Convenient Synthesis of N-Heterocycle-Fused Tetrahydro-1,4-diazepinones

. 2022 Dec 07 ; 27 (24) : . [epub] 20221207

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36557800

Grantová podpora
No. S-MIP-20-60 Lietuvos Mokslo Taryba
IGA_PrF_2022_012 Internal Grant Agency of Palacký University

A general approach towards the synthesis of tetrahydro-4H-pyrazolo[1,5-a][1,4]diazepin-4-one, tetrahydro[1,4]diazepino[1,2-a]indol-1-one and tetrahydro-1H-benzo[4,5]imidazo[1,2-a][1,4]diazepin-1-one derivatives was introduced. A regioselective strategy was developed for synthesizing ethyl 1-(oxiran-2-ylmethyl)-1H-pyrazole-5-carboxylates from easily accessible 3(5)-aryl- or methyl-1H-pyrazole-5(3)-carboxylates. Obtained intermediates were further treated with amines resulting in oxirane ring-opening and direct cyclisation-yielding target pyrazolo[1,5-a][1,4]diazepin-4-ones. A straightforward two-step synthetic approach was applied to expand the current study and successfully functionalize ethyl 1H-indole- and ethyl 1H-benzo[d]imidazole-2-carboxylates. The structures of fused heterocyclic compounds were confirmed by 1H, 13C, and 15N-NMR spectroscopy and HRMS investigation.

Zobrazit více v PubMed

Taylor R.D., MacCoss M., Lawson A.D.G. Rings in Drugs. J. Med. Chem. 2014;57:5845–5859. doi: 10.1021/jm4017625. PubMed DOI

Vitaku E., Smith D.T., Njardarson J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014;57:10257–10274. doi: 10.1021/jm501100b. PubMed DOI

McGrath N.A., Brichacek M., Njardarson J.T. A Graphical Journey of Innovative Organic Architectures That Have Improved Our Lives. J. Chem Educ. 2010;87:1348–1349. doi: 10.1021/ed1003806. DOI

Liu X.-H., Yu W., Min L.-J., Wedge D.E., Tan C.-X., Weng J.-Q., Wu H.-K., Cantrell C.L., Bajsa-Hirschel J., Hua X.-W., et al. Synthesis and Pesticidal Activities of New Quinoxalines. J. Agric. Food Chem. 2020;68:7324–7332. doi: 10.1021/acs.jafc.0c01042. PubMed DOI

Schilling W., Zhang Y., Riemer D., Das S. Visible-Light-Mediated Dearomatisation of Indoles and Pyrroles to Pharmaceuticals and Pesticides. Chem.A Eur. J. 2020;26:390–395. doi: 10.1002/chem.201904168. PubMed DOI PMC

Qi Y., Wang J., Kou Y., Pang H., Zhang S., Li N., Liu C., Weng Z., Jian X. Synthesis of an Aromatic N-Heterocycle Derived from Biomass and Its Use as a Polymer Feedstock. Nat. Commun. 2019;10:2107. doi: 10.1038/s41467-019-10178-0. PubMed DOI PMC

Allard N., Aïch R.B., Gendron D., Boudreault P.-L.T., Tessier C., Alem S., Tse S.-C., Tao Y., Leclerc M. Germafluorenes: New Heterocycles for Plastic Electronics. Macromolecules. 2010;43:2328–2333. doi: 10.1021/ma9025866. DOI

Al-Etaibi A., El-Apasery M., Ibrahim M., Al-Awadi N. A Facile Synthesis of New Monoazo Disperse Dyes Derived from 4-Hydroxyphenylazopyrazole-5-Amines: Evaluation of Microwave Assisted Dyeing Behavior. Molecules. 2012;17:13891–13909. doi: 10.3390/molecules171213891. PubMed DOI PMC

Shams H.Z., Mohareb R.M., Helal M.H., Mahmoud A.E.S. Design and Synthesis of Novel Antimicrobial Acyclic and Heterocyclic Dyes and Their Precursors for Dyeing and/or Textile Finishing Based on 2-n-Acylamino-4,5,6,7-Tetrahydrobenzo[b]Thiophene Systems. Molecules. 2011;16:6271–6305. doi: 10.3390/molecules16086271. PubMed DOI PMC

