Reuse of Textile Waste to Production of the Fibrous Antibacterial Membrane with Filtration Potential
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 2/0168/21
Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic
TJ04000226
Technology Agency of the Czech Republic
PubMed
35010000
PubMed Central
PMC8746662
DOI
10.3390/nano12010050
PII: nano12010050
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial membrane, electrospinning, filtration, polyamide, recycling of textile waste, stocking,
- Publikační typ
- časopisecké články MeSH
Wasted synthetic fabrics are a type of textile waste source; the reuse of them brings environmental protection and turns waste into a valuable material. In this work, the used nylon (polyamide) stockings were transmuted into a fine fibrous membrane via an electrospinning process. In addition, the safety antibacterial agent, monoacylglycerol (MAG), was incorporated into a recycled fibrous membrane. The results revealed that the neat, recycled polyamide (rPA) fibers with a hydrophobic surface could be converted into hydrophilic fibers by blending various amounts of MAG with rPA solution prior to electrospinning. The filtration efficiency and air/water vapor permeability of the two types of produced membranes, neat rPA, and rPA/MAG, were tested. Their filtration efficiency (E100) was more than 92% and 96%, respectively. The membranes were classified according to Standard EN1822, and therefore, the membranes rPA and rPA/MAG were assigned to the classes E10 and E11, respectively. The air permeability was not affected by the addition of MAG, and water vapor permeability was slightly enhanced. Based on the obtained data, prepared rPA/MAG fibrous membranes can be evaluated as antifouling against both tested bacterial strains and antimicrobial against S. aureus.
Zobrazit více v PubMed
Žagar E., Češarek U., Drinčić A., Sitar S., Shlyapnikov I.M., Pahovnik D. Quantitative determinantion of PA6 and/or PA66 content in polyamide-containing wastes. ACS Sustain. Chem. Eng. 2020;8:11818–11826. doi: 10.1021/acssuschemeng.0c04190. DOI
Stanescu M.D. State of the art of post-consumer textile waste upcycling to reach the zero waste milestone. Environ. Sci. Poll. Res. 2021;28:14253–14270. doi: 10.1007/s11356-021-12416-9. PubMed DOI
Novotna K., Cermakova L., Pivokonska L., Cajthaml T., Pivokonsky M. Microplastics in drinking water treatment—Current knowledge and research needs. Sci. Total Environ. 2019;667:730–740. doi: 10.1016/j.scitotenv.2019.02.431. PubMed DOI
Pivokonsky M., Cermakova L., Novotna K., Peer P., Cajthaml T., Janda V. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 2018;643:1644–1651. doi: 10.1016/j.scitotenv.2018.08.102. PubMed DOI
Statement on the Seventh Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Coronavirus Deseade (COVID-19) Pandemic. [(accessed on 8 December 2021)]. Available online: https://www.who.int/news/item/19-04-2021-statement-on-the-seventh-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic.
