Reuse of Textile Waste to Production of the Fibrous Antibacterial Membrane with Filtration Potential

. 2021 Dec 24 ; 12 (1) : . [epub] 20211224

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35010000

Grantová podpora
VEGA 2/0168/21 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic
TJ04000226 Technology Agency of the Czech Republic

Wasted synthetic fabrics are a type of textile waste source; the reuse of them brings environmental protection and turns waste into a valuable material. In this work, the used nylon (polyamide) stockings were transmuted into a fine fibrous membrane via an electrospinning process. In addition, the safety antibacterial agent, monoacylglycerol (MAG), was incorporated into a recycled fibrous membrane. The results revealed that the neat, recycled polyamide (rPA) fibers with a hydrophobic surface could be converted into hydrophilic fibers by blending various amounts of MAG with rPA solution prior to electrospinning. The filtration efficiency and air/water vapor permeability of the two types of produced membranes, neat rPA, and rPA/MAG, were tested. Their filtration efficiency (E100) was more than 92% and 96%, respectively. The membranes were classified according to Standard EN1822, and therefore, the membranes rPA and rPA/MAG were assigned to the classes E10 and E11, respectively. The air permeability was not affected by the addition of MAG, and water vapor permeability was slightly enhanced. Based on the obtained data, prepared rPA/MAG fibrous membranes can be evaluated as antifouling against both tested bacterial strains and antimicrobial against S. aureus.

Zobrazit více v PubMed

Žagar E., Češarek U., Drinčić A., Sitar S., Shlyapnikov I.M., Pahovnik D. Quantitative determinantion of PA6 and/or PA66 content in polyamide-containing wastes. ACS Sustain. Chem. Eng. 2020;8:11818–11826. doi: 10.1021/acssuschemeng.0c04190. DOI

Stanescu M.D. State of the art of post-consumer textile waste upcycling to reach the zero waste milestone. Environ. Sci. Poll. Res. 2021;28:14253–14270. doi: 10.1007/s11356-021-12416-9. PubMed DOI

Novotna K., Cermakova L., Pivokonska L., Cajthaml T., Pivokonsky M. Microplastics in drinking water treatment—Current knowledge and research needs. Sci. Total Environ. 2019;667:730–740. doi: 10.1016/j.scitotenv.2019.02.431. PubMed DOI

Pivokonsky M., Cermakova L., Novotna K., Peer P., Cajthaml T., Janda V. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 2018;643:1644–1651. doi: 10.1016/j.scitotenv.2018.08.102. PubMed DOI

Statement on the Seventh Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Coronavirus Deseade (COVID-19) Pandemic. [(accessed on 8 December 2021)]. Available online: https://www.who.int/news/item/19-04-2021-statement-on-the-seventh-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic.

Damayanti D., Wulandari L.A., Bagaskoro A., Rianjanu A., Wu H.S. Possibility rountes for textile recycling technology. Polymers. 2021;13:3834. doi: 10.3390/polym13213834. PubMed DOI PMC

Harmsen P., Scheffer M., Bos H. Textiles for circular fashion: The logic behind recycling options. Sustainability. 2021;13:9714. doi: 10.3390/su13179714. DOI

Patti A., Cicala G., Acierno D. Eco-Sustainability of the Textile Production: Waste Recovery and Current Recycling in the Composites World. Polymers. 2021;13:134. doi: 10.3390/polym13010134. PubMed DOI PMC

Salas M.A., Pérez-Acebo H., Calderón V., Gonzalo-Orden H. Analysis and economic evaluation of the use of recycled polyamide powder in mansory mortars. Polymers. 2020;12:2657. doi: 10.3390/polym12112657. PubMed DOI PMC

Kumar D., Zou P.X.W., Memon R.A., Alam M.D.M., Sanjayan J.G., Kumar S. Life-cycle cost analysis of building wall and insulation materials. J. Build. Phys. 2019;43:428–455. doi: 10.1177/1744259119857749. DOI

