Electrospun Poly(ethylene Terephthalate)/Silk Fibroin Composite for Filtration Application
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
2/0135/19
Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
2/0055/20
Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
18-0420
Agentúra na Podporu Výskumu a Vývoja
19-0250
Agentúra na Podporu Výskumu a Vývoja
2017/07
SAS-MOST JRP
PubMed
34372102
PubMed Central
PMC8348435
DOI
10.3390/polym13152499
PII: polym13152499
Knihovny.cz E-resources
- Keywords
- air filtration, antibacterial activity, comfort properties, electrospun membrane, poly(ethylene terephthalate), silk fibroin,
- Publication type
- Journal Article MeSH
In this study, fibrous membranes from recycled-poly(ethylene terephthalate)/silk fibroin (r-PSF) were prepared by electrospinning for filtration applications. The effect of silk fibroin on morphology, fibers diameters, pores size, wettability, chemical structure, thermo-mechanical properties, filtration efficiency, filtration performance, and comfort properties such as air and water vapor permeability was investigated. The filtration efficiency (FE) and quality factor (Qf), which represents filtration performance, were calculated from penetration through the membranes using aerosol particles ranging from 120 nm to 2.46 μm. The fiber diameter influenced both FE and Qf. However, the basis weight of the membranes has an effect, especially on the FE. The prepared membranes were classified according to EN149, and the most effective was assigned to the class FFP1 and according to EN1822 to the class H13. The impact of silk fibroin on the air permeability was assessed. Furthermore, the antibacterial activity against bacteria S. aureus and E. coli and biocompatibility were evaluated. It is discussed that antibacterial activity depends not only on the type of used materials but also on fibrous membranes' surface wettability. In vitro biocompatibility of the selected samples was studied, and it was proven to be of the non-cytotoxic effect of the keratinocytes (HaCaT) after 48 h of incubation.
See more in PubMed
Scudellari M. How the Pandemic Might Play Out in 2021 an Beyond. [(accessed on 12 July 2021)]; News Feature. Available online: https://www.nature.com/articles/d41586-020-02278-5.
Statement on the Seventh Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Coronavirus Deseade (COVID-19) Pandemic. [(accessed on 20 June 2021)]; Available online: https://www.who.int/news/item/19-04-2021-statement-on-the-seventh-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic.
The facemask global value chain in the COVID-19 outbreak: Evidence and policy lessons. [(accessed on 23 July 2021)]; Available online: https://www.oecd.org/coronavirus/policy-responses/the-face-mask-global-value-chain-in-the-COVID-19-outbreak-evidence-and-policy-lessons-a4df866d/
Ivanoska-Dacikj A., Stachewicz U. Smart textiles and wearable technologies—Opportunities offered in the fight against pandemics in relation to current COVID-19 state. Rev. Adv. Mater. Sci. 2020;59:487–505. doi: 10.1515/rams-2020-0048. DOI
Tebyetekerwa M., Xu Z., Yang S., Ramakrishna S. Electrospun nanofibers-based face masks. Adv. Fiber Mater. 2020;2:161–166. doi: 10.1007/s42765-020-00049-5. PubMed DOI PMC
Xu J., Xiao X., Zhang W., Xu R., Kim S.C., Cui Y., Howard T.T., Wu E., Cui Y. Air-filtering masks for respiratory protection from PM2.5 and pandemic pathogens. OneEarth. 2020;3:574–589. doi: 10.1016/j.oneear.2020.10.014. PubMed DOI PMC
Leung W.W.F., Sun Q. Charged PVDF multilayer nanofiber filter in filtering simulated airbone novel coronavirus (COVID-19) using ambient nano-aerosols. Sep. Purif. Technol. 2020;245:116887. doi: 10.1016/j.seppur.2020.116887. PubMed DOI PMC
Yin X., Yu J., Ding B. Electrospun fibers for filtration. In: Hu J., Kumar B., Lu J., editors. Hanbook of Fibrous Materials. 1st ed. Volume 2. Wiley-VCH; Weinheim, Germany: 2020. pp. 175–206. DOI
Rogina A. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl. Surf. Sci. 2014;296:221–230. doi: 10.1016/j.apsusc.2014.01.098. DOI
