Synthesis and Antiproliferative Activity of 2,4,6,7-Tetrasubstituted-2H-pyrazolo[4,3-c]pyridines
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
No. S-MIP-20-60
Lietuvos Mokslo Taryba
Project ENOCH, No. CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
PubMed
34771163
PubMed Central
PMC8588486
DOI
10.3390/molecules26216747
PII: molecules26216747
Knihovny.cz E-resources
- Keywords
- antiproliferation, cell death, cross-coupling, cycloiodination, pyrazole, pyridine,
- MeSH
- Humans MeSH
- Molecular Structure MeSH
- Tumor Cells, Cultured MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents chemical synthesis chemistry pharmacology MeSH
- Drug Screening Assays, Antitumor MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antineoplastic Agents MeSH
A library of 2,4,6,7-tetrasubstituted-2H-pyrazolo[4,3-c]pyridines was prepared from easily accessible 1-phenyl-3-(2-phenylethynyl)-1H-pyrazole-4-carbaldehyde via an iodine-mediated electrophilic cyclization of intermediate 4-(azidomethyl)-1-phenyl-3-(phenylethynyl)-1H-pyrazoles to 7-iodo-2,6-diphenyl-2H-pyrazolo[4,3-c]pyridines followed by Suzuki cross-couplings with various boronic acids and alkylation reactions. The compounds were evaluated for their antiproliferative activity against K562, MV4-11, and MCF-7 cancer cell lines. The most potent compounds displayed low micromolar GI50 values. 4-(2,6-Diphenyl-2H-pyrazolo[4,3-c]pyridin-7-yl)phenol proved to be the most active, induced poly(ADP-ribose) polymerase 1 (PARP-1) cleavage, activated the initiator enzyme of apoptotic cascade caspase 9, induced a fragmentation of microtubule-associated protein 1-light chain 3 (LC3), and reduced the expression levels of proliferating cell nuclear antigen (PCNA). The obtained results suggest a complex action of 4-(2,6-diphenyl-2H-pyrazolo[4,3-c]pyridin-7-yl)phenol that combines antiproliferative effects with the induction of cell death. Moreover, investigations of the fluorescence properties of the final compounds revealed 7-(4-methoxyphenyl)-2,6-diphenyl-2H-pyrazolo[4,3-c]pyridine as the most potent pH indicator that enables both fluorescence intensity-based and ratiometric pH sensing.
Department of Chemical Biology Palacký University Šlechtitelů 27 CZ 78371 Olomouc Czech Republic
Department of Experimental Biology Palacký University Šlechtitelů 27 CZ 78371 Olomouc Czech Republic
See more in PubMed
Kumar V., Kaur K., Gupta G.K., Sharma A.K. Pyrazole containing natural products: Synthetic preview and biological significance. Eur. J. Med. Chem. 2013;69:735–753. doi: 10.1016/j.ejmech.2013.08.053. PubMed DOI
Ansari A., Ali A., Asif M. Shamsuzzaman Review: Biologically active pyrazole derivatives. New J. Chem. 2017;41:16–41. doi: 10.1039/C6NJ03181A. DOI
Kucukguzel S.G., Senkardes S. Recent advances in bioactive pyrazoles. Eur. J. Med. Chem. 2015;97:786–815. doi: 10.1016/j.ejmech.2014.11.059. PubMed DOI
Varvuolytė G., Malina L., Bieliauskas A., Hošíková B., Simerská H., Kolářová H., Kleizienė N., Kryštof V., Šačkus A., Žukauskaitė A. Synthesis and photodynamic properties of pyrazole-indole hybrids in the human skin melanoma cell line G361. Dyes Pigment. 2020;183:108666. doi: 10.1016/j.dyepig.2020.108666. DOI