Damayanti D., Wulandari L.A., Bagaskoro A., Rianjanu A., Wu H.S. Possibility rountes for textile recycling technology. Polymers. 2021;13:3834. doi: 10.3390/polym13213834. PubMed DOI PMC
Harmsen P., Scheffer M., Bos H. Textiles for circular fashion: The logic behind recycling options. Sustainability. 2021;13:9714. doi: 10.3390/su13179714. DOI
Patti A., Cicala G., Acierno D. Eco-Sustainability of the Textile Production: Waste Recovery and Current Recycling in the Composites World. Polymers. 2021;13:134. doi: 10.3390/polym13010134. PubMed DOI PMC
Salas M.A., Pérez-Acebo H., Calderón V., Gonzalo-Orden H. Analysis and economic evaluation of the use of recycled polyamide powder in mansory mortars. Polymers. 2020;12:2657. doi: 10.3390/polym12112657. PubMed DOI PMC
Kumar D., Zou P.X.W., Memon R.A., Alam M.D.M., Sanjayan J.G., Kumar S. Life-cycle cost analysis of building wall and insulation materials. J. Build. Phys. 2019;43:428–455. doi: 10.1177/1744259119857749. DOI
Cai Z., Faruque M.A.A.F., Kiziltas A., Mielewski D., Naebe M. Sustainable lightweight insulation materials from textile-based waste for the automobile industry. Materials. 2021;14:1241. doi: 10.3390/ma14051241. PubMed DOI PMC
Sakthivel S., Melese B., Edae A., Abedom F., Mekonnen S., Solomon E. Garment waste recycled cotton/polyester thermal and acoustic properties of air-laid nonwovens. Adv. Mat. Sci. Eng. 2020;2020:8304525. doi: 10.1155/2020/8304525. DOI
Singh R., Kumar R., Ranjan N., Penna R., Fraternali F. On the recyclability for sustainable composite structures in civil engineering. Compos. Struct. 2018;184:704–713. doi: 10.1016/j.compstruct.2017.10.036. DOI
Šišková A.O., Peer P., Eckstein Andicsová A., Jordanov I., Rychter P. Circulatory management of polymer waste: Recycling into fine fibers and their applications. Materials. 2021;14:4694. doi: 10.3390/ma14164694. PubMed DOI PMC
Moriam K., Sawada D., Nieminen K., Hummel M., Ma Y., Rissanen M., Sixta H. Towards regenerated cellulose fibers with high toughness. Cellulose. 2021;28:9547–9566. doi: 10.1007/s10570-021-04134-9. DOI
Homem N.C., Amorim M.T.P. Synthesis of cellulose acetate using as raw material textile wastes. Mater. Today Proc. 2020;31:S315–S317. doi: 10.1016/j.matpr.2020.01.494. DOI
Fockink D.H., Andreaus J., Ramos L.P., Łukasik R.M. Pretreatment of cotton spinning residues for optimal enzymatic hydrolysis: A case study using green solvents. Renew. Energy. 2020;145:490–499. doi: 10.1016/j.renene.2019.06.042. DOI
Hussain Z., Sajjad W., Khan T., Wahid F. Production of bacterial cellulose from industrial wastes: A review. Cellulose. 2019;26:2895–2911. doi: 10.1007/s10570-019-02307-1. DOI
Yousef S., Tatariants M., Tichonovas M., Kliucininkas L., Kukošiūtė S.I., Yan L. Sustainable green technology for recovery of cotton fibers and polyester from textile waste. J. Clean. Prod. 2020;254:120078. doi: 10.1016/j.jclepro.2020.120078. DOI
Herzog B., Kohan M.I., Mestemacher S.A., Pagilagan R.U., Redmond K. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim, Germany: 2013. Polyamides. DOI
Šišková A.O., Frajová J., Nosko M. Recycling of poly(ethylene terephthalate) by electrospinning to enhanced the filtration efficiency. Mater. Lett. 2020;278:128426. doi: 10.1016/j.matlet.2020.128426. DOI
Dissanayake D.G.K., Weerasinghe D. Managing post-industrial textile waste: Current status and prospects for Sri Lanka. J. Text. Inst. 2020;112:1804–1810. doi: 10.1080/00405000.2020.1845461. DOI
Topuz F., Abdulhamid M.A., Hardian R., Holtzl T., Szekely G. Nanofibrous membranes comprising intrinsically microporous polyimides with embedded metal-organic frameworks for capturing volatile organic compounds. Pt AJ. Hazard. Mater. 2022;424:127347. doi: 10.1016/j.jhazmat.2021.127347. PubMed DOI
Isık T., Demir M.M. Tailored electrospun fibers from waste polystyrene for high oil adsorption. Sustain. Mater. Technol. 2018;18:e00084. doi: 10.1016/j.susmat.2018.e00084. DOI
Zander N.E., Sweetser D., Cole D.P., Gillan M. Formation of nanofibers from pure and mixed waste streams using electrospinning. Ind Eng. Chem. Res. 2015;54:9057–9063. doi: 10.1021/acs.iecr.5b02279. DOI
Rajak A., Hapidin D.A., Iskandar F., Munir M.M., Khairurrijal K. Controlled morphology of electrospun nanofibers from waste expanded polystyrene for aerosol filtration. Nanotechnology. 2019;30:425602. doi: 10.1088/1361-6528/ab2e3b. PubMed DOI
Baggio A., Doan H.N., Vo P.P., Kinashi K., Sakai W., Tsutsumi N., Fuse Y., Sangermano M. Chitosan-Functionalized Recycled Polyethylene Terephthalate Nanofibrous Membrane for Sustainable On-Demand Oil-Water Separation. Glob. Chall. 2021;5:2000107. doi: 10.1002/gch2.202000107. PubMed DOI PMC
Liu Y., Li K., Mohideen M.M., Ramakrishna S. Melt Electrospinning: A Green Method to Produce Superfine Fibers. Elsevier Inc.; Amsterdam, The Netherlands: 2019.