Cai Z., Faruque M.A.A.F., Kiziltas A., Mielewski D., Naebe M. Sustainable lightweight insulation materials from textile-based waste for the automobile industry. Materials. 2021;14:1241. doi: 10.3390/ma14051241. PubMed DOI PMC

Sakthivel S., Melese B., Edae A., Abedom F., Mekonnen S., Solomon E. Garment waste recycled cotton/polyester thermal and acoustic properties of air-laid nonwovens. Adv. Mat. Sci. Eng. 2020;2020:8304525. doi: 10.1155/2020/8304525. DOI

Singh R., Kumar R., Ranjan N., Penna R., Fraternali F. On the recyclability for sustainable composite structures in civil engineering. Compos. Struct. 2018;184:704–713. doi: 10.1016/j.compstruct.2017.10.036. DOI

Šišková A.O., Peer P., Eckstein Andicsová A., Jordanov I., Rychter P. Circulatory management of polymer waste: Recycling into fine fibers and their applications. Materials. 2021;14:4694. doi: 10.3390/ma14164694. PubMed DOI PMC

Moriam K., Sawada D., Nieminen K., Hummel M., Ma Y., Rissanen M., Sixta H. Towards regenerated cellulose fibers with high toughness. Cellulose. 2021;28:9547–9566. doi: 10.1007/s10570-021-04134-9. DOI

Homem N.C., Amorim M.T.P. Synthesis of cellulose acetate using as raw material textile wastes. Mater. Today Proc. 2020;31:S315–S317. doi: 10.1016/j.matpr.2020.01.494. DOI

Fockink D.H., Andreaus J., Ramos L.P., Łukasik R.M. Pretreatment of cotton spinning residues for optimal enzymatic hydrolysis: A case study using green solvents. Renew. Energy. 2020;145:490–499. doi: 10.1016/j.renene.2019.06.042. DOI

Hussain Z., Sajjad W., Khan T., Wahid F. Production of bacterial cellulose from industrial wastes: A review. Cellulose. 2019;26:2895–2911. doi: 10.1007/s10570-019-02307-1. DOI

Yousef S., Tatariants M., Tichonovas M., Kliucininkas L., Kukošiūtė S.I., Yan L. Sustainable green technology for recovery of cotton fibers and polyester from textile waste. J. Clean. Prod. 2020;254:120078. doi: 10.1016/j.jclepro.2020.120078. DOI

Herzog B., Kohan M.I., Mestemacher S.A., Pagilagan R.U., Redmond K. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim, Germany: 2013. Polyamides. DOI

Šišková A.O., Frajová J., Nosko M. Recycling of poly(ethylene terephthalate) by electrospinning to enhanced the filtration efficiency. Mater. Lett. 2020;278:128426. doi: 10.1016/j.matlet.2020.128426. DOI

Dissanayake D.G.K., Weerasinghe D. Managing post-industrial textile waste: Current status and prospects for Sri Lanka. J. Text. Inst. 2020;112:1804–1810. doi: 10.1080/00405000.2020.1845461. DOI

Topuz F., Abdulhamid M.A., Hardian R., Holtzl T., Szekely G. Nanofibrous membranes comprising intrinsically microporous polyimides with embedded metal-organic frameworks for capturing volatile organic compounds. Pt AJ. Hazard. Mater. 2022;424:127347. doi: 10.1016/j.jhazmat.2021.127347. PubMed DOI

Isık T., Demir M.M. Tailored electrospun fibers from waste polystyrene for high oil adsorption. Sustain. Mater. Technol. 2018;18:e00084. doi: 10.1016/j.susmat.2018.e00084. DOI

Zander N.E., Sweetser D., Cole D.P., Gillan M. Formation of nanofibers from pure and mixed waste streams using electrospinning. Ind Eng. Chem. Res. 2015;54:9057–9063. doi: 10.1021/acs.iecr.5b02279. DOI

Rajak A., Hapidin D.A., Iskandar F., Munir M.M., Khairurrijal K. Controlled morphology of electrospun nanofibers from waste expanded polystyrene for aerosol filtration. Nanotechnology. 2019;30:425602. doi: 10.1088/1361-6528/ab2e3b. PubMed DOI

Baggio A., Doan H.N., Vo P.P., Kinashi K., Sakai W., Tsutsumi N., Fuse Y., Sangermano M. Chitosan-Functionalized Recycled Polyethylene Terephthalate Nanofibrous Membrane for Sustainable On-Demand Oil-Water Separation. Glob. Chall. 2021;5:2000107. doi: 10.1002/gch2.202000107. PubMed DOI PMC

Liu Y., Li K., Mohideen M.M., Ramakrishna S. Melt Electrospinning: A Green Method to Produce Superfine Fibers. Elsevier Inc.; Amsterdam, The Netherlands: 2019.

