Distinctive behaviour of live biopsy-derived carcinoma cells unveiled using coherence-controlled holographic microscopy
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28846747
PubMed Central
PMC5573213
DOI
10.1371/journal.pone.0183399
PII: PONE-D-16-43500
Knihovny.cz E-zdroje
- MeSH
- biopsie MeSH
- buněčný cyklus fyziologie MeSH
- holografie metody MeSH
- imunohistochemie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikroskopie metody MeSH
- nádorové biomarkery metabolismus MeSH
- nádorové buňky kultivované MeSH
- nádorové supresorové proteiny metabolismus MeSH
- nádory hlavy a krku metabolismus patologie MeSH
- pohyb buněk fyziologie MeSH
- senioři MeSH
- spinocelulární karcinom metabolismus patologie MeSH
- transkripční faktory metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nádorové biomarkery MeSH
- nádorové supresorové proteiny MeSH
- TP63 protein, human MeSH Prohlížeč
- transkripční faktory MeSH
Head and neck squamous cell carcinoma is one of the most aggressive tumours and is typically diagnosed too late. Late diagnosis requires an urgent decision on an effective therapy. An individualized test of chemosensitivity should quickly indicate the suitability of chemotherapy and radiotherapy. No ex vivo chemosensitivity assessment developed thus far has become a part of general clinical practice. Therefore, we attempted to explore the new technique of coherence-controlled holographic microscopy to investigate the motility and growth of live cells from a head and neck squamous cell carcinoma biopsy. We expected to reveal behavioural patterns characteristic for malignant cells that can be used to imrove future predictive evaluation of chemotherapy. We managed to cultivate primary SACR2 carcinoma cells from head and neck squamous cell carcinoma biopsy verified through histopathology. The cells grew as a cohesive sheet of suspected carcinoma origin, and western blots showed positivity for the tumour marker p63 confirming cancerous origin. Unlike the roundish colonies of the established FaDu carcinoma cell line, the SACR2 cells formed irregularly shaped colonies, eliciting the impression of the collective invasion of carcinoma cells. Time-lapse recordings of the cohesive sheet activity revealed the rapid migration and high plasticity of these epithelial-like cells. Individual cells frequently abandoned the swiftly migrating crowd by moving aside and crawling faster. The increasing mass of fast migrating epithelial-like cells before and after mitosis confirmed the continuation of the cell cycle. In immunofluorescence, analogously shaped cells expressed the p63 tumour marker, considered proof of their origin from a carcinoma. These behavioural traits indicate the feasible identification of carcinoma cells in culture according to the proposed concept of the carcinoma cell dynamic phenotype. If further developed, this approach could later serve in a new functional online analysis of reactions of carcinoma cells to therapy. Such efforts conform to current trends in precision medicine.
CEITEC Central European Institute of Technology Brno University of Technology Brno Czech Republic
Regional Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Kalia M. Personalized oncology: Recent advances and future challenges. Metabolism. 2013;62:S11–S14. doi: 10.1016/j.metabol.2012.08.016 PubMed DOI
Lippert T, Ruoff HJ, Volm M. Current Status of Methods to Assess Cancer Drug Resistance. International Journal of Medical Sciences. 2011:245. PubMed PMC
Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G. Cell death assays for drug discovery. Nature Reviews Drug Discovery. 2011;10(3):221–237. doi: 10.1038/nrd3373 PubMed DOI