Jayaraj R.L., Elangovan N., Dhanalakshmi C., Manivasagam T., Essa M.M. CNB-001, a novel pyrazole derivative mitigates motor impairments associated with neurodegeneration via suppression of neuroinflammatory and apoptotic response in experimental Parkinson’s disease mice. Chem. Biol. Interact. 2014;220:149–157. doi: 10.1016/j.cbi.2014.06.022. PubMed DOI
Milišiūnaitė V., Kadlecová A., Žukauskaitė A., Doležal K., Strnad M., Voller J., Arbačiauskienė E., Holzer W., Šačkus A. Synthesis and anthelmintic activity of benzopyrano[2,3-c]pyrazol-4(2H)-one derivatives. Mol. Divers. 2020;24:1025–1042. doi: 10.1007/s11030-019-10010-3. PubMed DOI
Horrocks P., Pickard M.R., Parekh H.H., Patel S.P., Pathak R.B. Synthesis and biological evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivatives. Org. Biomol. Chem. 2013;11:4891–4898. doi: 10.1039/c3ob27290g. PubMed DOI
Masih A., Agnihotri A.K., Srivastava J.K., Pandey N., Bhat H.R., Singh U.P. Discovery of novel pyrazole derivatives as a potent anti-inflammatory agent in RAW264.7 cells via inhibition of NF-ĸB for possible benefit against SARS-CoV-2. J. Biochem. Mol. Toxicol. 2020;35:e22656. doi: 10.1002/jbt.22656. PubMed DOI PMC
Gogoi P., Shakya A., Ghosh S.K., Gogoi N., Gahtori P., Singh N., Bhattacharyya D.R., Singh U.P., Bhat H.R. In silico study, synthesis, and evaluation of the antimalarial activity of hybrid dimethoxy pyrazole 1,3,5-triazine derivatives. J. Biochem. Mol. Toxicol. 2020;35:e22682. doi: 10.1002/jbt.22682. PubMed DOI
Karrouchi K., Radi S., Ramli Y., Taoufik J., Mabkhot Y.N., Al-Aizari F.A., Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules. 2018;23:134. doi: 10.3390/molecules23010134. PubMed DOI PMC
Khan M.F., Alam M.M., Verma G., Akhtar W., Akhter M., Shaquiquzzaman M. The therapeutic voyage of pyrazole and its analogs: A review. Eur. J. Med. Chem. 2016;120:170–201. doi: 10.1016/j.ejmech.2016.04.077. PubMed DOI
Rizk H.F., El-Badawi M.A., Ibrahim S.A., El-Borai M.A. Synthesis of some novel heterocyclic dyes derived from pyrazole derivatives. Arab. J. Chem. 2011;4:37–44. doi: 10.1016/j.arabjc.2010.06.012. DOI
Karabacak Ç., Tilki T., Tuncer B.Ö., Cengiz M. Antimicrobial pyrazole dyes: Synthesis, characterization, and absorption characteristics. Res. Chem. Intermed. 2015;41:1985–1999. doi: 10.1007/s11164-013-1326-6. DOI
Götzinger A.C., Theßeling F.A., Hoppe C., Müller T.J.J. One-Pot Coupling-Coupling-Cyclocondensation Synthesis of Fluorescent Pyrazoles. J. Org. Chem. 2016;81:10328–10338. doi: 10.1021/acs.joc.6b01326. PubMed DOI
Milišiūnaitė V., Arbačiauskienė E., Bieliauskas A., Vilkauskaitė G., Šačkus A., Holzer W. Synthesis of pyrazolo[4′,3′:3,4]pyrido[1,2-a]benzimidazoles and related new ring systems by tandem cyclisation of vic-alkynylpyrazole-4-carbaldehydes with (het)aryl-1,2-diamines and investigation of their optical properties. Tetrahedron. 2015;71:3385–3395. doi: 10.1016/j.tet.2015.03.092. DOI
Tigreros A., Portilla J. Recent progress in chemosensors based on pyrazole derivatives. RSC Adv. 2020;10:19693–19712. doi: 10.1039/D0RA02394A. PubMed DOI PMC
