Addressing cancer invasion and cell motility with quantitative light microscopy
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Cancer Research UK - United Kingdom
PubMed
35102173
PubMed Central
PMC8803927
DOI
10.1038/s41598-022-05307-7
PII: 10.1038/s41598-022-05307-7
Knihovny.cz E-zdroje
- MeSH
- invazivní růst nádoru * MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- mikroskopie metody MeSH
- nádorové buněčné linie MeSH
- pohyb buněk * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The incidence of death caused by cancer has been increasing worldwide. The growth of cancer cells is not the main problem. The majority of deaths are due to invasion and metastasis, where cancer cells actively spread from primary tumors. Our inbred rat model of spontaneous metastasis revealed dynamic phenotype changes in vitro correlating with the metastatic potential in vivo and led to a discovery of a metastasis suppressor, protein 4.1B, which affects their 2D motility on flat substrates. Subsequently, others confirmed 4.1B as metastasis suppressor using knock-out mice and patient data suggesting mechanism involving apoptosis. There is evidence that 2D motility may be differentially controlled to the 3D situation. Here we show that 4.1B affects cell motility in an invasion assay similarly to the 2D system, further supporting our original hypothesis that the role of 4.1B as metastasis suppressor is primarily mediated by its effect on motility. This is encouraging for the validity of the 2D analysis, and we propose Quantitative Phase Imaging with incoherent light source for rapid and accurate testing of cancer cell motility and growth to be of interest for personalized cancer treatment as illustrated in experiments measuring responses of human adenocarcinoma cells to selected chemotherapeutic drugs.
Zobrazit více v PubMed
Fitzmaurice C, et al. The global burden of cancer 2013. JAMA Oncol. 2015;1:505–527. doi: 10.1001/jamaoncol.2015.0735. PubMed DOI PMC
Ferlay J, et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer. 2013;49:1374–1403. doi: 10.1016/j.ejca.2012.12.027. PubMed DOI
Arnold M, et al. Recent trends in incidence of five common cancers in 26 European countries since 1988: Analysis of the European Cancer Observatory. Eur. J. Cancer. 2015;51:1164–1187. doi: 10.1016/j.ejca.2013.09.002. PubMed DOI
Chaturvedi AK, et al. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J. Clin. Oncol. 2013;31:4550–4559. doi: 10.1200/JCO.2013.50.3870. PubMed DOI PMC
Roitshtain D, et al. Quantitative phase microscopy spatial signatures of cancer cells. Cytometry. A. 2017;91:482–493. doi: 10.1002/cyto.a.23100. PubMed DOI
Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat. Photonics. 2018;12:578–589. doi: 10.1038/s41566-018-0253-x. DOI
Cavanna T, Pokorná E, Veselý P, Gray C, Zicha D. Evidence for protein 4.1B acting as a metastasis suppressor. J. Cell Sci. 2007;120:606–616. doi: 10.1242/jcs.000273. PubMed DOI
Zicha D, Dunn GA, Brown AF. A new direct-viewing chemotaxis chamber. J. Cell Sci. 1991;99:769–775. doi: 10.1242/jcs.99.4.769. PubMed DOI
Zicha D, Dunn G, Jones G. Analyzing chemotaxis using the Dunn direct-viewing chamber. Methods Mol. Biol. 1997;75:449–457. PubMed
Mardia KV. Statistics of directional data. J. R. Stat. Soc. Ser. B. 1975;37:349–393.
Milliken GA, Johnson DE. Analysis of messy data: Designed experiments. J. Mark. Res. JMR. 1992;1:22.
Zicha D, et al. Rapid actin transport during cell protrusion. Science. 2003;300:142–145. doi: 10.1126/science.1082026. PubMed DOI
Hagglund S, et al. Novel shear flow assay provides evidence for non-linear modulation of cancer invasion. Front. Biosci. 2009;14:3085–3093. doi: 10.2741/3437. PubMed DOI
Rusciano D, Welch DR, Burger M. Selection of metastatic variants. Cancer Metast. 2000;29:161–183.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300.