Xue J., Wu T., Dai Y., Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019;119:5298–5415. doi: 10.1021/acs.chemrev.8b00593. PubMed DOI PMC
Zahmatkeshan M., Adel M., Bahrami S., Esmaeili F., Rezayat A.M., Saeedi Y., Mehravi B., Jameie S.B., Ashtari K. Polymer based nanofibers: Preparation, Fabrication, and applications. In: Barhoum A., Bechalany M., Makhlouf A.S.H., editors. Hanbook of Nanofibers. 1st ed. Springer; Cham, Switzerland: 2018. pp. 1–47. DOI
Aragón J., Costa C., Coelhoso I., Mendoza G., Aguilar-Ricardo A., Irusta S. Electrospun asymmetric membranes for wound dressing applications. Mater. Sci. Eng. C. 2019;103:109822. doi: 10.1016/j.msec.2019.109822. PubMed DOI
Locilento D.A., Mercante L.A., Andre R.S., Mattosi L.H.C., Luna G.L.F., Brassolatti P., Anibal F.d.F., Correa D.S. Biocompatibile and biodegradable electrospun nanofibrous membranes loaded with grape seed extract for wound dressing application. J. Nanomater. 2019:2472964. doi: 10.1155/2019/2472964. DOI
Bhattarai D.P., Aguilar L.E., Park C.H., Kim C.S. A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering. Membranes. 2018;8:62. doi: 10.3390/membranes8030062. PubMed DOI PMC
Gabriel L.P., Rodrigues A.A., Macedo M., Jardini A.L., Filho R.M. Electrospun polyurethane membranes for tissue engineering applications. Mater. Sci Eng. C. 2017;72:113–117. doi: 10.1016/j.msec.2016.11.057. PubMed DOI
Gorrasi G., Longo R., Viscusi G. Fabrication and characterization of electrospun membranes based on poly(ε-caprolactone), poly(3-hydroxybutyrate) and their blend for tunable drug delivery of curcumin. Polymers. 2020;12:2239. doi: 10.3390/polym12102239. PubMed DOI PMC
Wu J., Zhang Z., Gu J., Zhou W., Liang X., Zhou G., Han C.C., Xu S., Liu Y. Mechanism of a long-term controlled drug release system based on simple blended electrospun fibers. J. Control. Release. 2020;320:337–346. doi: 10.1016/j.jconrel.2020.01.020. PubMed DOI
Kweon O.Y., Lee S.J., Oh J.H. Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers. NPG Asia Mater. 2018;10:540–551. doi: 10.1038/s41427-018-0041-6. DOI
Aliheidari N., Aliahmad N., Agarwal M., Dalir H. Electrospun nanofibers for label-free sensor application. Sensor. 2019;19:3587. doi: 10.3390/s19163587. PubMed DOI PMC
Shao Z., Jiang J., Wang X., Li W., Fang L., Zhen G. Self-powered electrospun composite nanofiber membrane for highly efficient air filtration. Nanomaterials. 2020;10:1706. doi: 10.3390/nano10091706. PubMed DOI PMC
Homaeigohar S., Elbahri M. Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials. 2014;7:1017. doi: 10.3390/ma7021017. PubMed DOI PMC
Tong Y., Xu Y., Chen D., Xie Y., Chen L., Que M., Hou Y. Deformamble and flexible electrospun nanofiber-supported crosslinked gel polymer electrolyte membranes for high safety lithium-ion batteries. RSC Adv. 2017;7:22728–22734. doi: 10.1039/C7RA00112F. DOI
Arifeen W.U., Kim M., Ting D., Kurniawan R., Choi J., Kisoo Y., Ko T.J. Hybrid thermal resistant electrospun polymer membrane as the separator of lithium ion batteries. Mater. Chem. Phys. 2020;245:122780. doi: 10.1016/j.matchemphys.2020.122780. DOI
Thomas M., Rajiv S. Dye-sensitized solar cells based on an electrospun polymer nanocomposite membrane as electrolyte. New J. Chem. 2019;43:4444–4454. doi: 10.1039/C8NJ05505J. DOI
Kaschuk J.J., Miettunen K., Borghei M., Frollini E., Rojas O.J. Electrolyte membranes based on ultrafine fibers of acetylated cellulose for improved and long-lasting dye-sensitized solar cells. Cellulose. 2019;26:6151–6163. doi: 10.1007/s10570-019-02520-y. DOI
Bonincontro D., Fraschetti F., Squarzoni C., Mazzocchetti L., Maccaferri E., Giorgini L., Zucchelli A., Gualandi C., Focarete M.L., Albonetti S. Pd/Au based catalyst immobilization in polymeric nanofibrous membranes via electrospinning for the selective oxidation of 5-hydroxymethylfurfural. Processes. 2020;8:45. doi: 10.3390/pr8010045. DOI
Chan S., Jankovic J., Susac D., Saha M.S., Tam M., Yang H., Ko F. Electrospun carbon nanofiber catalyst layers for polymer electrolyte membrane fuel cells: Fabrication and optimization. J. Mater. Sci. 2018;53:11633–11647. doi: 10.1007/s10853-018-2411-4. DOI