Nayak N., Prasad K.S., Pillai R.R., Armaković S., Armaković S.J. Remarkable colorimetric sensing behavior of pyrazole-based chemosensor towards Cu(II) ion detection: Synthesis, characterization and theoretical investigations. RSC Adv. 2018;8:18023–18029. doi: 10.1039/C8RA02905A. PubMed DOI PMC
Mandal A.K., Suresh M., Suresh E., Mishra S.K., Mishra S., Das A. A chemosensor for heavy-transition metal ions in mixed aqueous-organic media. Sens. Actuators B Chem. 2010;145:32–38. doi: 10.1016/j.snb.2009.11.016. DOI
Swami S., Agarwala A., Behera D., Shrivastava R. Diaminomaleonitrile based chromo-fluorescent receptor molecule for selective sensing of Mn(II) and Zn(II) ions. Sens. Actuators B Chem. 2018;260:1012–1017. doi: 10.1016/j.snb.2018.01.106. DOI
Moura N.M.M., Núñez C., Santos S.M., Faustino M.A.F., Cavaleiro J.A.S., Neves M.G.P.M.S., Capelo J.L., Lodeiro C. Synthesis, Spectroscopy Studies, and Theoretical Calculations of New Fluorescent Probes Based on Pyrazole Containing Porphyrins for Zn(II), Cd(II), and Hg(II) Optical Detection. Inorg. Chem. 2014;53:6149–6158. doi: 10.1021/ic500634y. PubMed DOI
Garzón L.-M., Portilla J. Synthesis of Novel D-π-A Dyes for Colorimetric Cyanide Sensing Based on Hemicyanine-Functionalized N-(2-Pyridyl)pyrazoles. Eur. J. Org. Chem. 2019;2019:7079–7088. doi: 10.1002/ejoc.201901178. DOI
Orrego-Hernández J., Portilla J. Synthesis of Dicyanovinyl-Substituted 1-(2-Pyridyl)pyrazoles: Design of a Fluorescent Chemosensor for Selective Recognition of Cyanide. J. Org. Chem. 2017;82:13376–13385. doi: 10.1021/acs.joc.7b02460. PubMed DOI
Lee H., Berezin M.Y., Tang R., Zhegalova N., Achilefu S. Pyrazole-substituted near-infrared cyanine dyes exhibit pH-dependent fluorescence lifetime properties. Photochem. Photobiol. 2013;89:326–331. doi: 10.1111/php.12009. PubMed DOI PMC
Wang F., Duan H., Xing D., Yang G. Novel Turn-on Fluorescence Probes for Al3+ Based on Conjugated Pyrazole Schiff Base. J. Fluoresc. 2017;27:1721–1727. doi: 10.1007/s10895-017-2110-6. PubMed DOI
Naskar B., Das K., Mondal R.R., Maiti D.K., Requena A., Cerón-Carrasco J.P., Prodhan C., Chaudhuri K., Goswami S. A new fluorescence turn-on chemosensor for nanomolar detection of Al 3+ constructed from a pyridine–pyrazole system. New J. Chem. 2018;42:2933–2941. doi: 10.1039/C7NJ03955G. DOI
Islam A.S.M., Bhowmick R., Mohammad H., Katarkar A., Chaudhuri K., Ali M. A novel 8-hydroxyquinoline-pyrazole based highly sensitive and selective Al(III) sensor in a purely aqueous medium with intracellular application: Experimental and computational studies. New J. Chem. 2016;40:4710–4719. doi: 10.1039/C5NJ03153B. DOI
Ciupa A., Mahon M.F., De Bank P.A., Caggiano L. Simple pyrazoline and pyrazole “turn on” fluorescent sensors selective for Cd2+ and Zn2+ in MeCN. Org. Biomol. Chem. 2012;10:8753. doi: 10.1039/c2ob26608c. PubMed DOI
Liu J., Yee K.K., Lo K.K.W., Zhang K.Y., To W.P., Che C.M., Xu Z. Selective Ag(I) binding, H2S sensing, and white-light emission from an easy-to-make porous conjugated polymer. J. Am. Chem. Soc. 2014;136:2818–2824. doi: 10.1021/ja411067a. PubMed DOI