Naksuwan P., Komárek M., Salačová J., Militký J. The study of recycled poly(ethye’ lene terephthalate) nanofibers from PET bottle. Appl. Mech. Mat. 2016;848:3–6. doi: 10.4028/www.scientific.net/AMM.848.3. DOI

Heikkilä P., Harlin A. Parameter study of electrospinning of polyamide-6. Eur. Pol. J. 2008;44:3067–3079. doi: 10.1016/j.eurpolymj.2008.06.032. DOI

Ge Q., Ding L., Wu T., Xu G., Yang F., Xiang M. Effect of surfactant on morphology and pore size of polysulfone membrane. J. Polym. Res. 2018;25:21. doi: 10.1007/s10965-017-1410-5. DOI

Liu C., Hsu P.C., Lee H.W., Ye M., Zheng G., Liu N., Li W., Cui Y. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 2015;6:6205. doi: 10.1038/ncomms7205. PubMed DOI

Zulfi A., Munir M.M., Hapidin S.A., Rajak A., Edikrednha D., Iskandar F., Khairurriajal K. Air filtration media from electrospun waste high-impact polystyrene fiber membrane. Mater. Res. Express. 2018;5:035049. doi: 10.1088/2053-1591/aab6ef. DOI

Liu Y., Li S., Lan W., Hossen M.A., Qin W., Lee K. Electrospun antibacterial and antiviral poly(ε-caprolactone)/zein/Ag bead-on-string membranes and its application in air filtration. Mater. Today Adv. 2021;12:100173. doi: 10.1016/j.mtadv.2021.100173. DOI

Ahne J., Li Q., Croiset E., Tan Z. Electrospun cellulose acetate nanofibers for airborne nanoparticle filtration. Tex. Res. J. 2019;89:3137–3149. doi: 10.1177/0040517518807440. DOI

Šišková A.O., Mosnáčková K., Hrůza J., Frajová J., Opálek A., Bučková M., Kozics K., Peer P., Eckstein Andicsová A. Electrospun poly(ethylene terephthalate)/silk fibroin composite for filtration application. Polymers. 2021;13:2499. doi: 10.3390/polym13152499. PubMed DOI PMC

Wang Z., Zhao C., Pan Z. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtration. J. Colloid. Interface Sci. 2015;441:121–129. doi: 10.1016/j.jcis.2014.11.041. PubMed DOI

Kim H.J., Choi D.I., Sung S.K., Lee S.H., Kim S.J., Kim J., Han B.S., Kim D.I., Kim Y. Eco-friendly poly(vinyl alcohol) nanofiber-based air filter for effectively capturing particulate matter. Appl. Sci. 2021;11:3831. doi: 10.3390/app11093831. DOI

Orlando R., Polat M., Afshari A., Johnson M.S., Fojan P. Electrospun nanofiber air filters for particles and gaseous pollutants. Sustainability. 2021;13:6553. doi: 10.3390/su13126553. DOI

Sanyal A., Sinha-Ray S. Ultrafine PVDF nanofibers for filtration of air-borne particulate matters: A comprehensive review. Polymers. 2021;13:1864. doi: 10.3390/polym13111864. PubMed DOI PMC

Liu H., Huang J., Mao J., Chen Z., Chen G., Lai Y. Transparent antibacterial nanofiber air filters with highly efficient moisture resistance for sustainable particulate matter capture. iScience. 2019;19:214–223. doi: 10.1016/j.isci.2019.07.020. PubMed DOI PMC