Gorji M., Jeddi A.A.A., Gharehaghaji A.A. Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. J. Appl. Polym. Sci. 2012;125:4135–4141. doi: 10.1002/app.36611. DOI
Yu X., Wu X., Si Y., Wang X., Yu J., Ding B. Waterproof and breathable electrospun nanofibrous membranes. Macromol. Rapid Commun. 2019;40:e1800931. doi: 10.1002/marc.201800931. PubMed DOI
Topuz F., Abdulhamid M.A., Nunes S.P., Szekely G. Hierarchically porous electrospun nanofibrous mats produced from intrinsically microporous fluorinated polyimide for the removal of oils and non-polar solvents. Environ. Sci. Nano. 2020;7:1365–1372. doi: 10.1039/D0EN00084A. DOI
Tian Z., Chee T.S., Zhang X., Lei L., Xiao C. Novel bismuth-based electrospinning materials for highly efficient capture of radioiodine. Chem. Eng. J. 2021;415:128687. doi: 10.1016/j.cej.2021.128687. DOI
Topuz F., Holtzl T., Szekely G. Scavenging organic micropollutants from water with nanofibrous hypercrosslinked cyclodextrin membranes derived from green resources. Chem. Eng. J. 2021;419:129443. doi: 10.1016/j.cej.2021.129443. DOI
Opálková Šišková A., Frajová J., Nosko M. Recycling of poly(ethylene therephthalate) by electrospinning to enhanced the filtration efficiency. Mater. Lett. 2020;278:128426. doi: 10.1016/j.matlet.2020.128426. DOI
Leung W.W.F., Sun Q. Electrostatic charged nanofiber filter for filtering airbone novel coronavirus (COVID-19) and nano-aerosols. Sep. Purif. Technol. 2020;250:116886. doi: 10.1016/j.seppur.2020.116886. PubMed DOI PMC
Bortolassi A.C.C., Nagarajan S., de Araújo Lima B., Guerra V.G., Lopes Aguiar M., Huon V., Soussan L., Cornu D., Miele P., Bechelany M. Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Mater. Sci. Eng. C. 2019;102:718–729. doi: 10.1016/j.msec.2019.04.094. PubMed DOI
Molnár K., Mészáros L. The role of electrospun nanofibers in the fight against the COVID-19. Express Polym. Lett. 2020;14:605. doi: 10.3144/expresspolymlett.2020.49. DOI
Matulevicius J., Kliucininkas L., Prasauskas T., Buivydiene D., Martuzevicius D. The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. J. Aerosol Sci. 2016;92:27–37. doi: 10.1016/j.jaerosci.2015.10.006. DOI
Min K., Kim S., Kim S. Silk protein nanofibers for highly efficient, eco-friendly, optically translucent, and multifunctional air filters. Sci. Rep. 2018;8:9598. doi: 10.1038/s41598-018-27917-w. PubMed DOI PMC
Li H., Wang Z., Zhang H., Pan Z. Nanoporous PLA/(chitosan nanoparticle) composite fibrous membranes with excellent air filtration and antibacterial performance. Polymers. 2018;10:1058. doi: 10.3390/polym10101085. PubMed DOI PMC
Zhang Q., Li Q., Young T.M., Harper D.P., Wang S. A novel method for fabricating an electrospun poly(vinyl alcohol)/cellulose nanocrystals composite nanofibrous filter with low air resistance for high-efficiency filtration of particulate matter. ACS Sustain. Chem. Eng. 2019;7:8706–8714. doi: 10.1021/acssuschemeng.9b00605. DOI
Yun K.M., Hogan C.J., Jr., Matsubayashi Y., Kawabe M., Iskandar F., Okuyama K. Nanoparticle filtration by electrospun polymer fibers. Chem. Eng. Sci. 2007;62:4751–5759. doi: 10.1016/j.ces.2007.06.007. DOI
Pardo-Figuerez M., Chiva-Flor A., Figueroa-Lopez K., Prieto C., Lagaron J.M. Antimicrobial nanofiber based filters for high filtration efficiency respirators. Nanomaterials. 2021;11:900. doi: 10.3390/nano11040900. PubMed DOI PMC
Victor F.S., Kugarajah V., Bangaru M., Ranjan S., Dharmalingam S. Electrospun nanofibers of polyvinylidene fluoride incorporated with titanium nanotubes for purifying air with bacterial contamination. Environ. Sci. Pollut. Res. 2021;28:37520–37533. doi: 10.1007/s11356-021-13202-3. PubMed DOI PMC
Bonfim S.P.F., Cruz F.G.S., Bretas R.E.S., Guerra V.G., Aguiar M.L. A sustainable recycling alternative: Electrospun PET-membranes for air nanofiltration. Polymers. 2021;13:1166. doi: 10.3390/polym13071166. PubMed DOI PMC