Dhara A., Guchhait N., Mukherjee I., Mukherjee A., Chandra Bhattacharya S. A novel pyrazole based single molecular probe for multi-analyte (Zn2+ and Mg2+) detection in human gastric adenocarcinoma cells. RSC Adv. 2016;6:105930–105939. doi: 10.1039/C6RA22869K. DOI
Paitandi R.P., Sharma V., Singh V.D., Dwivedi B.K., Mobin S.M., Pandey D.S. Pyrazole appended quinoline-BODIPY based arene ruthenium complexes: Their anticancer activity and potential applications in cellular imaging. Dalton Trans. 2018;47:17500–17514. doi: 10.1039/C8DT02947D. PubMed DOI
Paitandi R.P., Mukhopadhyay S., Singh R.S., Sharma V., Mobin S.M., Pandey D.S. Anticancer Activity of Iridium(III) Complexes Based on a Pyrazole-Appended Quinoline-Based BODIPY. Inorg. Chem. 2017;56:12232–12247. doi: 10.1021/acs.inorgchem.7b01693. PubMed DOI
Faderl S., Pal A., Bornmann W., Albitar M., Maxwell D., Van Q., Peng Z., Harris D., Liu Z., Hazan-Halevy I., et al. Kit inhibitor APcK110 induces apoptosis and inhibits proliferation of acute myeloid leukemia cells. Cancer Res. 2009;69:3910–3917. doi: 10.1158/0008-5472.CAN-08-0034. PubMed DOI PMC
Faderl S., Bueso-Ramos C., Liu Z., Pal A., Bornmann W., Ciurea D.V., Harris D., Hazan-Halevy I., Kantarjian H.M., Estrov Z. Kit inhibitor APcK110 extends survival in an AML xenograft mouse model. Investig. New Drugs. 2011;29:1094–1097. doi: 10.1007/s10637-010-9459-6. PubMed DOI PMC
Faderl S., Bornmann W., Maxwell D., Pal A., Peng Z.-H., Shavrin A., Harris D., Van Q., Zhiming L., Verstovsek S., et al. APCK110, a Novel and Potent Inhibitor of c-Kit, Blocks Phosphorylation of AKT and STAT3, Induces Apoptosis, and Inhibits Proliferation of Acute Myeloid Leukemia (AML) Cells. Blood. 2006;108:153. doi: 10.1182/blood.V108.11.153.153. DOI
Nam Y., Hwang D., Kim N., Seo H.-S., Selim K.B., Sim T. Identification of 1H-pyrazolo[3,4-b]pyridine derivatives as potent ALK-L1196M inhibitors. J. Enzym. Inhib. Med. Chem. 2019;34:1426–1438. doi: 10.1080/14756366.2019.1639694. PubMed DOI PMC
Czodrowski P., Mallinger A., Wienke D., Esdar C., Pöschke O., Busch M., Rohdich F., Eccles S.A., Ortiz-Ruiz M.J., Schneider R., et al. Structure-Based Optimization of Potent, Selective, and Orally Bioavailable CDK8 Inhibitors Discovered by High-Throughput Screening. J. Med. Chem. 2016;59:9337–9349. doi: 10.1021/acs.jmedchem.6b00597. PubMed DOI
Yoshida T., Oki H., Doi M., Fukuda S., Yuzuriha T., Tabata R., Ishimoto K., Kawahara K., Ohkubo T., Miyachi H., et al. Structural Basis for PPARα Activation by 1H-pyrazolo-[3,4-b]pyridine Derivatives. Sci. Rep. 2020;10:7623. doi: 10.1038/s41598-020-64527-x. PubMed DOI PMC
El-Gohary N.S., Gabr M.T., Shaaban M.I. Synthesis, molecular modeling and biological evaluation of new pyrazolo[3,4-b]pyridine analogs as potential antimicrobial, antiquorum-sensing and anticancer agents. Bioorg. Chem. 2019;89:102976. doi: 10.1016/j.bioorg.2019.102976. PubMed DOI
Park C.M., Jadhav V.B., Song J.-H., Lee S., Won H.Y., Choi S.U., Son Y.H. 3-Amino-1H-pyrazolopyridine Derivatives as a Maternal Embryonic Leucine Zipper Kinase Inhibitor. Bull. Korean Chem. Soc. 2017;38:595–602. doi: 10.1002/bkcs.11129. DOI
