection incidence in Switzerland, 2020-2021
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PZ00P3_179919
Swiss National Sciences Foundation
NU21-05-00143
Ministerstvo Zdravotnictví Ceské Republiky
NU21-05-00143
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
40069290
PubMed Central
PMC11897124
DOI
10.1038/s41598-025-92560-1
PII: 10.1038/s41598-025-92560-1
Knihovny.cz E-zdroje
- Klíčová slova
- Abortive, Asymptomatic, Incidence, Orthoflavivirus, Prevalence, TBE, TBEV, Tick-borne encephalitis,
- MeSH
- dospělí MeSH
- imunoglobulin G krev MeSH
- incidence MeSH
- klíšťová encefalitida * epidemiologie imunologie krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- prospektivní studie MeSH
- protilátky virové * krev MeSH
- senioři MeSH
- séroepidemiologické studie MeSH
- viry klíšťové encefalitidy * imunologie MeSH
- zdravotnický personál statistika a číselné údaje MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Švýcarsko epidemiologie MeSH
- Názvy látek
- imunoglobulin G MeSH
- protilátky virové * MeSH
Tick-borne encephalitis virus (TBEV) infection can manifest as disease of variable severity, ranging from subclinical infection to severe disease with neurological involvement and potentially fatal outcome. Although TBE is recognized as a major public health problem in Europe, the true burden of disease is potentially underestimated. Here, we investigated TBEV-specific antibody prevalence, infection incidence, and seroreversion and antibody decline rates in a prospective Swiss healthcare worker (HCW) cohort. We screened serum samples from 1444 HCWs between June and October 2020, and from a subset again between August and September 2021, using a TBEV envelope (E) protein IgG ELISA. Positive samples underwent further analysis with a TBEV non-structural protein 1 (NS1) IgG ELISA, and seroconversions in unvaccinated individuals were confirmed by seroneutralization testing. Questionnaire data were used to determine vaccination status and risk factors. TBEV E protein-specific IgG prevalence was 72.1% (95% CI 68.2-75.7%) in TBEV-vaccinated and 6% (95% CI 4.4-7.8%) in unvaccinated individuals. The estimated annual incidence of infection was 735/100,000. Age was the only factor significantly associated with seroprevalence. The seroreversion rate in unvaccinated individuals was 30.3% within one year, which is almost ten times higher than in vaccinated individuals (3.4%, annual decline rate 8.0%). NS1-specific IgG antibodies were six times more common in vaccinated than unvaccinated HCWs. In conclusion, undetected TBEV infections are common, and infection incidence is much higher than reported clinical cases. Individuals with abortive infections have high antibody decline and seroreversion rates. Whether lifelong protection is conferred and by which immune subsets remain unclear.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Division of Infectious Diseases and Hospital Epidemiology Kantonsspital Baden Baden Switzerland
Institute of Mathematical Statistics and Actuarial Science University of Bern Bern Switzerland
Interregional Blood Transfusion SRC Bern Switzerland
Laboratory of Emerging Viral Infections Veterinary Research Institute Brno Czech Republic
Microbiologie ADMED Analyses et Diagnostics Médicaux La Chaux de Fonds Switzerland
Swiss National Reference Center for Tick Transmitted Diseases Lausanne Switzerland
Zobrazit více v PubMed
Ruzek, D. et al. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res.164, 23–51 (2019). PubMed
Bogovic, P. & Strle, F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J Clin Cases.3(5), 430–441 (2015). PubMed PMC
Ackermann-Gaumann, R. et al. Prevalence of anti-tick-borne encephalitis virus (TBEV) antibodies in Swiss blood donors in 2014–2015. Blood Transfus.21(2), 100–109 (2023). PubMed PMC
BAG. Zahlen zu Infektionskrankheiten Zeckenenzephalitis FSME: Swiss Federal Office of Public Health; [Available from: https://www.bag.admin.ch/bag/de/home/zahlen-und-statistiken/zahlen-zu-infektionskrankheiten.exturl.html/aHR0cHM6Ly9tZWxkZXN5c3RlbWUuYmFnYXBwcy5jaC9pbmZyZX/BvcnRpbmcvZGF0ZW5kZXRhaWxzL2QvZnNtZS5odG1sP3dlYmdy/YWI9aWdub3Jl.html.
