Tick-Borne Encephalitis Virus Vaccines Contain Non-Structural Protein 1 Antigen and may Elicit NS1-Specific Antibody Responses in Vaccinated Individuals

. 2020 Feb 12 ; 8 (1) : . [epub] 20200212

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32059489

Grantová podpora
NV19-05-00457 Ministerstvo Zdravotnictví Ceské Republiky
20-14325S Grantová Agentura České Republiky
LM2018127 Ministerstvo Školství, Mládeže a Tělovýchovy

Vaccination against tick-borne encephalitis (TBE) is based on the use of formalin-inactivated, culture-derived whole-virus vaccines. Immune response following vaccination is primarily directed to the viral envelope (E) protein, the major viral surface antigen. In Europe, two TBE vaccines are available in adult and pediatric formulations, namely FSME-IMMUN® (Pfizer) and Encepur® (GlaxoSmithKline). Herein, we analyzed the content of these vaccines using mass spectrometry (MS). The MS analysis revealed that the Encepur vaccine contains not only proteins of the whole virus particle, but also viral non-structural protein 1 (NS1). MS analysis of the FSME-IMMUN vaccine failed due to the high content of human serum albumin used as a stabilizer in the vaccine. However, the presence of NS1 in FSME-IMMUN was confirmed by immunization of mice with six doses of this vaccine, which led to a robust anti-NS1 antibody response. NS1-specific Western blot analysis also detected anti-NS1 antibodies in sera of humans who received multiple doses of either of these two vaccines; however, most vaccinees who received ≤3 doses were negative for NS1-specific antibodies. The contribution of NS1-specific antibodies to protection against TBE was demonstrated by immunization of mice with purified NS1 antigen, which led to a significant (p < 0.01) prolongation of the mean survival time after lethal virus challenge. This indicates that stimulation of anti-NS1 immunity by the TBE vaccines may increase their protective effect.

Zobrazit více v PubMed

Simmonds P., Becher P., Bukh J., Gould E.A., Meyers G., Monath T., Muerhoff S., Pletnev A., Rico-Hesse R., Smith D.B., et al. Ictv Report Consortium. ICTV Virus Taxonomy Profile: Flaviviridae. J. Gen. Virol. 2017;98:2–3. doi: 10.1099/jgv.0.000672. PubMed DOI PMC

Riccardi N., Antonello R.M., Luzzati R., Zajkowska J., Di Bella S., Giacobbe D.R. Tick-borne encephalitis in Europe: A brief update on epidemiology, diagnosis, prevention, and treatment. Eur. J. Intern. Med. 2019;62:1–6. doi: 10.1016/j.ejim.2019.01.004. PubMed DOI

Ruzek D., Avšič Županc T., Borde J., Chrdle A., Eyer L., Karganova G., Kholodilov I., Knap N., Kozlovskaya L., Matveev A., et al. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antivir. Res. 2019;164:23–51. doi: 10.1016/j.antiviral.2019.01.014. PubMed DOI

Holding M., Dowall S.D., Medlock J.M., Carter D.P., Pullan S.T., Lewis J., Vipond R., Rocchi M.S., Baylis M., Hewson R. Tick-Borne Encephalitis Virus, United Kingdom. Emerg. Infect. Dis. 2020;26:90–96. doi: 10.3201/eid2601.191085. PubMed DOI PMC

Kreusch T.M., Holding M., Hewson R., Harder T., Medlock J.M., Hansford K.M., Dowall S., Semper A., Brooks T., Walsh A., et al. A probable case of tick-borne encephalitis (TBE) acquired in England, July 2019. Euro Surveill. 2019;24 doi: 10.2807/1560-7917.ES.2019.24.47.1900679. PubMed DOI PMC

Chrdle A., Chmelík V., Růžek D. Tick-borne encephalitis: What travelers should know when visiting an endemic country. Hum. Vaccin. Immunother. 2016;12:2694–2699. doi: 10.1080/21645515.2016.1218098. PubMed DOI PMC

Kríz B., Benes C., Daniel M. Alimentary transmission of tick-borne encephalitis in the Czech Republic (1997–2008) Epidemiol. Mikrobiol. Imunol. 2009;58:98–103. PubMed

Bogovic P., Strle F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J. Clin. Cases. 2015;3:430–441. doi: 10.12998/wjcc.v3.i5.430. PubMed DOI PMC