Mindt M., Beyraghdar Kashkooli A., Suarez-Diez M., Ferrer L., Jilg T., Bosch D., Martins dos Santos V., Wendisch V.F., Cankar K. Production of Indole by Corynebacterium Glutamicum Microbial Cell Factories for Flavor and Fragrance Applications. Microb. Cell Fact. 2022;21:45. doi: 10.1186/s12934-022-01771-y. PubMed DOI PMC

Yun B.-S., Kim S.-Y., Kim J.-H., Choi S., Lee S., Son H.-J., Kang S.O. Synthesis and Characterization of Blue Phosphorescent NHC-Ir(III) Complexes with Annulated Heterocyclic 1,2,4-Triazolophenanthridine Derivatives for Highly Efficient PhOLEDs. ACS Appl Electron. Mater. 2022;4:2699–2710. doi: 10.1021/acsaelm.2c00235. DOI

Elie M., Renaud J.-L., Gaillard S. N -Heterocyclic Carbene Transition Metal Complexes in Light Emitting Devices. Polyhedron. 2018;140:158–168. doi: 10.1016/j.poly.2017.11.045. DOI

Kerru N., Gummidi L., Maddila S., Gangu K.K., Jonnalagadda S.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules. 2020;25:1909. doi: 10.3390/molecules25081909. PubMed DOI PMC

Costa R.F., Turones L.C., Cavalcante K.V.N., Rosa Júnior I.A., Xavier C.H., Rosseto L.P., Napolitano H.B., da Castro P.F.S., Neto M.L.F., Galvão G.M., et al. Heterocyclic Compounds: Pharmacology of Pyrazole Analogs from Rational Structural Considerations. Front. Pharm. 2021;12:666725. doi: 10.3389/fphar.2021.666725. PubMed DOI PMC

Karrouchi K., Radi S., Ramli Y., Taoufik J., Mabkhot Y., Al-aizari F., Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules. 2018;23:134. doi: 10.3390/molecules23010134. PubMed DOI PMC

George N., Jawaid Akhtar M., Al Balushi K.A., Alam Khan S. Rational Drug Design Strategies for the Development of Promising Multi-Target Directed Indole Hybrids as Anti-Alzheimer Agents. Bioorg. Chem. 2022;127:105941. doi: 10.1016/j.bioorg.2022.105941. PubMed DOI

Dhuguru J., Skouta R. Role of Indole Scaffolds as Pharmacophores in the Development of Anti-Lung Cancer Agents. Molecules. 2020;25:1615. doi: 10.3390/molecules25071615. PubMed DOI PMC

Murahari M., Mahajan V., Neeladri S., Kumar M.S., Mayur Y.C. Ligand Based Design and Synthesis of Pyrazole Based Derivatives as Selective COX-2 Inhibitors. Bioorg. Chem. 2019;86:583–597. doi: 10.1016/j.bioorg.2019.02.031. PubMed DOI

Wang X., Xu Y., Zong Z., Cai J., Chen C., Zhang Q., Sun X., Li J. Design, Synthesis and Biological Evaluation of Novel 5-Methyl-2,4,5,6-Tetrahydropyrrolo[3,4-c]Pyrazole Derivatives as Potent Potassium-Competitive Acid Blockers. Bioorg. Med. Chem. 2022;64:116765. doi: 10.1016/j.bmc.2022.116765. PubMed DOI

Feng Y., Xie X.-Y., Yang Y.-Q., Sun Y.-T., Ma W.-H., Zhou P.-J., Li Z.-Y., Liu H.-Q., Wang Y.-F., Huang Y.-S. Synthesis and Evaluation of Pyrimidoindole Analogs in Umbilical Cord Blood Ex Vivo Expansion. Eur. J. Med. Chem. 2019;174:181–197. doi: 10.1016/j.ejmech.2019.04.042. PubMed DOI

Purgatorio R., de Candia M., Catto M., Carrieri A., Pisani L., De Palma A., Toma M., Ivanova O.A., Voskressensky L.G., Altomare C.D. Investigating 1,2,3,4,5,6-Hexahydroazepino[4,3-b]Indole as Scaffold of Butyrylcholinesterase-Selective Inhibitors with Additional Neuroprotective Activities for Alzheimer’s Disease. Eur. J. Med. Chem. 2019;177:414–424. doi: 10.1016/j.ejmech.2019.05.062. PubMed DOI