Zhu M., Han J., Wang F., Shao W., Xiong R., Zhang Q., Pan H., Yang Y., Samal K.S., Zhang F., et al. Electrospun nanofibers membranes for effective air filtration. Macromol. Mater. Eng. 2017;302:1600353. doi: 10.1002/mame.201600353. DOI
Bagheri M.H., Khalaji I., Azizi A., Loibl R.T., Basualdo N., Manzo S., Gorrepati M.L., Mehendale S., Mohr C., Schiffers S.N. Filtration efficiency, breathability, and reusability of improvides materials for face masks. Aerosol Sci. Technol. 2021;55:817–827. doi: 10.1080/02786826.2021.1898537. DOI
Ryberg M., Laurent A., Hauschild M. Mapping of Global Plastics Value Chain and Plastics Losses to the Environment (with a Particular Focus on Marine Environment) United Nations Environment Programme; Nairobi, Kenya: 2018. [(accessed on 27 May 2021)]. Available online: http://wedocs.unep.org/bitstream/handle/20.500.11822/26745/mapping_plastics.pdf.
McKeen L.W. The Effect of Radiation on Properties of Polymers. William Andrew; Norwich, NY, USA: 2020. Effect of radiation on the properties of polyester polymers; pp. 93–128. Plastic design Library. Chapter 4. DOI
Begum S.A., Rane A.V., Kanny K. Compatibilization of Polymer Blends: Micro and Nano Scale Phase Morphologies, Interphase Characterization and Properties. Elsevier; Amsterdam, The Netherlands: 2020. Application of compatibilized polymer blends in automobile industry; pp. 563–593. Chapter 20. DOI
Caykara T., Sande M.G., Azoia N., Rodrigues L.R., Silva C.J. Exploring the potential of polyethylene terephthalate in design of antibacterial surfaces. Med. Microbiol. Immunol. 2020;209:363–372. doi: 10.1007/s00430-020-00660-8. PubMed DOI PMC
Sadeghi B., Marvafi Y., AliAkbari R., Kowsari E., Ajdari F.B., Ramakrishna S. Recent studies on recycled PET fibers: Production and applications: A review. Mater. Circ. Econ. 2021;3:4. doi: 10.1007/s42824-020-00014-y. DOI
Grumezescu A.M., Stoica A.E., Dima-Balcescu M.S., Chircov C., Gharbia S., Balta C., Rosu M., Herman H., Holban A.M., Ficai A., et al. Electrospun polyethylene terephthalate nanofibers loaded with silver nanoparticles: Novel approach in anti-infective therapy. J. Clin. Med. 2019;8:1039. doi: 10.3390/jcm8071039. PubMed DOI PMC
Nguyen T.P., Nguyen Q.V., Nhuyen V.H., Le T.H., Huynh V.Q.N., Vo D.V.N., Trinh Q.T., Kim S.Y., Le Q.V. Silk fibroin-based bioamterials for biomedical applications: A review. Polymers. 2019;11:1933. doi: 10.3390/polym11121933. PubMed DOI PMC
Calamak S., Erdogdu C., Ozalp M., Ulubayram K. Silk fibroin based antibacterial bionanotextiles as wound dressing materials. Mater. Sci. Eng. C. 2014;43:11–20. doi: 10.1016/j.msec.2014.07.001. PubMed DOI
Amiraliyan N., Nouri M., Haghighat Kish M. Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats. Polym. Sci. Ser. A. 2010;52:407–412. doi: 10.1134/S0965545X10040097. DOI
Zhou C.J., Li Y., Yao S.W., He J.H. Silkworm-based silk fibers by electrospinning. Res. Phys. 2019;15:102646. doi: 10.1016/j.rinp.2019.102646. DOI
Shanmugam V., Babu K., Garrison T.F., Capezza A.J., Olsson R.T., Ramakrishna S., Hedenqvist M.S., Singha S., Bartoli M., Giorcelli M., et al. Potential natural polymer-based nanofibers for the development of facemasks in countering viral outbreaks. J. Appl. Polym. Sci. 2021;138:50658. doi: 10.1002/app.50658. PubMed DOI PMC
Opálková Šišková A., Kozma E., Opálek A., Kroneková Z., Kleinová A., Nagy Š., Kronek J., Rydz J., Eckstein Andicsová A. Diclofenac embedded in silk fibroin fibers as a drug delivery system. Materials. 2020;13:3580. doi: 10.3390/ma13163580. PubMed DOI PMC
Bandeira M., Borges V., Gomes J.P., Duarte A., Jordao J. Insight on Klebsiella pneumoniae biofilms assembled on different surfaces using phenotypic and genotypic approaches. Microorganisms. 2017;5:16. doi: 10.3390/microorganisms5020016. PubMed DOI PMC
Al-Attabi E., Dumée L.F., Kong L., Schütz J.A., Morsi Y. High efficiency poly(acrylonitrile) electrospun nanofiber membranes for airborne nanomaterials filtration. Adv. Eng. Mater. 2017;20:1700572. doi: 10.1002/adem.201700572. DOI
Hes L. Non-destructive determinantion of comfort parameters during marketing of functional garments and clothing. Indian J. Fibre Text. Res. 2008;33:239–245.