Naksuwan P., Komárek M., Salačová J., Militký J. The study of recycled poly(ethye’ lene terephthalate) nanofibers from PET bottle. Appl. Mech. Mat. 2016;848:3–6. doi: 10.4028/www.scientific.net/AMM.848.3. DOI
Heikkilä P., Harlin A. Parameter study of electrospinning of polyamide-6. Eur. Pol. J. 2008;44:3067–3079. doi: 10.1016/j.eurpolymj.2008.06.032. DOI
Ge Q., Ding L., Wu T., Xu G., Yang F., Xiang M. Effect of surfactant on morphology and pore size of polysulfone membrane. J. Polym. Res. 2018;25:21. doi: 10.1007/s10965-017-1410-5. DOI
Liu C., Hsu P.C., Lee H.W., Ye M., Zheng G., Liu N., Li W., Cui Y. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 2015;6:6205. doi: 10.1038/ncomms7205. PubMed DOI
Zulfi A., Munir M.M., Hapidin S.A., Rajak A., Edikrednha D., Iskandar F., Khairurriajal K. Air filtration media from electrospun waste high-impact polystyrene fiber membrane. Mater. Res. Express. 2018;5:035049. doi: 10.1088/2053-1591/aab6ef. DOI
Liu Y., Li S., Lan W., Hossen M.A., Qin W., Lee K. Electrospun antibacterial and antiviral poly(ε-caprolactone)/zein/Ag bead-on-string membranes and its application in air filtration. Mater. Today Adv. 2021;12:100173. doi: 10.1016/j.mtadv.2021.100173. DOI
Ahne J., Li Q., Croiset E., Tan Z. Electrospun cellulose acetate nanofibers for airborne nanoparticle filtration. Tex. Res. J. 2019;89:3137–3149. doi: 10.1177/0040517518807440. DOI
Šišková A.O., Mosnáčková K., Hrůza J., Frajová J., Opálek A., Bučková M., Kozics K., Peer P., Eckstein Andicsová A. Electrospun poly(ethylene terephthalate)/silk fibroin composite for filtration application. Polymers. 2021;13:2499. doi: 10.3390/polym13152499. PubMed DOI PMC
Wang Z., Zhao C., Pan Z. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration. J. Colloid. Interface Sci. 2015;441:121–129. doi: 10.1016/j.jcis.2014.11.041. PubMed DOI
Kim H.J., Choi D.I., Sung S.K., Lee S.H., Kim S.J., Kim J., Han B.S., Kim D.I., Kim Y. Eco-friendly poly(vinyl alcohol) nanofiber-based air filter for effectively capturing particulate matter. Appl. Sci. 2021;11:3831. doi: 10.3390/app11093831. DOI
Orlando R., Polat M., Afshari A., Johnson M.S., Fojan P. Electrospun nanofiber air filters for particles and gaseous pollutants. Sustainability. 2021;13:6553. doi: 10.3390/su13126553. DOI
Sanyal A., Sinha-Ray S. Ultrafine PVDF nanofibers for filtration of air-borne particulate matters: A comprehensive review. Polymers. 2021;13:1864. doi: 10.3390/polym13111864. PubMed DOI PMC
Liu H., Huang J., Mao J., Chen Z., Chen G., Lai Y. Transparent antibacterial nanofiber air filters with highly efficient moisture resistance for sustainable particulate matter capture. iScience. 2019;19:214–223. doi: 10.1016/j.isci.2019.07.020. PubMed DOI PMC