Conde-Ceide S., Alcázar J., Alonso de Diego S.A., López S., Martín-Martín M.L., Martínez-Viturro C.M., Pena M.-A., Tong H.M., Lavreysen H., Mackie C., et al. Preliminary Investigation of 6,7-Dihydropyrazolo[1,5-a]Pyrazin-4-One Derivatives as a Novel Series of MGlu 5 Receptor Positive Allosteric Modulators with Efficacy in Preclinical Models of Schizophrenia. Bioorg. Med. Chem. Lett. 2016;26:429–434. doi: 10.1016/j.bmcl.2015.11.098. PubMed DOI PMC

Al-Wahaibi L.H., Gouda A.M., Abou-Ghadir O.F., Salem O.I.A., Ali A.T., Farghaly H.S., Abdelrahman M.H., Trembleau L., Abdu-Allah H.H.M., Youssif B.G.M. Design and Synthesis of Novel 2,3-Dihydropyrazino[1,2-a]Indole-1,4-Dione Derivatives as Antiproliferative EGFR and BRAFV600E Dual Inhibitors. Bioorg. Chem. 2020;104:104260. doi: 10.1016/j.bioorg.2020.104260. PubMed DOI

Rashid M.A., Ashraf A., Rehman S.S., Shahid S.A., Mahmood A., Faruq M. 1,4-Diazepines: A Review on Synthesis, Reactions and Biological Significance. Curr. Org. Synth. 2019;16:709–729. doi: 10.2174/1570179416666190703113807. PubMed DOI

Jiménez-Somarribas A., Mao S., Yoon J.-J., Weisshaar M., Cox R.M., Marengo J.R., Mitchell D.G., Morehouse Z.P., Yan D., Solis I., et al. Identification of Non-Nucleoside Inhibitors of the Respiratory Syncytial Virus Polymerase Complex. J. Med. Chem. 2017;60:2305–2325. doi: 10.1021/acs.jmedchem.6b01568. PubMed DOI PMC

Shaw S., Bian Z., Zhao B., Tarr J.C., Veerasamy N., Jeon K.O., Belmar J., Arnold A.L., Fogarty S.A., Perry E., et al. Optimization of Potent and Selective Tricyclic Indole Diazepinone Myeloid Cell Leukemia-1 Inhibitors Using Structure-Based Design. J. Med. Chem. 2018;61:2410–2421. doi: 10.1021/acs.jmedchem.7b01155. PubMed DOI

Lee T., Christov P.P., Shaw S., Tarr J.C., Zhao B., Veerasamy N., Jeon K.O., Mills J.J., Bian Z., Sensintaffar J.L., et al. Discovery of Potent Myeloid Cell Leukemia-1 (Mcl-1) Inhibitors That Demonstrate in Vivo Activity in Mouse Xenograft Models of Human Cancer. J. Med. Chem. 2019;62:3971–3988. doi: 10.1021/acs.jmedchem.8b01991. PubMed DOI

Shen S.L., Shao J.H., Luo J.Z., Liu J.T., Miao J.Y., Zhao B.X. Novel Chiral Ferrocenylpyrazolo[1,5-a][1,4]Diazepin-4-One Derivatives-Synthesis, Characterization and Inhibition against Lung Cancer Cells. Eur. J. Med. Chem. 2013;63:256–268. doi: 10.1016/j.ejmech.2013.02.016. PubMed DOI

Bagdanoff J.T., Jain R., Han W., Zhu S., Madiera A.M., Lee P.S., Ma X., Poon D. Tetrahydropyrrolo-Diazepenones as Inhibitors of ERK2 Kinase. Bioorg. Med. Chem. Lett. 2015;25:3788–3792. doi: 10.1016/j.bmcl.2015.07.091. PubMed DOI

Boyer S.J., Burke J., Guo X., Kirrane T.M., Snow R.J., Zhang Y., Sarko C., Soleymanzadeh L., Swinamer A., Westbrook J., et al. Indole RSK Inhibitors. Part 1: Discovery and Initial SAR. Bioorg. Med. Chem. Lett. 2012;22:733–737. doi: 10.1016/j.bmcl.2011.10.030. PubMed DOI

Kirrane T.M., Boyer S.J., Burke J., Guo X., Snow R.J., Soleymanzadeh L., Swinamer A., Zhang Y., Madwed J.B., Kashem M., et al. Indole RSK Inhibitors. Part 2: Optimization of Cell Potency and Kinase Selectivity. Bioorg. Med. Chem. Lett. 2012;22:738–742. doi: 10.1016/j.bmcl.2011.10.029. PubMed DOI