Razzaque A., Tesinova P., Hes L., Salacova J., Abid H.A. Investigation on hydrostatic resistance and thermal performance of layeres waterproof breathable fabrics. Fibers Polym. 2017;18:1924–1930. doi: 10.1007/s12221-017-1154-1. DOI
ISO 22196 . Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. International Organization for Standardization; Geneva, Switzerland: 2011.
Prices for Most Recycled Plastics Continue to Rise. [(accessed on 23 June 2021)]; Available online: https://resource-recycling.com/recycling/2021/02/16/prices-for-most-recycled-plastics-continue-to-rise/
Good Quality Carpet Yarn Spun Silk Pure White for Knitting and Weaving. [(accessed on 23 June 2021)]; Available online: www.alibaba.com/product-detail/Good-quality-carpet-yarn-spun-silk_60711054364.html?spm=a2700.pc_countrysearch.main07.81.c05239bbQjN4SS.
Valeirinho B., Rei M.F., Lopes-Da-Silva A. Solvent and concentration effects on the properties of electrospun poly(ethylene terephrthalate) nanofiber mats. J. Polym. Sci. B Polym. Phys. 2008;45:460–471. doi: 10.1002/polb.21380. DOI
Guo Y., He W., Liu J. Electrospinning polyethylene terephthalate/SiO2 nanofiber composite needle felt for enhanced filtration performance. J. Appl. Polym. Sci. 2019;137:48282. doi: 10.1002/app.48282. DOI
D’Amato A.R., Bramson M.T.K., Puhl D.L., Johnson J., Corr D.T., Gilbert R.J. Solvent retention in electrospun fibers affects scaffold mechanical properties. Electrospinning. 2018;2:15–28. doi: 10.1515/esp-2018-0002. PubMed DOI PMC
Wang H., Zhang Y., Shao H., Hu X. Electrospun ultra-fine silk fibroin fibers from aqueous solutions. J. Mater. Sci. 2005;40:5359–5363. doi: 10.1007/s10853-005-4332-2. DOI
Kishimoto Y., Kobashi T., Yamanaka S., Morikawa H., Tamada Y. Comparisons between silk fibroin nonwoven electrospun fabric using aqueous and formic acid solutions. Int. J. Polym. Mater. Polym. Biomater. 2018;57:462–467. doi: 10.1080/00914037.2017.1342253. DOI
Chen J.P., Chen S.H., Lai G.J. Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Res. Lett. 2012;7:170. doi: 10.1186/1556-276X-7-170. PubMed DOI PMC
Pavlova E., Nikishin I., Bogdanova A., Klinov D., Bagrov D. The miscibility and spatial distribution of the components in electrospun polymer-protein mats. RSC. Adv. 2020;10:4672–4680. doi: 10.1039/C9RA10910B. PubMed DOI PMC
Herrero-Herrero M., Gómez-Tejedor J.A., Vallés-Lluch A. Role of electrospinning parametrs on poly(lactic-co-glycolic acid) and poly(caprolactone-co-glycolic acid) membranes. Polymers. 2021;13:695. doi: 10.3390/polym13050695. PubMed DOI PMC
Cheremisinoff N. Industrial Solvents Handbook. 2nd ed. Marcel Dekker Inc.; New York, NY, USA: 2008. pp. 51–53.