Wong SY, et al. Protein 4.1B suppresses prostate cancer progression and metastasis. Proc. Natl. Acad. Sci. USA. 2007;104:12784–12789. doi: 10.1073/pnas.0705499104. PubMed DOI PMC
Meyer AS, et al. 2D protrusion but not motility predicts growth factor-induced cancer cell migration in 3D collagen. J. Cell Biol. 2012;197:721–729. doi: 10.1083/jcb.201201003. PubMed DOI PMC
Zicha D, Genot E, Dunn GA, Kramer IM. TGFbeta1 induces a cell-cycle-dependent increase in motility of epithelial cells. J. Cell Sci. 1999;112:447–454. doi: 10.1242/jcs.112.4.447. PubMed DOI
Sheridan JT, et al. Roadmap on holography. J. Opt. 2020;22:123002. doi: 10.1088/2040-8986/abb3a4. DOI
Dunn G, Weber I, Zicha D. Protrusion, retraction and the efficiency of cell locomotion. Dyn. Cell Tissue Motion. 1997;1:33–46. doi: 10.1007/978-3-0348-8916-2_5. DOI
Molina-Arcas M, Hancock DC, Sheridan C, Kumar MS, Downward J. Coordinate direct input of both KRAS and IGF1 receptor to activation of PI3 kinase in KRAS-mutant lung cancer. Cancer Discov. 2013;3:548–563. doi: 10.1158/2159-8290.CD-12-0446. PubMed DOI PMC
Zangle TA, Teitell MA. Live-cell mass profiling: an emerging approach in quantitative biophysics. Nat. Methods. 2014;11:1221–1228. doi: 10.1038/nmeth.3175. PubMed DOI PMC
Zicha D. Quantitative imaging in metastasis research. Int. Drug. Discov. 2010;1:68–72.
Vasilenko I, Metelin V, Kardasheva Z, Balkanov A, Lifenko R. Evaluation of metastatic potential of circulating tumor cells using quantitative phase imaging (QPI) Proc. SPIE. 2019;1:10887.
Murray GF, et al. QPI allows in vitro drug screening of triple negative breast cancer PDX tumors and fine needle biopsies. Front. Phys. 2019;7:158. doi: 10.3389/fphy.2019.00158. DOI
Mir M, Bergamaschi A, Katzenellenbogen BS, Popescu G. Highly sensitive quantitative imaging for monitoring single cancer cell growth kinetics and drug response. PLoS ONE. 2014;9:e89000. doi: 10.1371/journal.pone.0089000. PubMed DOI PMC
Frame FM, et al. Tumor heterogeneity and therapy resistance: Implications for future treatments of prostate cancer. J. Cancer Metast. Treat. 2017;3:302–314. doi: 10.20517/2394-4722.2017.34. DOI
Hellesvik M, Øye H, Aksnes H. Exploiting the potential of commercial digital holographic microscopy by combining it with 3D matrix cell culture assays. Sci. Rep. 2020;10:14680. doi: 10.1038/s41598-020-71538-1. PubMed DOI PMC
Tolde O, et al. Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion. Sci. Rep. 2018;8:1–13. doi: 10.1038/s41598-018-30408-7. PubMed DOI PMC
Gál B, et al. Distinctive behaviour of live biopsy-derived carcinoma cells unveiled using coherence-controlled holographic microscopy. PLoS ONE. 2017;12:e0183399. doi: 10.1371/journal.pone.0183399. PubMed DOI PMC
Balvan J, et al. Multimodal holographic microscopy: Distinction between apoptosis and oncosis. PLoS ONE. 2015;10:1–16. PubMed PMC
Vicar T, Raudenska M, Gumulec J, Balvan J. The quantitative-phase dynamics of apoptosis and lytic cell death. Sci. Rep. 2020;10:1566. doi: 10.1038/s41598-020-58474-w. PubMed DOI PMC
Balvan J, et al. Oxidative stress resistance in metastatic prostate cancer: Renewal by self-eating. PLoS ONE. 2015;10:1–23. PubMed PMC
Veselý P, Weiss RA. Cell locomotion and contact inhibition of normal and neoplastic rat cells. Int. J. Cancer. 1973;11:64–76. doi: 10.1002/ijc.2910110108. PubMed DOI
Veselý P, et al. Patterns of in vitro behaviour characterizing cells of spontaneously metastasizing K2M rat sarcoma. Folia Biol. 1987;33:307–324. PubMed
Dunn GA, Zicha D. Phase-shifting interference microscopy applied to the analysis of cell behavior. Cell Behav. Adhes. Motil. 1993;47:91–106. PubMed
Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N. Computer control of microscopes using micromanager. Curr. Protoc. Mol. Biol. 2010;14:20. PubMed PMC
Creath K. V Phase-Measurement Interferometry Techniques. Elsevier; 1988. pp. 349–393.
Davies HG, Wilkins MH. Interference microscopy and mass determination. Nature. 1952;169:541. doi: 10.1038/169541a0. PubMed DOI
Zicha D, Dunn GA. An image-processing system for cell behavior studies in subconfluent cultures. J. Microsc. Oxford. 1995;179:11–21. doi: 10.1111/j.1365-2818.1995.tb03609.x. DOI