Howard S., Amin N., Benowitz A.B., Chiarparin E., Cui H., Deng X., Heightman T.D., Holmes D.J., Hopkins A., Huang J., et al. Fragment-based discovery of 6-azaindazoles as inhibitors of bacterial DNA ligase. ACS Med. Chem. Lett. 2013;4:1208–1212. doi: 10.1021/ml4003277. PubMed DOI PMC
Engers D.W., Bollinger S.R., Engers J.L., Panarese J.D., Breiner M.M., Gregro A., Blobaum A.L., Bronson J.J., Wu Y.J., Macor J.E., et al. Discovery and characterization of N-(1,3-dialkyl-1H-indazol-6-yl)-1H-pyrazolo[4,3-b]pyridin-3-amine scaffold as mGlu4 positive allosteric modulators that mitigate CYP1A2 induction liability. Bioorg. Med. Chem. Lett. 2018;28:2641–2646. doi: 10.1016/j.bmcl.2018.06.034. PubMed DOI
Engers D.W., Blobaum A.L., Gogliotti R.D., Cheung Y.Y., Salovich J.M., Garcia-Barrantes P.M., Daniels J.S., Morrison R., Jones C.K., Soars M.G., et al. Discovery, Synthesis, and Preclinical Characterization of N-(3-Chloro-4-fluorophenyl)-1H-pyrazolo[4,3-b]pyridin-3-amine (VU0418506), a Novel Positive Allosteric Modulator of the Metabotropic Glutamate Receptor 4 (mGlu4) ACS Chem. Neurosci. 2016;7:1192–1200. doi: 10.1021/acschemneuro.6b00035. PubMed DOI PMC
Giannouli V., Lougiakis N., Kostakis I.K., Pouli N., Marakos P., Skaltsounis A.-L., Horne D.A., Nam S., Gioti K., Tenta R. Design and Synthesis of New Substituted Pyrazolopyridines with Potent Antiproliferative Activity. Med. Chem. 2020;16:176–191. doi: 10.2174/1573406415666190222130225. PubMed DOI PMC
Michailidou M., Giannouli V., Kotsikoris V., Papadodima O., Kontogianni G., Kostakis I.K., Lougiakis N., Chatziioannou A., Kolisis F.N., Marakos P., et al. Novel pyrazolopyridine derivatives as potential angiogenesis inhibitors: Synthesis, biological evaluation and transcriptome-based mechanistic analysis. Eur. J. Med. Chem. 2016;121:143–157. doi: 10.1016/j.ejmech.2016.05.035. PubMed DOI
Li S.L., Zhou Y., Lu W.Q., Zhong Y., Song W.L., Liu K.D., Huang J., Zhao Z.J., Xu Y.F., Liu X.F., et al. Identification of Inhibitors against p90 ribosomal S6 kinase 2 (RSK2) through structure-based virtual screening with the inhibitor-constrained refined homology model. J. Chem. Inf. Model. 2011;51:2939–2947. doi: 10.1021/ci2002445. PubMed DOI
Smyth L.A., Matthews T.P., Collins I. Design and evaluation of 3-aminopyrazolopyridinone kinase inhibitors inspired by the natural product indirubin. Bioorg. Med. Chem. 2011;19:3569–3578. doi: 10.1016/j.bmc.2011.03.069. PubMed DOI
Vilkauskaitė G., Schaaf P., Šačkus A., Krystof V., Holzer W. Synthesis of pyridyl substituted pyrazolo[4,3-c]pyridines as potential inhibitors of protein kinases. Arkivoc. 2014;2014:135–149. doi: 10.3998/ark.5550190.p008.188. DOI
Holzer W., Vilkauskaitė G., Arbačiauskienė E., Šačkus A. Dipyrazolo[1,5-a:4’,3’-c]pyridines—A new heterocyclic system accessed via multicomponent reaction. Beilstein J. Org. Chem. 2012;8:2223–2229. doi: 10.3762/bjoc.8.251. PubMed DOI PMC
Palka B., Di Capua A., Anzini M., Vilkauskaitė G., Šačkus A., Holzer W. Synthesis of trifluoromethyl-substituted pyrazolo[4,3-c]pyridines—Sequential versus multicomponent reaction approach. Beilstein J. Org. Chem. 2014;10:1759–1764. doi: 10.3762/bjoc.10.183. PubMed DOI PMC