Angel N., Guo L., Yan F., Wang H., Kong L. Effect of processing parameters on the electrospinning of cellulose acetate studied by response surface methodology. J. Agric. Food Res. 2020;2:100015. doi: 10.1016/j.jafr.2019.100015. DOI
Abbas J.A., Said I.A., Mohamed M.A., Yasin S.A., Ali Z.A., Ahmed H. IOP Conference Series: Materials Science and Engineering. Volume 454. IOP Publishing; Bristol, UK: 2018. Electrospinning of polyethylene terephthalate (PET) nanofibers: Optimization study using taguchi design of experiment; p. 012130. DOI
Hashmi M., Ullah S., Saito Y., Haider M.K., Bie X., Wada K., Kim I.S. Carboxymethyl cellulose (CMC) based electrospun composite nanofiber mats for food packaging. Polymers. 2020;13:302. doi: 10.3390/polym13020302. PubMed DOI PMC
Tarus B., Fadel N., Al-Oufy A., El-Messinry M. Efect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly(vinyl chloride) nanofiber mats. Alex. Eng. J. 2016;55:2975–2984. doi: 10.1016/j.aej.2016.04.025. DOI
Mirtič J., Balažic H., Zupanič Š., Kristl J. Effect of solution composition variables on tlectrospun alginate nanofibers: Response surface analysis. Polymers. 2019;11:692. doi: 10.3390/polym11040692. PubMed DOI PMC
Karahalìloğlu Z. Cell-compatible PHB/silk fibroin composite nanofiber mat for tissue engineering applications. Turk. J. Biol. 2017;41:503–513. doi: 10.3906/biy-1610-46. DOI
Keirouz A., Zakharova M., Kwon J., Robert C., Koutsos V., Callanan A., Chen X., Fortunato G., Radacsi N. High-throughput production of silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications. Mater. Sci. Eng. C. 2020;112:110939. doi: 10.1016/j.msec.2020.110939. PubMed DOI
Chen F., Ji Z., Qi Q. Effect of pore size and layers on filtration performance of coalescing filters with different wettabilities. Sep. Purif. Technol. 2018;201:71–78. doi: 10.1016/j.seppur.2018.03.004. DOI
Fauzi A., Hapidin D.A., Munir M.M., Iskandar F., Khairurrijal J. A superhydrophilic bilayer structure of a nylon 6 anofiber/cellulose membrane and its characterization as potential water filtration media. RSC Adv. 2020;10:17205–17216. doi: 10.1039/D0RA01077D. PubMed DOI PMC
Dou H., Yu Z., Zuo B. Structure and antibacterial activity of silk fibroin/chitosan nanofibrous mats using an electrospinning technique. Adv. Mater. Res. 2011;332:967–972. doi: 10.4028/www.scientific.net/AMR.332-334.967. DOI
Ovalle-Sánchez A.A., Elizondo-Martínez P., Pérez-Rodrígez N.A., Hernández-Fernández E., Sánchez-Anguiano M.G. Degradation of poly(ethyleneterephthalate) waste to obtain oligomers uzing a zinc complex as catalyst. J. Chil. Chem. Soc. 2017;62:3741–3745. doi: 10.4067/s0717-97072017000403741. DOI
Dos Santos Pereira A.P., Prado da Silva M.H., Pereira Lima Júnior É., dos Santos Paula A., Tommasini F.J. Processing and characterization of PET composites reinforced with geopolymer concrete waste. Mat. Res. 2017;20:411–420. doi: 10.1590/1980-5373-mr-2017-0734. DOI
Mohammadzadehmoghadam S., Dong Y. Fabrication and characterization of electrospun silk fibroin/gelatin scaffolds crosslinked with glutaraldehyde vapor. Front. Mater. 2019;6:91. doi: 10.3389/fmats.2019.00091. DOI
Kamalha E., Zheng Y., Zeng Y. Analysis of the secondary crystalline structure of regenerated bombyx mori fibroin. Res. Rev. Biosci. 2013;7:76–83.