Bergshoef M.M., Vancso G.J. Transparent nanocomposites with ultrathin, electrospun nylon-6 fiber reinforcement. Adv. Mater. 1999;11:1362–1365. doi: 10.1002/(SICI)1521-4095(199911)11:16<1362::AID-ADMA1362>3.0.CO;2-X. DOI

Pant H.R., Pandeya D.R., Nam K.T., Baek W.I., Hong S.T., Kim H.Y. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J. Hazard. Mater. 2011;189:465–471. doi: 10.1016/j.jhazmat.2011.02.062. PubMed DOI

Abdal-hay A., Pant H.R., Lim J.K. Super-hydrophilic electrospun nylon-6/hydroxyapatite membrane for bone tissue engineering. Eur. Polym. J. 2013;49:1314–1321. doi: 10.1016/j.eurpolymj.2013.02.004. DOI

Jackman J., Yoon B.K., Li D., Cho N. Nanotechnology formulations for antibacterial free fatty acids and monoglycerides. Molecules. 2016;21:305. doi: 10.3390/molecules21030305. PubMed DOI PMC

Dolezalkova I., Janis R., Bunkova L., Slobodian P., Vicha R. Preparation, characterization and antibacterial activity of 1-monoacylglycerol of adamantane-1-carboxylic acid. J. Food Biochem. 2013;34:544–553. doi: 10.1111/jfbc.12005. DOI

Sevcikova P., Kasparkova V., Hauerlandova I., Humpolicek P., Kucekova Z., Bunkova L. Formulation, antibacterial activity, and cytotoxicity of 1-monoacylglycerol microemulsions. Eur. J. Lipid Sci. Technol. 2014;116:448–457. doi: 10.1002/ejlt.201300171. DOI

Hauerlandová I., Lorencová E., Buňka F., Navrátil J., Janečková K., Buňková L. The influence of fat and monoacylglycerols on growth of spore-forming bacteria in processed cheese. Int. J. Food Microbiol. 2014;182–183:37–43. doi: 10.1016/j.ijfoodmicro.2014.04.027. PubMed DOI

Janis R., Klasek A., Krejci J., Bobalova J. Influence of some chromium complexes on the conversion rate of glycidol—Fatty acid reaction. Tenside Surfact. Det. 2005;42:44–48. doi: 10.3139/113.100250. DOI

Sutter M., Dayoub W., Métay E., Raoul Y., Lemaire M. 1-O-alkyl (di)glycerol ethers synthesis from methyl esters and triglycerides by two pathways: Catalytic reductive alkylation and transesterification/reduction. Green Chem. 2013;15:786–797. doi: 10.1039/c3gc36907b. DOI

Zhu M., Han J., Wang F., Shao W., Xiong R., Zhang Q., Pan H., Yang Y., Samal S.K., Zhang F., et al. Electrospun nanofibers membranes for effective air filtration. Macromol. Mater. Eng. 2017;302:1600353. doi: 10.1002/mame.201600353. DOI

Al-Attabi E., Dumée L.F., Kong L., Schütz J.A., Morsi Y. High efficiency poly(acrylonitrile) electrospun nanofiber membranes for airborne nanomaterials filtration. Adv. Eng. Mater. 2017;20:1700572. doi: 10.1002/adem.201700572. DOI

Hes L. Non-Destructive Determinantion of Comfort Parameters during Marketing of Functional Garments and Clothing. [(accessed on 23 December 2021)];Indian J. Fibre Text Res. 2008 33:239–245. Available online: http://nopr.niscair.res.in/bitstream/123456789/2012/1/IJFTR%2033%283%29%20239-245.pdf.