Putey A., Fournet G., Lozach O., Perrin L., Meijer L., Joseph B. Synthesis and Biological Evaluation of Tetrahydro[1,4]Diazepino[1,2-a] Indol-1-Ones as Cyclin-Dependent Kinase Inhibitors. Eur. J. Med. Chem. 2014;83:617–629. doi: 10.1016/j.ejmech.2014.06.063. PubMed DOI

Razmienė B., Řezníčková E., Dambrauskienė V., Ostruszka R., Kubala M., Žukauskaitė A., Kryštof V., Šačkus A., Arbačiauskienė E. Synthesis and Antiproliferative Activity of 2,4,6,7-Tetrasubstituted-2H-Pyrazolo[4,3-c]Pyridines. Molecules. 2021;26:6747. doi: 10.3390/molecules26216747. PubMed DOI PMC

Milišiūnaitė V., Arbačiauskienė E., Řezníčková E., Jorda R., Malínková V., Žukauskaitė A., Holzer W., Šačkus A., Kryštof V. Synthesis and Anti-Mitotic Activity of 2,4- or 2,6-Disubstituted- and 2,4,6-Trisubstituted-2H-Pyrazolo[4,3-c]Pyridines. Eur. J. Med. Chem. 2018;150:908–919. doi: 10.1016/j.ejmech.2018.03.037. PubMed DOI

Razmienė B., Vojáčková V., Řezníčková E., Malina L., Dambrauskienė V., Kubala M., Bajgar R., Kolářová H., Žukauskaitė A., Arbačiauskienė E., et al. Synthesis of N-Aryl-2,6-Diphenyl-2H-Pyrazolo[4,3-c]Pyridin-7-Amines and Their Photodynamic Properties in the Human Skin Melanoma Cell Line G361. Bioorg. Chem. 2022;119:105570. doi: 10.1016/j.bioorg.2021.105570. PubMed DOI

Milišiūnaitė V., Kadlecová A., Žukauskaitė A., Doležal K., Strnad M., Voller J., Arbačiauskienė E., Holzer W., Šačkus A. Synthesis and Anthelmintic Activity of Benzopyrano[2,3-c]Pyrazol-4(2H)-One Derivatives. Mol. Divers. 2020;24:1025–1042. doi: 10.1007/s11030-019-10010-3. PubMed DOI

Milišiūnaitė V., Paulavičiūtė R., Arbačiauskienė E., Martynaitis V., Holzer W., Šačkus A. Synthesis of 2H-Furo[2,3-c]Pyrazole Ring Systems through Silver(I) Ion-Mediated Ring-Closure Reaction. Beilstein J. Org. Chem. 2019;15:679–684. doi: 10.3762/bjoc.15.62. PubMed DOI PMC

Secrieru A., O’Neill P.M., Cristiano M.L.S. Revisiting the Structure and Chemistry of 3(5)-Substituted Pyrazoles. Molecules. 2020;25:42. doi: 10.3390/molecules25010042. PubMed DOI PMC

Kusakiewicz-Dawid A., Porada M., Dziuk B., Siodłak D. Annular Tautomerism of 3(5)-Disubstituted-1H-Pyrazoles with Ester and Amide Groups. Molecules. 2019;24:2632. doi: 10.3390/molecules24142632. PubMed DOI PMC

Lin R., Chiu G., Yu Y., Connolly P.J., Li S., Lu Y., Adams M., Fuentes-Pesquera A.R., Emanuel S.L., Greenberger L.M. Design, Synthesis, and Evaluation of 3,4-Disubstituted Pyrazole Analogues as Anti-Tumor CDK Inhibitors. Bioorg. Med. Chem. Lett. 2007;17:4557–4561. doi: 10.1016/j.bmcl.2007.05.092. PubMed DOI

Guerrero M., Pérez J., Ros J., Branchadell V., Pellicer E., Sort J., Pons J. Design of New N-Polyether Pyrazole Derived Ligands: Synthesis, Characterization and Regioselectivity. Curr. Org. Synth. 2013;11:149–155. doi: 10.2174/15701794113106660077. DOI

Iškauskienė M., Ragaitė G., Sløk F.A., Šačkus A. Facile Synthesis of Novel Amino Acid-like Building Blocks by N-Alkylation of Heterocyclic Carboxylates with N-Boc-3-Iodoazetidine. Mol. Divers. 2020;24:1235–1251. doi: 10.1007/s11030-019-09987-8. PubMed DOI