Vilkauskaitė G., Šačkus A., Holzer W. Sonogashira-type reactions with 5-chloro-1-phenyl-1H-pyrazole-4-carbaldehydes: A straightforward approach to pyrazolo[4,3-c]pyridines. Eur. J. Org. Chem. 2011;2011:5123–5133. doi: 10.1002/ejoc.201100626. DOI
Arbačiauskienė E., Laukaitytė V., Holzer W., Šačkus A. Metal-Free Intramolecular Alkyne-Azide Cycloaddition To Construct the Pyrazolo[4,3-f][1,2,3]triazolo[5,1-c][1,4]oxazepine Ring System. Eur. J. Org. Chem. 2015;2015:5663–5670. doi: 10.1002/ejoc.201500541. DOI
Arbačiauskienė E., Vilkauskaitė G., Šačkus A., Holzer W. Ethyl 3-and 5-triflyloxy-1H-pyrazole-4-carboxylates in the synthesis of condensed pyrazoles by Pd-catalysed cross-coupling reactions. Eur. J. Org. Chem. 2011;2011:1880–1890. doi: 10.1002/ejoc.201001560. DOI
Bieliauskas A., Krikštolaitytė S., Holzer W., Šačkus A. Ring-closing metathesis as a key step to construct 2,6-dihydropyrano[2,3-c]pyrazole ring system. Arkivoc. 2018;2018:296–307. doi: 10.24820/ark.5550190.p010.407. DOI
Milišiūnaitė V., Arbačiauskienė E., Řezníčková E., Jorda R., Malínková V., Žukauskaitė A., Holzer W., Šačkus A., Kryštof V. Synthesis and anti-mitotic activity of 2,4- or 2,6-disubstituted- and 2,4,6-trisubstituted-2H-pyrazolo[4,3-c]pyridines. Eur. J. Med. Chem. 2018;150:908–919. doi: 10.1016/j.ejmech.2018.03.037. PubMed DOI
Milišiūnaitė V., Plytninkienė E., Bakšienė R., Bieliauskas A., Krikštolaitytė S., Račkauskienė G., Arbačiauskienė E., Šačkus A. Convenient Synthesis of Pyrazolo[4′,3′:5,6]pyrano[4,3-c][1,2]oxazoles via Intramolecular Nitrile Oxide Cycloaddition. Molecules. 2021;26:5604. doi: 10.3390/molecules26185604. PubMed DOI PMC
Arbačiauskienė E., Martynaitis V., Krikštolaitytė S., Holzer W., Šačkus A. Synthesis of 3-substituted 1-phenyl-1H-pyrazole-4-carbaldehydes and the corresponding ethanones by Pd-catalysed cross-coupling reactions. Arkivoc. 2011;2011:1–21. doi: 10.3998/ark.5550190.0012.b01. DOI
Pompeu T.E.T., Alves F.R.S., Figueiredo C.D.M., Antonio C.B., Herzfeldt V., Moura B.C., Rates S.M.K., Barreiro E.J., Fraga C.A.M., Noël F. Synthesis and pharmacological evaluation of new N-phenylpiperazine derivatives designed as homologues of the antipsychotic lead compound LASSBio-579. Eur. J. Med. Chem. 2013;66:122–134. doi: 10.1016/j.ejmech.2013.05.027. PubMed DOI
Riva E., Gagliardi S., Martinelli M., Passarella D., Vigo D., Rencurosi A. Reaction of Grignard reagents with carbonyl compounds under continuous flow conditions. Tetrahedron. 2010;66:3242–3247. doi: 10.1016/j.tet.2010.02.078. DOI
Goebel M.T., Marvel C.S. The Oxidation of Grignard Reagents. J. Am. Chem. Soc. 1933;55:1693–1696. doi: 10.1021/ja01331a065. DOI
Besset C., Chambert S., Fenet B., Queneau Y. Direct azidation of unprotected carbohydrates under Mitsunobu conditions using hydrazoic acid. Tetrahedron Lett. 2009;50:7043–7047. doi: 10.1016/j.tetlet.2009.09.173. DOI
Mitsunobu O. The Use of Diethyl Azodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products. Synthesis. 1981;1981:1–28. doi: 10.1055/s-1981-29317. DOI
Bräse S., Banert K. Organic Azides: Syntheses and Applications. John Wiley; New York, NY, USA: 2010.