Razzaque A., Tesinova P., Hes L., Salacova J., Abid H.A. Investigation on hydrostatic resistance and thermal performance of layeres waterproof breathable fabrics. Fiber. Polym. 2017;18:1924–1930. doi: 10.1007/s12221-017-1154-1. DOI

Irfan M., Uddin Z., Ahmad F., Rasheed A., Qadir M.B., Ahmad S., Aykut Y., Nazir A. Ecofriendly development of electrospun antibacterial membranes loaded with silver nanoparticles. J. Indus. Tex. 2021:1–14. doi: 10.1177/15280837211012590. DOI

Ferrer C., Ramón D., Muguerza B., Marco A., Martínez A. Effect of olive powder on the growth and inhibition of bacillus cereus. Fodborne Pathog. Dis. 2009;6:33–37. doi: 10.1089/fpd.2008.0133. PubMed DOI

Zahibi E., Babaei A., Shahrampour D., Arab-Bafrani Z., Mirshahidi K.S., Majidi H.J. Facile and rapid in-situ synthesis of chitosan-ZnO nano-hybrids applicable in medical purposes; A novel combination of biomineralization, ultrasound, and bio-safe morphology-conducting agent. Int. J. Biol. Macromol. 2019;15:107–116. doi: 10.1016/j.ijbiomac.2019.01.224. PubMed DOI

Molecular Probes, Inc. Molecular Probes, Invitrogen Detection Technologies. [(accessed on 17 May 2021)]. Available online: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/mp07007.pdf.

Jabbari M., Skrifvars M., Åkesson D., Taherzadeh M.J. New solvent for polyamide 66 and use for preparing a single-polymer composite-coated fabric. Int. J. Polym. Sci. 2018;2018:6235165. doi: 10.1155/2018/6235165. DOI

Charlet L., Mathot V., Devaux J. Crystallization and dissolution behavior of polyamide 6-water systems under pressure. Polym. Int. 2010;60:119–125. doi: 10.1002/pi.2920. DOI

Papadopoulou E.L., Pignatelli F., Marras S., Marini L., Davis A., Athanassiou A., Bayer I.S. Nylon 6,6/grapheme nanoplatelet composite films obtained from a new solvent. RSC Adv. 2016;6:6823–6831. doi: 10.1039/C5RA23647A. DOI

Chang C.W., Liou G.S., Hsiao S.H. Highly stable anodic green electrochromic aromatic polyamides: Synthesis and electrochromic properties. J. Mater. Chem. 2007;17:1007–1015. doi: 10.1039/B613140A. DOI

Matulevicius J., Kliuciniskas L., Martuzevicius D., Krugly E., Tichonovas M., Baltrusaitis J. Design and characterization of electrospun polyamide nanofiber media for air filtration applications. J. Nanomater. 2014;2014:859656. doi: 10.1155/2014/859656. DOI

Mori S. Size exclusion chromatography of poly(ethylene terephthalate) using hexafluoro-2-propanol as a mobile phase. Anal. Chem. 1989;61:1321–1325. doi: 10.1021/ac00188a005. DOI

Šišková A.O., Macová E., Berek D. Liquid chromatography under limiting conditions of desorption 4 separation of blends containing low-solubility polymers. Eur. Polym. J. 2012;48:155–162. doi: 10.1016/j.eurpolymj.2011.10.016. DOI

Yu Y., Ma R., Yan S., Fang J. Preparation of multi-layer nylon-6 nanofibrous membranes by electrospinning and hot pressing methods for dye filtration. RSC Adv. 2018;8:12173. doi: 10.1039/C8RA01442F. PubMed DOI PMC

Parlayici S., Avci A., Pehlivan E. Electrospinning of polymeric nanofiber (nylon 6,6/grapheme oxide) for removal of Cr (VI): Synthesis and adsorption studies. J. Anal. Sci. Technol. 2019;10:13. doi: 10.1186/s40543-019-0173-5. DOI

Razavizadeh B.M., Niazmand R. Characterization of polyamide-6/propolis blended electrospun fibers. Heliyon. 2020;6:e04784. doi: 10.1016/j.heliyon.2020.e04784. PubMed DOI PMC

Abbasi A., Nasef M.M., Takeshi M., Faridi-Majidi R. Electrospinning of nylon-6,6 soutions into nanofibers: Rheology and morphology relationships. Chin. J. Polym. Sci. 2014;32:793–804. doi: 10.1007/s10118-014-1451-8. DOI

Cheremisinoff N. Industrial Solvents Handbook. 2nd ed. Marcel Dekker Inc.; New York, NY, USA: 2008. pp. 51–53.