Burstein H, Mangu P, Somerfield M, Schrag D, Samson D, Holt L et al. American Society of Clinical Oncology Clinical Practice Guideline Update on the Use of Chemotherapy Sensitivity and Resistance Assays. Journal of Clinical Oncology. 2011;29(24):3328–3330. doi: 10.1200/JCO.2011.36.0354 PubMed DOI
Partin A, Schoeniger J, Mohler J, Coffey D. Fourier analysis of cell motility: correlation of motility with metastatic potential. Proceedings of the National Academy of Sciences. 1989;86(4):1254–1258. PubMed PMC
Palm D, Lang K, Brandt B, Zaenker K, Entschladen F. In vitro and in vivo imaging of cell migration: Two interdepending methods to unravel metastasis formation. Seminars in Cancer Biology. 2005;15(5):396–404.nic doi: 10.1016/j.semcancer.2005.06.008 PubMed DOI
Zhao T, Ding X, Chang B, Zhou X, Wang A. MTUS1/ATIP3a down-regulation is associated with enhanced migration, invasion and poor prognosis in salivary adenoid cystic carcinoma. BMC Cancer. 2015;15(1). PubMed PMC
Collakova J, Krizova A, Kollarova V, Dostal Z, Slaba M, Vesely P et al. Coherence-controlled holographic microscopy enabled recognition of necrosis as the mechanism of cancer cells death after exposure to cytopathic turbid emulsion. J Biomed Opt. 2015;20(11):111213 doi: 10.1117/1.JBO.20.11.111213 PubMed DOI
Krizova A, Collakova J, Dostal Z, Kvasnica L, Uhlirova H, Zikmund T, et al. Dynamic phase differences based on quantitative phase imaging for the objective evaluation of cell behavior. J Biomed Opt Journal of Biomedical Optics. 2015March;20(11):111214 doi: 10.1117/1.JBO.20.11.111214 PubMed DOI
Balvan J, Krizova A, Gumulec J, Raudenska M, Sladek Z, Sedlackova M et al. Multimodal Holographic Microscopy: Distinction between Apoptosis and Oncosis. PLOS ONE. 2015;10(3):e0121674 doi: 10.1371/journal.pone.0121674 PubMed DOI PMC
Balvan J, Gumulec J, Raudenska M, Krizova A, Stepka P, Babula P et al. Oxidative Stress Resistance in Metastatic Prostate Cancer: Renewal by Self-Eating. PLOS ONE. 2015;10(12):e0145016 doi: 10.1371/journal.pone.0145016 PubMed DOI PMC
Brozova M, Kleibl Z, Netikova I, Sevcik J, Scholzova E, Brezinova J et al. Establishment, growth and in vivo differentiation of a new clonal human cell line, EM-G3, derived from breast cancer progenitors. Breast Cancer Res Treat. 2006;103(2):247–257. doi: 10.1007/s10549-006-9358-x PubMed DOI
Rangan SRS. A new human cell line (FaDu) from a hypopharyngeal carcinoma. Cancer. 1972;29(1):117–21. PubMed
Li H, Wawrose JS, Gooding WE, Garraway LA, Lui VWY, Peyser ND, Grandis JR. Genomic analysis of head and neck squamous cell carcinoma cell lines and human tumors: a rational approach to preclinical model selection. Molecular Cancer Research. 2014. 12(4), 571–582. doi: 10.1158/1541-7786.MCR-13-0396 PubMed DOI PMC
Zhao M, Sano D, Pickering CR, Jasser SA, Henderson YC, Clayman GL, Sacks PG. Assembly and initial characterization of a panel of 85 genomically validated cell lines from diverse head and neck tumor sites. Clinical cancer research. 2011. clincanres-0690. PubMed PMC
Liebertz DJ, Lechner MG, Masood R, Sinha UK, Han J, Puri RK, Epstein AL. Establishment and characterization of a novel head and neck squamous cell carcinoma cell line USC-HN1. Head & neck oncology. 2010. 2(1), 5. PubMed PMC
Slabý T, Kolman P, Dostál Z, Antoš M, Lošťák M, Chmelík R. Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope. Opt Express. 2013;21(12):14747 doi: 10.1364/OE.21.014747 PubMed DOI
Chmelik R, Slaba M, Kollarova V, Slaby T, Lostak M, Collakova J, et al. The Role of Coherence in Image Formation in Holographic Microscopy. Progress in Optics. 2014; 267–335.
Chmelik R, Slabý T, Kolman P, Dostal Z, Antoš M. Brno University of Technology: Interferometric system with spatial carrier frequency capable of imaging in polychromatic radiation.302491, patent. (2011).