Füzik T., Formanová P., Růžek D., Yoshii K., Niedrig M., Plevka P. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat. Commun. 2018;9:436. doi: 10.1038/s41467-018-02882-0. PubMed DOI PMC

Gritsun T.S., Lashkevich V.A., Gould E.A. Tick-borne encephalitis. Antivir. Res. 2003;57:129–146. doi: 10.1016/S0166-3542(02)00206-1. PubMed DOI

Albinsson B., Vene S., Rombo L., Blomberg J., Lundkvist Å., Rönnberg B. Distinction between serological responses following tick-borne encephalitis virus (TBEV) infection vs vaccination, Sweden 2017. Euro Surveill. 2018;23 doi: 10.2807/1560-7917.ES.2018.23.3.17-00838. PubMed DOI PMC

Albinsson B., Rönnberg B., Vene S., Lundkvist Å. Antibody responses to tick-borne ncephalitis virus non-structural protein 1 and whole virus antigen-a new tool in the assessment of suspected vaccine failure patients. Infect. Ecol. Epidemiol. 2019;9 doi: 10.1080/20008686.2019.1696132. PubMed DOI PMC

Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI

Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI

Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., Mann M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011;10:1794–1805. doi: 10.1021/pr101065j. PubMed DOI

Eyer L., Kondo H., Zouharova D., Hirano M., Valdés J.J., Muto M., Kastl T., Kobayashi S., Haviernik J., Igarashi M., et al. Escape of Tick-Borne Flavivirus from 2’-C-Methylated Nucleoside Antivirals Is Mediated by a Single Conservative Mutation in NS5 That Has a Dramatic Effect on Viral Fitness. J. Virol. 2017;91 doi: 10.1128/JVI.01028-17. PubMed DOI PMC

Salát J., Formanová P., Huňady M., Eyer L., Palus M., Ruzek D. Development and testing of a new tick-borne encephalitis virus vaccine candidate for veterinary use. Vaccine. 2018;36:7257–7261. doi: 10.1016/j.vaccine.2018.10.034. PubMed DOI

Kollaritsch H., Paulke-Korinek M., Holzmann H., Hombach J., Bjorvatn B., Barrett A. Vaccines and vaccination against tick-borne encephalitis. Expert Rev. Vaccines. 2012;11:1103–1119. doi: 10.1586/erv.12.86. PubMed DOI

Muller D.A., Young P.R. The many faces of the flavivirus non-structural glycoprotein NS1. In: Shi P.-Y., editor. Molecular Virology and Control of Flaviviruses. Caister Academic Press; Norfolk, UK: 2012. pp. 51–75.

Kuzmenko Y.V., Starodubova E.S., Shevtsova A.S., Chernokhaeva L.L., Latanova A.A., Preobrazhenskaia O.V., Timofeev A.V., Karganova G.G., Karpov V.L. Intracellular degradation and localization of NS1 of tick-borne encephalitis virus affect its protective properties. J. Gen. Virol. 2017;98:50–55. doi: 10.1099/jgv.0.000700. PubMed DOI

Volpina O.M., Volkova T.D., Koroev D.O., Ivanov V.T., Ozherelkov S.V., Khoretonenko M.V., Vorovitch M.F., Stephenson J.R., Timofeev A.V. A synthetic peptide based on the NS1 non-structural protein of tick-borne encephalitis virus induces a protective immune response against fatal encephalitis in an experimental animal model. Virus Res. 2005;112:95–99. doi: 10.1016/j.virusres.2005.03.026. PubMed DOI

Aleshin S.E., Timofeev A.V., Khoretonenko M.V., Zakharova L.G., Pashvykina G.V., Stephenson J.R., Shneider A.M., Altstein A.D. Combined prime-boost vaccination against tick-borne encephalitis (TBE) using a recombinant vaccinia virus and a bacterial plasmid both expressing TBE virus non-structural NS1 protein. BMC Microbiol. 2005;5:45. doi: 10.1186/1471-2180-5-45. PubMed DOI PMC

Khoretonenko M.V., Vorovitch M.F., Zakharova L.G., Pashvykina G.V., Ovsyannikova N.V., Stephenson J.R., Timofeev A.V., Altstein A.D., Shneider A.M. Vaccinia virus recombinant expressing gene of tick-borne encephalitis virus non-structural NS1 protein elicits protective activity in mice. Immunol. Lett. 2003;90:161–163. doi: 10.1016/j.imlet.2003.09.002. PubMed DOI