Bergshoef M.M., Vancso G.J. Transparent nanocomposites with ultrathin, electrospun nylon-6 fiber reinforcement. Adv. Mater. 1999;11:1362–1365. doi: 10.1002/(SICI)1521-4095(199911)11:16<1362::AID-ADMA1362>3.0.CO;2-X. DOI
Pant H.R., Pandeya D.R., Nam K.T., Baek W.I., Hong S.T., Kim H.Y. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J. Hazard. Mater. 2011;189:465–471. doi: 10.1016/j.jhazmat.2011.02.062. PubMed DOI
Abdal-hay A., Pant H.R., Lim J.K. Super-hydrophilic electrospun nylon-6/hydroxyapatite membrane for bone tissue engineering. Eur. Polym. J. 2013;49:1314–1321. doi: 10.1016/j.eurpolymj.2013.02.004. DOI
Jackman J., Yoon B.K., Li D., Cho N. Nanotechnology formulations for antibacterial free fatty acids and monoglycerides. Molecules. 2016;21:305. doi: 10.3390/molecules21030305. PubMed DOI PMC
Dolezalkova I., Janis R., Bunkova L., Slobodian P., Vicha R. Preparation, characterization and antibacterial activity of 1-monoacylglycerol of adamantane-1-carboxylic acid. J. Food Biochem. 2013;34:544–553. doi: 10.1111/jfbc.12005. DOI
Sevcikova P., Kasparkova V., Hauerlandova I., Humpolicek P., Kucekova Z., Bunkova L. Formulation, antibacterial activity, and cytotoxicity of 1-monoacylglycerol microemulsions. Eur. J. Lipid Sci. Technol. 2014;116:448–457. doi: 10.1002/ejlt.201300171. DOI
Hauerlandová I., Lorencová E., Buňka F., Navrátil J., Janečková K., Buňková L. The influence of fat and monoacylglycerols on growth of spore-forming bacteria in processed cheese. Int. J. Food Microbiol. 2014;182–183:37–43. doi: 10.1016/j.ijfoodmicro.2014.04.027. PubMed DOI
Janis R., Klasek A., Krejci J., Bobalova J. Influence of some chromium complexes on the conversion rate of glycidol—Fatty acid reaction. Tenside Surfact. Det. 2005;42:44–48. doi: 10.3139/113.100250. DOI
Sutter M., Dayoub W., Métay E., Raoul Y., Lemaire M. 1-O-alkyl (di)glycerol ethers synthesis from methyl esters and triglycerides by two pathways: Catalytic reductive alkylation and transesterification/reduction. Green Chem. 2013;15:786–797. doi: 10.1039/c3gc36907b. DOI
Zhu M., Han J., Wang F., Shao W., Xiong R., Zhang Q., Pan H., Yang Y., Samal S.K., Zhang F., et al. Electrospun nanofibers membranes for effective air filtration. Macromol. Mater. Eng. 2017;302:1600353. doi: 10.1002/mame.201600353. DOI
Al-Attabi E., Dumée L.F., Kong L., Schütz J.A., Morsi Y. High efficiency poly(acrylonitrile) electrospun nanofiber membranes for airborne nanomaterials filtration. Adv. Eng. Mater. 2017;20:1700572. doi: 10.1002/adem.201700572. DOI
Hes L. Non-Destructive Determinantion of Comfort Parameters during Marketing of Functional Garments and Clothing. [(accessed on 23 December 2021)];Indian J. Fibre Text Res. 2008 33:239–245. Available online: http://nopr.niscair.res.in/bitstream/123456789/2012/1/IJFTR%2033%283%29%20239-245.pdf.