Calhoun M.A., Chowdhury S.S., Nelson M.T., Lannutti J.L., Dupaix R.B., Winter J.O. Effect of electrospun fiber mat thickness and support method on cell morphology. Nanomaterials. 2019;9:644. doi: 10.3390/nano9040644. PubMed DOI PMC
Gobin A.S., Froude V.E., Mathur A.B. Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration. J. Biomed. Mater. Res. A. 2005;74A:465–473. doi: 10.1002/jbm.a.30382. PubMed DOI
Mosnáčková K., Opálková Šišková A., Kleinová A., Danko M., Mosnáček J. Properties and degradation of novel fully biodegradable PLA/PHB blends filled with keratin. Int. J. Mol. Sci. 2020;21:9678. doi: 10.3390/ijms21249678. PubMed DOI PMC
Das P., Tiwari P. Thermal degradation study of waste polyethylene terephthalate (PET) under inert and oxidative environments. Thermochim. Acta. 2019;679:178340. doi: 10.1016/j.tca.2019.178340. DOI
Motta A., Fambri L., Migliaresi C. Regenerated silk fibroin films: Thermal and dynamic mechanical analysis. Macromol. Chem. Phys. 2002;203:1658–1665. doi: 10.1002/1521-3935(200207)203:10/11<1658::AID-MACP1658>3.0.CO;2-3. DOI
Liu Y., Yang L., Ma C. Thermal analysis and kinetic study of native silk. J. Therm. Anal. Calorim. 2020;139:589–595. doi: 10.1007/s10973-019-08420-4. DOI
Tcharkhtchi A., Abbasnezhad N., Seydani M.Z., Zirak N., Farzaneh S., Shirinbayan M. An overview of filtration efficiency through the masks: Mechanisms of the aerosol penetration. Bioact. Mater. 2021;6:106–122. doi: 10.1016/j.bioactmat.2020.08.002. PubMed DOI PMC
EN1822-1 High Efficiency Air Filters (EPA, HEPA and ULPA)—Part 1: Classification, Performance Testing, Marking. [(accessed on 10 June 2021)]; Available online: https://www.en-standard.eu/csn-en-1822-1-high-efficiency-air-filters-epa-hepa-and-ulpa-part-1-classification-performance-testing-marking-3/
EN 149:2001+A1:2009 Respiratory Protective Device—Filtering Half Masks to Protect against Particles—Requirements, Testing, Marking. [(accessed on 10 June 2021)]; Available online: https://www.en-standard.eu/bs-en-149-2001-a1-2009-respiratory-protective-devices-filtering-half-masks-to-protect-against-particles-requirements-testing-marking/
Liu Y.Q., Feng J.W., Zhang C.C., Teng Y., Liu Z., He J.H. Air permeability of nanofiber membrane with hierarchical structure. Therm. Sci. 2018;22:1637–1643. doi: 10.2298/TSCI1804637L. DOI
Abuzade R.A., Zadhoush A., Gharehaghaji A.A. Air permeability of electrospun polyacrylonitrile nanoweb. J Appl. Polym. Sci. 2012;126:232–243. doi: 10.1002/app.36774. DOI
McPherson L. Correlation of Electrospun Polyvinylpyrrolidone Fiber Mat Thickness with Basis Weight, Fiber Diameter, Pore Size Distribution, and Air Permeability. [(accessed on 30 May 2021)];2018 Honor Research Project 662. Available online: http://ideaexchange.uakron.edu/honors_research_projects/662.
Wang R., Liu Y., Li B., Hsiao B.S., Chu B. Electrospun nanofibrous membranes for high flux microfiltration. J. Membr. Sci. 2012;392:167–174. doi: 10.1016/j.memsci.2011.12.019. DOI
Patel S.U., Manzo G.M., Patel S.U., Kulkarni P.S., Chase G.G. Permeability of electrospun superhydrophobic nanofiber mats. J. Nanotechnol. 2012:483976. doi: 10.1155/2012/483976. DOI
Nadiger V.G., Shukla S.R. Antibacterial properties of silk fabric treated with aloe vera and silver nanoparticles. J. Text. Inst. 2017;108:385–396. doi: 10.1080/00405000.2016.1167391. DOI
Kaur J., Rajkhowa R., Afrin T., Tsuzuki T., Wang X. Facts and myths of antibacterial properties of silk. Biopolymers. 2014;101:237–245. doi: 10.1002/bip.22323. PubMed DOI
Yi S., Wu Y., Zhang Y., Zou Y., Dai F., Si Y. Antibacterial activity of photoactive silk fibroin/cellulose acetate blend nanofibrous membranes against Escherichia coli. ACS Sustain. Chem. Eng. 2020;8:16775–16780. doi: 10.1021/acssuschemeng.0c04276. DOI