Timofeev A.V., Butenko V.M., Stephenson J.R. Genetic vaccination of mice with plasmids encoding the NS1 non-structural protein from tick-borne encephalitis virus and dengue 2 virus. Virus Genes. 2004;28:85–97. doi: 10.1023/B:VIRU.0000012266.04871.ce. PubMed DOI

Jacobs S.C., Stephenson J.R., Wilkinson G.W. Protection elicited by a replication-defective adenovirus vector expressing the tick-borne encephalitis virus non-structural glycoprotein NS1. J. Gen. Virol. 1994;75:2399–2402. doi: 10.1099/0022-1317-75-9-2399. PubMed DOI

Rastogi M., Sharma N., Singh S.K. Flavivirus NS1: A multifaceted enigmatic viral protein. Virol. J. 2016;13:131. doi: 10.1186/s12985-016-0590-7. PubMed DOI PMC

Ishikawa T., Wang G., Widman D.G., Infante E., Winkelmann E.R., Bourne N., Mason P.W. Enhancing the utility of a prM/E-expressing chimeric vaccine for Japanese encephalitis by addition of the JEV NS1 gene. Vaccine. 2011;29:7444–7455. doi: 10.1016/j.vaccine.2011.07.058. PubMed DOI

Schlesinger J.J., Brandriss M.W., Walsh E.E. Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein gp48 and by active immunization with gp48. J. Immunol. 1985;135:2805–2809. PubMed

Schlesinger J.J., Brandriss M.W., Cropp C.B., Monath T.P. Protection against yellow fever in monkeys by immunization with yellow fever virus nonstructural protein NS1. J. Virol. 1986;60:1153–1155. doi: 10.1128/JVI.60.3.1153-1155.1986. PubMed DOI PMC

Schlesinger J.J., Brandriss M.W., Walsh E.E. Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J. Gen. Virol. 1987;68:853–857. doi: 10.1099/0022-1317-68-3-853. PubMed DOI

Falgout B., Bray M., Schlesinger J.J., Lai C.J. Immunization of mice with recombinant vaccinia virus expressing authentic dengue virus nonstructural protein NS1 protects against lethal dengue virus encephalitis. J. Virol. 1990;64:4356–4363. doi: 10.1128/JVI.64.9.4356-4363.1990. PubMed DOI PMC

Krishna V.D., Rangappa M., Satchidanandam V. Virus-specific cytolytic antibodies to nonstructural protein 1 of Japanese encephalitis virus effect reduction of virus output from infected cells. J. Virol. 2009;83:4766–4777. doi: 10.1128/JVI.01850-08. PubMed DOI PMC

Chung K.M., Thompson B.S., Fremont D.H., Diamond M.S. Antibody recognition of cell surface-associated NS1 triggers Fc-gamma receptor-mediated phagocytosis and clearance of West Nile Virus-infected cells. J. Virol. 2007;81:9551–9555. doi: 10.1128/JVI.00879-07. PubMed DOI PMC

Falconar A.K. The dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: Potential implications in haemorrhagic fever pathogenesis. Arch. Virol. 1997;142:897–916. doi: 10.1007/s007050050127. PubMed DOI

Chang H.H., Shyu H.F., Wang Y.M., Sun D.S., Shyu R.H., Tang S.S., Huang Y.S. Facilitation of cell adhesion by immobilized dengue viral nonstructural protein 1 (NS1): Arginine-glycine-aspartic acid structural mimicry within the dengue viral NS1 antigen. J. Infect. Dis. 2002;186:743–751. doi: 10.1086/342600. PubMed DOI

Lin C.F., Lei H.Y., Shiau A.L., Liu H.S., Yeh T.M., Chen S.H., Liu C.C., Chiu S.C., Lin Y.S. Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. J. Immunol. 2002;169:657–664. doi: 10.4049/jimmunol.169.2.657. PubMed DOI

Yin Y., Jiang L., Fang D., Jiang L., Zhou J. Differentially expressed genes of human microvascular endothelial cells in response to anti-dengue virus NS1 antibodies by suppression subtractive hybridization. Viral Immunol. 2013;26:185–191. doi: 10.1089/vim.2012.0063. PubMed DOI PMC

Liu I.J., Chiu C.Y., Chen Y.C., Wu H.C. Molecular mimicry of human endothelial cell antigen by autoantibodies to nonstructural protein 1 of dengue virus. J. Biol. Chem. 2011;286:9726–9736. doi: 10.1074/jbc.M110.170993. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...