Razzaque A., Tesinova P., Hes L., Salacova J., Abid H.A. Investigation on hydrostatic resistance and thermal performance of layeres waterproof breathable fabrics. Fiber. Polym. 2017;18:1924–1930. doi: 10.1007/s12221-017-1154-1. DOI
Irfan M., Uddin Z., Ahmad F., Rasheed A., Qadir M.B., Ahmad S., Aykut Y., Nazir A. Ecofriendly development of electrospun antibacterial membranes loaded with silver nanoparticles. J. Indus. Tex. 2021:1–14. doi: 10.1177/15280837211012590. DOI
Ferrer C., Ramón D., Muguerza B., Marco A., Martínez A. Effect of olive powder on the growth and inhibition of bacillus cereus. Fodborne Pathog. Dis. 2009;6:33–37. doi: 10.1089/fpd.2008.0133. PubMed DOI
Zahibi E., Babaei A., Shahrampour D., Arab-Bafrani Z., Mirshahidi K.S., Majidi H.J. Facile and rapid in-situ synthesis of chitosan-ZnO nano-hybrids applicable in medical purposes; A novel combination of biomineralization, ultrasound, and bio-safe morphology-conducting agent. Int. J. Biol. Macromol. 2019;15:107–116. doi: 10.1016/j.ijbiomac.2019.01.224. PubMed DOI
Molecular Probes, Inc. Molecular Probes, Invitrogen Detection Technologies. [(accessed on 17 May 2021)]. Available online: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/mp07007.pdf.
Jabbari M., Skrifvars M., Åkesson D., Taherzadeh M.J. New solvent for polyamide 66 and use for preparing a single-polymer composite-coated fabric. Int. J. Polym. Sci. 2018;2018:6235165. doi: 10.1155/2018/6235165. DOI
Charlet L., Mathot V., Devaux J. Crystallization and dissolution behavior of polyamide 6-water systems under pressure. Polym. Int. 2010;60:119–125. doi: 10.1002/pi.2920. DOI
Papadopoulou E.L., Pignatelli F., Marras S., Marini L., Davis A., Athanassiou A., Bayer I.S. Nylon 6,6/grapheme nanoplatelet composite films obtained from a new solvent. RSC Adv. 2016;6:6823–6831. doi: 10.1039/C5RA23647A. DOI
Chang C.W., Liou G.S., Hsiao S.H. Highly stable anodic green electrochromic aromatic polyamides: Synthesis and electrochromic properties. J. Mater. Chem. 2007;17:1007–1015. doi: 10.1039/B613140A. DOI
Matulevicius J., Kliuciniskas L., Martuzevicius D., Krugly E., Tichonovas M., Baltrusaitis J. Design and characterization of electrospun polyamide nanofiber media for air filtration applications. J. Nanomater. 2014;2014:859656. doi: 10.1155/2014/859656. DOI
Mori S. Size exclusion chromatography of poly(ethylene terephthalate) using hexafluoro-2-propanol as a mobile phase. Anal. Chem. 1989;61:1321–1325. doi: 10.1021/ac00188a005. DOI
Šišková A.O., Macová E., Berek D. Liquid chromatography under limiting conditions of desorption 4 separation of blends containing low-solubility polymers. Eur. Polym. J. 2012;48:155–162. doi: 10.1016/j.eurpolymj.2011.10.016. DOI
Yu Y., Ma R., Yan S., Fang J. Preparation of multi-layer nylon-6 nanofibrous membranes by electrospinning and hot pressing methods for dye filtration. RSC Adv. 2018;8:12173. doi: 10.1039/C8RA01442F. PubMed DOI PMC
Parlayici S., Avci A., Pehlivan E. Electrospinning of polymeric nanofiber (nylon 6,6/grapheme oxide) for removal of Cr (VI): Synthesis and adsorption studies. J. Anal. Sci. Technol. 2019;10:13. doi: 10.1186/s40543-019-0173-5. DOI
Razavizadeh B.M., Niazmand R. Characterization of polyamide-6/propolis blended electrospun fibers. Heliyon. 2020;6:e04784. doi: 10.1016/j.heliyon.2020.e04784. PubMed DOI PMC
Abbasi A., Nasef M.M., Takeshi M., Faridi-Majidi R. Electrospinning of nylon-6,6 soutions into nanofibers: Rheology and morphology relationships. Chin. J. Polym. Sci. 2014;32:793–804. doi: 10.1007/s10118-014-1451-8. DOI
Cheremisinoff N. Industrial Solvents Handbook. 2nd ed. Marcel Dekker Inc.; New York, NY, USA: 2008. pp. 51–53.