Lunácková, J., Chmelík, V., Sípová, I., Zampachová, E. & Becvárová, J. Epidemiologic monitoring of tick-borne encephalitis in Rimov in Southern Bohemia. Epidemiol. Mikrobiol. Imunol.52(2), 51–58 (2003). PubMed
Ackermann-Gaumann, R., Lang, P. & Zens, K. D. Defining the “Correlate(s) of Protection” to tick-borne encephalitis vaccination and infection - key points and outstanding questions. Front. Immunol.15, 1352720 (2024). PubMed PMC
Federal Office for Public Health Switzerland. Cantonal vaccination monitoring. Available online: https://www.bag.admin.ch/bag/de/home/gesund-leben/gesundheitsfoerderung-und-praevention/impfungen-prophylaxe/informationen-fachleute-gesundheitspersonal/durchimpfung.html. Accessed on 06.02.2024. 2022.
Baroutsou, V., Zens, K. D., Sinniger, P., Fehr, J. & Lang, P. Analysis of Tick-borne Encephalitis vaccination coverage and compliance in adults in Switzerland, 2018. Vaccine38(49), 7825–7833 (2020). PubMed
Salat, J. et al. Tick-borne encephalitis virus vaccines contain non-structural protein 1 antigen and may elicit NS1-specific antibody responses in vaccinated individuals. Vaccines8(1), 81 (2020). PubMed PMC
Albinsson, B. et al. Seroprevalence of tick-borne encephalitis virus and vaccination coverage of tick-borne encephalitis, Sweden, 2018 to 2019. Eurosurveillance29(2), 2300221 (2024). PubMed PMC
Euringer, K. et al. Tick-borne encephalitis virus IgG antibody surveillance: vaccination- and infection-induced seroprevalences, south-western Germany, 2021. Eurosurveillance10.2807/1560-7917.ES.2023.28.12.2200408 (2023). PubMed PMC
Ackermann-Gaumann, R. et al. Vaccination against tick-borne encephalitis elicits a detectable NS1 IgG antibody response. J Virol Methods.322, 114831 (2023). PubMed
Kohler, P. et al. Impact of baseline SARS-CoV-2 antibody status on syndromic surveillance and the risk of subsequent COVID-19-a prospective multicenter cohort study. BMC Med.19(1), 270 (2021). PubMed PMC
Zimna, M., Brzuska, G., Salat, J., Ruzek, D. & Krol, E. Influence of adjuvant type and route of administration on the immunogenicity of Leishmania-derived tick-borne encephalitis virus-like particles - A recombinant vaccine candidate. Antiviral Res.228, 105941 (2024). PubMed
Erber W, Schmitt HJ, Jankovic TV. TBE-epidemiology by country—an overview. Chapter 12a. In: Dobler G, Erber W, Bröker M, Schmitt HJ, editors. The TBE Book. Singapore: Global Health Press; 2023.