Semina E., Žukauskaitė A., Šačkus A., De Kimpe N., Mangelinckx S. Selective Elaboration of Aminodiols towards Small Ring α- and β-Amino Acid Derivatives that Incorporate an Aziridine, Azetidine, or Epoxide Scaffold. Eur. J. Org. Chem. 2016;2016:1720–1731. doi: 10.1002/ejoc.201600036. DOI
Peterson T., Streamland T., Awad A. A Tractable and Efficient One-Pot Synthesis of 5′-Azido-5′-deoxyribonucleosides. Molecules. 2014;19:2434–2444. doi: 10.3390/molecules19022434. PubMed DOI PMC
Kuroda K., Hayashi Y., Mukaiyama T. Conversion of tertiary alcohols to tert-alkyl azides by way of quinone-mediated oxidation–reduction condensation using alkyl diphenylphosphinites. Tetrahedron. 2007;63:6358–6364. doi: 10.1016/j.tet.2007.03.176. DOI
Fischer D., Tomeba H., Pahadi N.K., Patil N.T., Huo Z., Yamamoto Y. Iodine-Mediated Electrophilic Cyclization of 2-Alkynyl-1-methylene Azide Aromatics Leading to Highly Substituted Isoquinolines and Its Application to the Synthesis of Norchelerythrine. J. Am. Chem. Soc. 2008;130:15720–15725. doi: 10.1021/ja805326f. PubMed DOI
Žukauskaitė Ž., Buinauskaitė V., Solovjova J., Malinauskaitė L., Kveselytė A., Bieliauskas A., Ragaitė G., Šačkus A. Microwave-assisted synthesis of new fluorescent indoline-based building blocks by ligand free Suzuki-Miyaura cross-coupling reaction in aqueous media. Tetrahedron. 2016;72:2955–2963. doi: 10.1016/j.tet.2016.04.010. DOI
Aoi W., Marunaka Y. Importance of pH Homeostasis in Metabolic Health and Diseases: Crucial Role of Membrane Proton Transport. Biomed Res. Int. 2014;2014:598986. doi: 10.1155/2014/598986. PubMed DOI PMC
Han J., Burgess K. Fluorescent indicators for intracellular pH. Chem. Rev. 2010;110:2709–2728. doi: 10.1021/cr900249z. PubMed DOI
Tchaikovskaya O.N., Sokolova I.V., Kuznetsova R.T., Swetlitchnyi V.A., Kopylova T.N., Mayer G.V. Fluorescence investigations of phenol phototransformation in aqueous solutions. J. Fluoresc. 2000;10:403–408. doi: 10.1023/A:1009486615346. DOI
Diamantopoulos P.T., Sofotasiou M., Papadopoulou V., Polonyfi K., Iliakis T., Viniou N.A. PARP1-driven apoptosis in chronic lymphocytic leukemia. Biomed Res. Int. 2014;2014:106713. doi: 10.1155/2014/106713. PubMed DOI PMC
Brady S.C., Allan L.A., Clarke P.R. Regulation of Caspase 9 through Phosphorylation by Protein Kinase C Zeta in Response to Hyperosmotic Stress. Mol. Cell. Biol. 2005;25:10543–10555. doi: 10.1128/MCB.25.23.10543-10555.2005. PubMed DOI PMC
Hansen T.E., Johansen T. Following autophagy step by step. BMC Biol. 2011;9:39. doi: 10.1186/1741-7007-9-39. PubMed DOI PMC
Stoimenov I., Helleday T. PCNA on the crossroad of cancer. Biochem. Soc. Trans. 2009;37:605–613. doi: 10.1042/BST0370605. PubMed DOI
Wilson G.D., McNally N.J., Dische S., Saunders M.I., Des Rochers C., Lewis A.A., Bennett M.H. Measurement of cell kinetics in human tumours in vivo using bromodeoxyuridine incorporation and flow cytometry. Br. J. Cancer. 1988;58:423–431. doi: 10.1038/bjc.1988.234. PubMed DOI PMC
Suzuki K., Kobayashi A., Kaneko S., Takehira K., Yoshihara T., Ishida H., Shiina Y., Oishi S., Tobita S. Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys. Chem. Chem. Phys. 2009;11:9850–9860. doi: 10.1039/b912178a. PubMed DOI
Convenient Synthesis of N-Heterocycle-Fused Tetrahydro-1,4-diazepinones