Hou Q., Zhen M., Qian H., Nie Y., Bai X., Xia T., Rehman M.L.U., Li Q., Ju M. Upcycling and catalytic degradation of plastic wastes. Cell Rep. Phys. Sci. 2021;2:100514. doi: 10.1016/j.xcrp.2021.100514. DOI
Krifa M., Yuan W. Morphology and pore size distribution of electrospun and centrifugal forcespun nylon 6 nanofibe membranes. Tex. Res. J. 2015;86:1294–1306. doi: 10.1177/0040517515609258. DOI
Zheng J.Y., Zhuang M.F., Yu Z.J., Zheng G.F., Zhao Y., Wang H., Sun D.H. The effect of surfactants on the diameter and morphology of electrospun ultrafine nanofiber. J. Nanomater. 2014;2014:689298. doi: 10.1155/2014/689298. DOI
Peer P., Sedlarikova J., Janalikova M., Kucerova L., Pleva P. Novel Polyvinyl Butyral/Monoacylglycerol Nanofibrous Membrane with Antifouling Activity. Materials. 2020;13:3662. doi: 10.3390/ma13173662. PubMed DOI PMC
Peer P., Janalikova M., Sedlarikova J., Zelenkova J., Pleva P., Filip P., Opalkova Siskova A. Antibacterial filtration membranes based on PVDF-co-HFP nanofibers with the addition of medium-chain 1-monoacylglycerols. ACS Appl. Mater. Interfaces. 2021;13:41021–41033. doi: 10.1021/acsami.1c07257. PubMed DOI
European Committee for Standardization . European Standard EN 1822 High Efficiency Air Filters (EPA, HEPA and ULPA) CEN; Brussels, Belgium: 2009. [(accessed on 28 October 2021)]. Available online: http://www.gttlab.com/uploads/soft/161025/EN1822-1-2009Highefficiencyairfilters(EPA,HEPAandULPA)Part1Classification,performance.pdf.
Sambaer W., Zatloukal M., Kimmer D. 3D air filtration modeling for nanofiber based filters in the ultrafine particle size range. Chem. Eng. Sci. 2012;82:299–311. doi: 10.1016/j.ces.2012.07.031. DOI
An A.K., Lee E.J., Guo J., Jeong S., Lee J.G., Ghaffour N. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibers. Sci. Rep. 2017;7:41562. doi: 10.1038/srep41562. PubMed DOI PMC
Zhang H., Wei H., Cui Y., Zhao G., Feng F. Antibacterial Interactions of Monolaurin with Commonly Used Antimicrobials and Food Components. J Food Sci. 2009;74:M418–M421. doi: 10.1111/j.1750-3841.2009.01300.x. PubMed DOI
Pletnev P., Osterman I., Sergiev P., Bogdanov A., Dontsova O. Survival Guide: Escherichia coli in the Stationary Phase. [(accessed on 28 October 2021)];Acta Nat. 2015 7:22–33. doi: 10.32607/20758251-2015-7-4-22-33. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717247/pdf/AN20758251-27-022.pdf. PubMed DOI PMC
Krishnamurthi V.R., Niyonshuti I.I., Chen J., Wang Y. A new analysis method for evaluating bacterial growth with microplate readers. PLoS ONE. 2021;16:e0245205. doi: 10.1371/journal.pone.0245205. PubMed DOI PMC
Harkes G., Feijen J., Dankert J. Adhesion of Escherichia coli on to a series of poly(methacrylates) differing in change and hydrophobicity. Biomaterials. 1991;12:853–860. doi: 10.1016/0142-9612(91)90074-K. PubMed DOI
Tang Y.-W. Molecular Medical Microbiology. 2nd ed. Volume 1. Academic Press; Cambridge, MA, USA: 2015. Chapter 5.