Bojkiewicz, E. et al. The prevalence of asymptomatic infections with tick-borne encephalitis virus and attitude towards tick-borne encephalitis vaccine in the endemic area of northeastern Poland. Vaccines10(8), 1294. 10.3390/vaccines10081294 (2022). PubMed PMC
Ackermann-Gaumann, R., Tritten, M. L., Hassan, M. & Lienhard, R. Comparison of three commercial IgG and IgM ELISA kits for the detection of tick-borne encephalitis virus antibodies. Ticks Tick Borne Dis.9(4), 956–962 (2018). PubMed
Rendi-Wagner, P. et al. Persistence of protective immunity following vaccination against tick-borne encephalitis–longer than expected?. Vaccine.22(21–22), 2743–2749 (2004). PubMed
Rendi-Wagner, P. et al. Immunogenicity and safety of a booster vaccination against tick-borne encephalitis more than 3 years following the last immunisation. Vaccine23(4), 427–434 (2004). PubMed
Plentz, A., Jilg, W., Schwarz, T. F., Kuhr, H. B. & Zent, O. Long-term persistence of tick-borne encephalitis antibodies in adults 5 years after booster vaccination with Encepur Adults. Vaccine27(6), 853–856 (2009). PubMed
Zent, O. et al. TBE booster immunization according to the rapid immunization schedule: are 3-year booster intervals really necessary?. Vaccine23(3), 312–315 (2004). PubMed
Dorko, E. et al. Effectiveness of primary vaccination against tick-borne encephalitis in employees of the armed forces. Cent Eur J Public Health26(Suppl), S42–S46 (2018). PubMed
Askling, H. H., Vene, S., Rombo, L. & Lindquist, L. Immunogenicity of delayed TBE-vaccine booster. Vaccine30(3), 499–502 (2012). PubMed
Baldovin, T. et al. Persistence of immunity to tick-borne encephalitis after vaccination and natural infection. J. Med. Virol.84(8), 1274–1278 (2012). PubMed
Kriz, B. et al. Results of the screening of tick-borne encephalitis virus antibodies in human sera from eight districts collected two decades apart. Vector Borne Zoonotic Dis.15(8), 489–493 (2015). PubMed
Galgani, I. et al. Systematic literature review comparing rapid 3-dose administration of the GSK tick-borne encephalitis vaccine with other primary immunization schedules. Exp. Rev. Vaccines16(9), 919–932 (2017). PubMed
Loew-Baselli, A. et al. Prevention of tick-borne encephalitis by FSME-IMMUN vaccines: review of a clinical development programme. Vaccine29(43), 7307–7319 (2011). PubMed
Steffen, R., Erber, W. & Schmitt, H. J. Can the booster interval for the tick-borne encephalitis (TBE) vaccine “FSME-IMMUN” be prolonged? - A systematic review. Ticks Tick Borne Dis.12(5), 101779 (2021). PubMed
Zens, K. D. et al. Retrospective, matched case-control analysis of tickborne encephalitis vaccine effectiveness by booster interval, Switzerland 2006–2020. BMJ Open.12(4), e061228 (2022). PubMed PMC
Weiskopf, D., Weinberger, B. & Grubeck-Loebenstein, B. The aging of the immune system. Transpl Int.22(11), 1041–1050 (2009). PubMed
Switzerland FOfPH. Vaccination protects against TBE: reporting data Switzerland, 2002 - 2015. BAG Bulletin. 2016;41:622–6.
Zens KD. TBE in Switzerland and Liechtenstein. Chapter 13. . In: Dobler G, Erber W, Bröcker M, Chitimia-Dobler L, Schmitt HJ, editors. The TBE Book. 7 ed. Singapore: Global Health Press; 2024.
Freimane Z, Dobler G, Chitimia-Dobler L, Karelis G, Girl P, Kuzmane S, et al. Development and validation of a novel enzyme-linked immunosorbent assay for the differentiation of tick-borne encephalitis infections caused by different virus subtypes. Infection. 2024. PubMed PMC
Konishi, E., Kitai, Y. & Kondo, T. Utilization of complement-dependent cytotoxicity to measure low levels of antibodies: application to nonstructural protein 1 in a model of Japanese encephalitis virus. Clin. Vaccine Immunol.15(1), 88–94 (2008). PubMed PMC
Chao, D. Y., Galula, J. U., Shen, W. F., Davis, B. S. & Chang, G. J. Nonstructural protein 1-specific immunoglobulin M and G antibody capture enzyme-linked immunosorbent assays in diagnosis of flaviviral infections in humans. J. Clin. Microbiol.53(2), 557–566 (2015). PubMed PMC