Popescu G, Park Y, Lue N, Best-Popescu C, Deflores L, Dasari RR et al. Optical imaging of cell mass and growth dynamics. AJP: Cell Physiology. 2008;295(2). PubMed PMC
Barer R. Refractometry and Interferometry of Living Cells. Journal of the Optical Society of America. 1957;47(6):545 PubMed
Dunn GA, Zicha D. Phase-shifting interference microscopy applied to the analysis of cell behaviour. Symposia of the Society for Experimental Biology, 47, 91{106 (1993). PubMed
Tzur A, Kafri R, LeBleu V, Lahav G, Kirschner M. Cell Growth and Size Homeostasis in Proliferating Animal Cells. Science. 2009;325(5937):167–171 doi: 10.1126/science.1174294 PubMed DOI PMC
Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, Dosaka-Akita H et al. Tumor-associated Macrophages Regulate Tumorigenicity and Anticancer Drug Responses of Cancer Stem/initiating Cells. Proceedings of the National Academy of Sciences 108.30 (2011): 12425–2430. PubMed PMC
Re M, Zizzi A, Ferrante L, Stramazzotti D, Goteri G, Gioacchini F et al. p63 and Ki-67 immunostainings in laryngeal squamous cell carcinoma are related to survival. Eur Arch Otorhinolaryngol. 2014;271(6):1641–1651. doi: 10.1007/s00405-013-2833-1 PubMed DOI
Khan NR, Khan AN, Bashir S, Khan AA, Suleman BA, Chaudhry S. Diagnostic utility of p63 (Ab-1) and (Ab-4) tumor markers in the squamous cell carcinomas of head and neck. Asian Pacific Journal of Cancer Prevention 13.3 (2012): 975–978. PubMed
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. Journal of Clinical Investigation J Clin Invest. 2010March;120(5):1786. PubMed PMC
Svitkina TM, Verkhovsky AB, Mcquade KM, Borisy GG. Analysis of the Actin–Myosin II System in Fish Epidermal Keratocytes: Mechanism of Cell Body Translocation. J Cell Biol The Journal of Cell Biology. 1997;139(2):397–415. PubMed PMC
Veselý P, Urbancová H, Chaloupková A, Urbanec P, Boháč L, Kůrka P, et al. Value of the assessment in the SEM of surface structures and 3-D shape of the cell for predicting malignancy. Scanning. 1985;7(3):141–57.
Watanabe E, Hoshiba T, Javidi B. High-precision microscopic phase imaging without phase unwrapping for cancer cell identification. Optics Letters Opt Lett. 2013December;38(8):1319 doi: 10.1364/OL.38.001319 PubMed DOI
Su Y, Pogash TJ, Nguyen TD, Russo J. Development and characterization of two human triple-negative breast cancer cell lines with highly tumorigenic and metastatic capabilities. Cancer Med Cancer Medicine. 2016;5(3):558–73. doi: 10.1002/cam4.616 PubMed DOI PMC
Nylander K, Coates PJ, Hall PA. Characterization of the expression pattern of p63α and δnp63α in benign and malignant oral epithelial lesions. International Journal of Cancer Int J Cancer. 2000;87(3):368–72. PubMed
Di Como CJ, Urist MJ, Babayan I, Drobnjak M, Hedvat CV, Teruya-Feldstein J et al. p63 expression profiles in human normal and tumor tissues. Clinical Cancer Research, 2002, 82: 494–501. PubMed
Dotsch V, Bernassola F, Coutandin D, Candi E, Melino G. p63 and p73, the Ancestors of p53. Cold Spring Harbor Perspectives in Biology. 2010;2(9). PubMed PMC
Sinha A, Chandra S, Raj V, Zaidi I, Saxena S, Dwivedi R. Expression of p63 in potentially malignant and malignant oral lesions. Journal of Oral Biology and Craniofacial Research. 2015;5(3):165–72. doi: 10.1016/j.jobcr.2015.07.001 PubMed DOI PMC
Dang TT, Westcott JM, Maine EA, Kanchwala M, Xing C, Pearson GW. ΔNp63α induces the expression of FAT2 and Slug to promote tumor invasion. Oncotarget. 2016. September; PubMed PMC
Gandalovičová A, Rosel D, Fernandes M, Vesely P, Heneberg P, Cermak V, Brábek J. Migrastatics—anti-metastatic and anti-invasion drugs: promises and challenges. Trends in Cancer. (2017). PubMed PMC
Friedman AA, Letai A, Fisher DE, Flaherty KT. Precision medicine for cancer with next-generation functional diagnostics. Nature Reviews Cancer Nat Rev Cancer. 2015May;15(12):747–56. doi: 10.1038/nrc4015 PubMed DOI PMC