Matulevičiūtė G., Arbačiauskienė E., Kleizienė N., Kederienė V., Ragaitė G., Dagilienė M., Bieliauskas A., Milišiūnaitė V., Sløk F.A., Šačkus A. Synthesis and Characterization of Novel Methyl (3)5-(N-Boc-Piperidinyl)-1H-Pyrazole-4-Carboxylates. Molecules. 2021;26:3808. doi: 10.3390/molecules26133808. PubMed DOI PMC

Huang A., Wo K., Lee S.Y.C., Kneitschel N., Chang J., Zhu K., Mello T., Bancroft L., Norman N.J., Zheng S.L. Regioselective Synthesis, NMR, and Crystallographic Analysis of N1-Substituted Pyrazoles. J. Org. Chem. 2017;82:8864–8872. doi: 10.1021/acs.joc.7b01006. PubMed DOI

Wright S.W., Arnold E.P., Yang X. Steric Redirection of Alkylation in 1H-Pyrazole-3-Carboxylate Esters. Tetrahedron. Lett. 2018;59:402–405. doi: 10.1016/j.tetlet.2017.12.052. DOI

Xu D., Frank L., Nguyen T., Stumpf A., Russell D., Angelaud R., Gosselin F. Magnesium-Catalyzed N2-Regioselective Alkylation of 3-Substi- Tuted Pyrazoles. Synlett. 2020;31:595–599. doi: 10.1055/s-0039-1690160. DOI

Shen S.L., Zhu J., Li M., Zhao B.X., Miao J.Y. Synthesis of Ferrocenyl Pyrazole-Containing Chiral Aminoethanol Derivatives and Their Inhibition against A549 and H322 Lung Cancer Cells. Eur. J. Med. Chem. 2012;54:287–294. doi: 10.1016/j.ejmech.2012.05.008. PubMed DOI

Xiong B., Chen S., Zhu P., Huang M., Gao W., Zhu R., Qian J., Peng Y., Zhang Y., Dai H., et al. Design, Synthesis, and Biological Evaluation of Novel Thiazolyl Substituted Bis-Pyrazole Oxime Derivatives with Potent Antitumor Activities by Selectively Inducing Apoptosis and ROS in Cancer Cells. Med. Chem. 2019;15:743–754. doi: 10.2174/1573406414666180827112724. PubMed DOI

Hafez H.N., El-Gazzar A.R.B.A. Synthesis and Biological Evaluation of N- Pyrazolyl Derivatives and Pyrazolopyrimidine Bearing a Biologically Active Sulfonamide Moiety as Potential Antimicrobial Agent. Molecules. 2016;21:1156. doi: 10.3390/molecules21091156. PubMed DOI PMC

Thurmond R.L., Beavers M.P., Cai H., Meduna S.P., Gustin D.J., Sun S., Almond H.J., Karlsson L., Edwards J.P. Nonpeptidic, Noncovalent Inhibitors of the Cysteine Protease Cathepsin S. J. Med. Chem. 2004;47:4799–4801. doi: 10.1021/jm0496133. PubMed DOI

Schwarzkopf J., Sundermann T., Arnsmann M., Hanekamp W., Fabian J., Heidemann J., Pott A.F., Bettenworth D., Lehr M. Inhibitors of Cytosolic Phospholipase A2α with Carbamate Structure: Synthesis, Biological Activity, Metabolic Stability, and Bioavailability. Med. Chem. Res. 2014;23:5250–5262. doi: 10.1007/s00044-014-1070-5. DOI

Sundermann T., Arnsmann M., Schwarzkopf J., Hanekamp W., Lehr M. Convergent and Enantioselective Syntheses of Cytosolic Phospholipase A 2α Inhibiting N-(1-Indazol-1-Ylpropan-2-Yl)Carbamates. Org. Biomol. Chem. 2014;12:4021–4030. doi: 10.1039/C4OB00535J. PubMed DOI

Kimura T., Hosokawa-Muto J., Asami K., Murai T., Kuwata K. Synthesis of 9-Substituted 2,3,4,9-Tetrahydro-1H-Carbazole Derivatives and Evaluation of Their Anti-Prion Activity in TSE-Infected Cells. Eur. J. Med. Chem. 2011;46:5675–5679. doi: 10.1016/j.ejmech.2011.08.039. PubMed DOI