Hou Q., Zhen M., Qian H., Nie Y., Bai X., Xia T., Rehman M.L.U., Li Q., Ju M. Upcycling and catalytic degradation of plastic wastes. Cell Rep. Phys. Sci. 2021;2:100514. doi: 10.1016/j.xcrp.2021.100514. DOI

Krifa M., Yuan W. Morphology and pore size distribution of electrospun and centrifugal forcespun nylon 6 nanofibe membranes. Tex. Res. J. 2015;86:1294–1306. doi: 10.1177/0040517515609258. DOI

Zheng J.Y., Zhuang M.F., Yu Z.J., Zheng G.F., Zhao Y., Wang H., Sun D.H. The effect of surfactants on the diameter and morphology of electrospun ultrafine nanofiber. J. Nanomater. 2014;2014:689298. doi: 10.1155/2014/689298. DOI

Peer P., Sedlarikova J., Janalikova M., Kucerova L., Pleva P. Novel Polyvinyl Butyral/Monoacylglycerol Nanofibrous Membrane with Antifouling Activity. Materials. 2020;13:3662. doi: 10.3390/ma13173662. PubMed DOI PMC

Peer P., Janalikova M., Sedlarikova J., Zelenkova J., Pleva P., Filip P., Opalkova Siskova A. Antibacterial filtration membranes based on PVDF-co-HFP nanofibers with the addition of medium-chain 1-monoacylglycerols. ACS Appl. Mater. Interfaces. 2021;13:41021–41033. doi: 10.1021/acsami.1c07257. PubMed DOI

European Committee for Standardization . European Standard EN 1822 High Efficiency Air Filters (EPA, HEPA and ULPA) CEN; Brussels, Belgium: 2009. [(accessed on 28 October 2021)]. Available online: http://www.gttlab.com/uploads/soft/161025/EN1822-1-2009Highefficiencyairfilters(EPA,HEPAandULPA)Part1Classification,performance.pdf.

Sambaer W., Zatloukal M., Kimmer D. 3D air filtration modeling for nanofiber based filters in the ultrafine particle size range. Chem. Eng. Sci. 2012;82:299–311. doi: 10.1016/j.ces.2012.07.031. DOI

An A.K., Lee E.J., Guo J., Jeong S., Lee J.G., Ghaffour N. Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibers. Sci. Rep. 2017;7:41562. doi: 10.1038/srep41562. PubMed DOI PMC

Zhang H., Wei H., Cui Y., Zhao G., Feng F. Antibacterial Interactions of Monolaurin with Commonly Used Antimicrobials and Food Components. J Food Sci. 2009;74:M418–M421. doi: 10.1111/j.1750-3841.2009.01300.x. PubMed DOI

Pletnev P., Osterman I., Sergiev P., Bogdanov A., Dontsova O. Survival Guide: Escherichia coli in the Stationary Phase. [(accessed on 28 October 2021)];Acta Nat. 2015 7:22–33. doi: 10.32607/20758251-2015-7-4-22-33. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717247/pdf/AN20758251-27-022.pdf. PubMed DOI PMC

Krishnamurthi V.R., Niyonshuti I.I., Chen J., Wang Y. A new analysis method for evaluating bacterial growth with microplate readers. PLoS ONE. 2021;16:e0245205. doi: 10.1371/journal.pone.0245205. PubMed DOI PMC

Harkes G., Feijen J., Dankert J. Adhesion of Escherichia coli on to a series of poly(methacrylates) differing in change and hydrophobicity. Biomaterials. 1991;12:853–860. doi: 10.1016/0142-9612(91)90074-K. PubMed DOI

Tang Y.-W. Molecular Medical Microbiology. 2nd ed. Volume 1. Academic Press; Cambridge, MA, USA: 2015. Chapter 5.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Poloxamer-Based Mixed Micelles Loaded with Thymol or Eugenol for Topical Applications

. 2024 Jun 04 ; 9 (22) : 23209-23219. [epub] 20240520

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...