Ungur G., Hrůza J. Modified nanofoibrous filters with durable antibacterial properties. Molecules. 2021;26:1255. doi: 10.3390/molecules26051255. PubMed DOI PMC
Calamak S., Alsoy E.A., Ertas N., Erdogdu C., Sagiroglu M., Ulubayram K. Ag/silk fibroin nanofibers: Effect of fibroin morphology on Ag+ release and antibacterial activity. Eur. Polym. J. 2015;67:99–112. doi: 10.1016/j.eurpolymj.2015.03.068. DOI
Khan A.U.R., Huang K., Jinzhong Z., Zhu T., Morsi Y., Aldalbahi A., El-Newehy M., Yan X., Mo X. Exploration of the antibacterial and wound healing potential of a PLAG/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles. J. Mater. Chem. B. 2021;9:1452–1465. doi: 10.1039/D0TB02822C. PubMed DOI
Kargar M., Wang J., Nain A.S., Behkam B. Controlling bacterial adhesion to surface using topographical cues: A study of the interaction of Pseudomonas aeruginosa with nanofiber-textured surfaces. Soft Matter. 2012;8:10254–10259. doi: 10.1039/c2sm26368h. DOI
Yuan Y., Hays M.P., Hardwidge P.R., Kim J. Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv. 2017;7:14254. doi: 10.1039/C7RA01571B. DOI
Dou X., Zhang C., Feng C., Jiang L. Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion. ACS Nano. 2015;9:10664–10672. doi: 10.1021/acsnano.5b04231. PubMed DOI
Kaushik S., Thungon P.D., Goswami P. Silk fibroin: An emerging biocompatible material for application of enzymes and whole cells in bioelectronics and bioanalytical sciences. ACS Biomater. Sci. Eng. 2020;6:4337–4355. doi: 10.1021/acsbiomaterials.9b01971. PubMed DOI
Xu S., Yan X., Zhao Y., Wang W., Yang Y. In vitro biocompatibility of electrospun silk fibroin mats with Schwann cells. J. Appl. Polym. Sci. 2010;119:3490–3494. doi: 10.1002/app.32996. DOI
Yonesi M., Garcia-Nieto M., Guinea G.V., Panetsos F., Perez-Rigueiro J., Gonzalez-Nieto D. Silk Fibroin: An ancient material for repairing the injured nervous systems. Pharmaceutics. 2021;13:429. doi: 10.3390/pharmaceutics13030429. PubMed DOI PMC
Mejia-Sauza M.L., Moncada M.E., Ossa-Orozco C.P. Characterization of electrospun silk fibroin scaffolds for bone tissue engineering: A review. TecnoLógicas. 2020;23:228–246.
Hodgkinson T., Yuan X.F., Bayat A. Electrospun silk fibroin fiber diameter influences in vitro dermal fibroblast behavior and promotes healing of ex vivo wound models. J. Tiss. Eng. 2014;5:1–13. doi: 10.1177/2041731414551661. PubMed DOI PMC
Hong H., Zhang D., Lin S., Han F., Wang K., Jiang D., Wu J., Mo X., Wang H. Green electrospun silk fibroin nanofibers loaded with cationic ethosomes for transdermal drug delivery. Chem. Res. Chin. Univ. 2021;37:488–495. doi: 10.1007/s40242-021-1084-8. DOI
Choudhury A.J., Gogoi D., Chutia J., Kandimalla R., Kalita S., Kotoky J., Chaudhari Y.B., Khan M.R., Kalita K. Controlled antibiotic-releasing antheraea assama silk fibroin suture for infection prevention and fast wound healing. Surgery. 2016;159:539–547. doi: 10.1016/j.surg.2015.07.022. PubMed DOI
Choi M., Lee C. Immortalization of primary keratinocytes and its application to skin research. Biomol. Ther. 2015;23:391–399. doi: 10.4062/biomolther.2015.038. PubMed DOI PMC
Ogawa Y., Kinoshita M., Shimada S., Kawamura T. Zinc in keratinocytes and langerhans cells: Relevance to the epidermal homeostasis. J. Immunol. Res. 2018;2018:5404093. doi: 10.1155/2018/5404093. PubMed DOI PMC
Jafari S., Salekdeh S.S.H., Solouk A., Yousefzadeh M. Electrospun polyethylene terephthalate (PET) nanofibrous conduit for biomedical application. Polym. Adv. Technol. 2019;31:284–296. doi: 10.1002/pat.4768. DOI
Reuse of Textile Waste to Production of the Fibrous Antibacterial Membrane with Filtration Potential
Circulatory Management of Polymer Waste: Recycling into Fine Fibers and Their Applications