Althaus J., Hake T., Hanekamp W., Lehr M. 1-(5-Carboxyindazol-1-Yl)Propan-2-Ones as Dual Inhibitors of Cytosolic Phospholipase A2α and Fatty Acid Amide Hydrolase: Bioisosteric Replacement of the Carboxylic Acid Moiety. J. Enzym. Inhib. Med. Chem. 2016;31:131–140. doi: 10.1080/14756366.2016.1178246. PubMed DOI

Saddique F.A., Zahoor A.F., Faiz S., Naqvi S.A.R., Usman M., Ahmad M. Recent Trends in Ring Opening of Epoxides by Amines as Nucleophiles. Synth. Commun. 2016;46:831–868. doi: 10.1080/00397911.2016.1170148. DOI

Meninno S., Lattanzi A. Epoxides: Small Rings to Play with under Asymmetric Organocatalysis. ACS Org. Inorg. Au. 2022;2:289–305. doi: 10.1021/acsorginorgau.2c00009. PubMed DOI PMC

Wang C., Luo L., Yamamoto H. Metal-Catalyzed Directed Regio- and Enantioselective Ring-Opening of Epoxides. Acc. Chem. Res. 2016;49:193–204. doi: 10.1021/acs.accounts.5b00428. PubMed DOI

Meninno S., Lattanzi A. Organocatalytic Asymmetric Reactions of Epoxides: Recent Progress. Chem.-A Eur. J. 2016;22:3632–3642. doi: 10.1002/chem.201504226. PubMed DOI

Wang C. Electrophilic Ring Opening of Small Heterocycles. Synthesis. 2017;49:5307–5319. doi: 10.1055/s-0036-1589102. DOI

Li D., Wang J., Yu S., Ye S., Zou W., Zhang H., Chen J. Highly Regioselective Ring-Opening of Epoxides with Amines: A Metal- A Nd Solvent-Free Protocol for the Synthesis of β-Amino Alcohols. Chem. Commun. 2020;56:2256–2259. doi: 10.1039/C9CC09048G. PubMed DOI

Tan N., Yin S., Li Y., Qiu R., Meng Z., Song X., Luo S., Au C.-T., Wong W.-Y. Synthesis and Structure of an Air-Stable Organobismuth Triflate Complex and Its Use as a High-Efficiency Catalyst for the Ring Opening of Epoxides in Aqueous Media with Aromatic Amines. J. Organomet. Chem. 2011;696:1579–1583. doi: 10.1016/j.jorganchem.2010.12.035. DOI

Hattori G., Yoshida A., Miyake Y., Nishibayashi Y. Enantioselective Ring-Opening Reactions of Racemic Ethynyl Epoxides via Copper−Allenylidene Intermediates: Efficient Approach to Chiral β-Amino Alcohols. J. Org. Chem. 2009;74:7603–7607. doi: 10.1021/jo901064n. PubMed DOI

Malhotra S.V., Andal R.P., Kumar V. Aminolysis of Epoxides in Ionic Liquid 1-Ethylpyridinium Trifluoroacetate as Green and Efficient Reaction Medium. Synth. Commun. 2008;38:4160–4169. doi: 10.1080/00397910802323056. DOI

Hansen T., Vermeeren P., Haim A., van Dorp M.J.H., Codée J.D.C., Bickelhaupt F.M., Hamlin T.A. Regioselectivity of Epoxide Ring-Openings via S N 2 Reactions Under Basic and Acidic Conditions. Eur. J. Org. Chem. 2020;2020:3822–3828. doi: 10.1002/ejoc.202000590. DOI

Wu Y., Tang C., Rui R., Yang L., Ding W., Wang J., Li Y., Lai C.C., Wang Y., Luo R., et al. Synthesis and Biological Evaluation of a Series of 2-(((5-Akly/Aryl-1H-Pyrazol-3-Yl)Methyl)Thio)-5-Alkyl-6-(Cyclohexylmethyl)-Pyrimidin-4(3H)-Ones as Potential HIV-1 Inhibitors. Acta Pharm Sin. B. 2020;10:512–528. doi: 10.1016/j.apsb.2019.08.009. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Pyrazole-based lamellarin O analogues: synthesis, biological evaluation and structure-activity relationships

. 2023 Mar 08 ; 13 (12) : 7897-7912. [epub] 20230310

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...