Circulatory Management of Polymer Waste: Recycling into Fine Fibers and Their Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LTC 19034
Ministerstvo Školství, Mládeže a Tělovýchovy
VEGA 2/0135/19
Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
VEGA 2/0168/21
Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
APVV-19-0250
Agentúra na Podporu Výskumu a Vývoja
PubMed
34443216
PubMed Central
PMC8401388
DOI
10.3390/ma14164694
PII: ma14164694
Knihovny.cz E-zdroje
- Klíčová slova
- circular economy loop, fine fibers, polymeric waste, recycling, spinning, waste management,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In modern society, it is impossible to imagine life without polymeric materials. However, managing the waste composed of these materials is one of the most significant environmental issues confronting us in the present day. Recycling polymeric waste is the most important action currently available to reduce environmental impacts worldwide and is one of the most dynamic areas in industry today. Utilizing this waste could not only benefit the environment but also promote sustainable development and circular economy management. In its program statement, the European Union has committed to support the use of sorted polymeric waste. This study reviews recent attempts to recycle this waste and convert it by alternative technologies into fine, nano-, and microscale fibers using electrospinning, blowing, melt, or centrifugal spinning. This review provides information regarding applying reprocessed fine fibers in various areas and a concrete approach to mitigate the threat of pollution caused by polymeric materials.
Zobrazit více v PubMed
Hopewell J., Dvorak R., Kosior E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009;27:2115–2126. doi: 10.1098/rstb.2008.0311. PubMed DOI PMC
Singhal R., Ishita I., Sow P.K. Integrated polymer dissolution and solution blow spinning coupled with solvent recovery for expanded polystyrene recycling. J. Polym. Environ. 2019;27:1240–1251. doi: 10.1007/s10924-019-01427-w. DOI
Plastics Europe . Plastics—The Facts 2019: An. Analysis of European Plastic Production, Demand and Waste Data for 2018. Association of Plastics Manufacturers; Brussels, Belgium: 2019. [(accessed on 10 July 2021)]. Available online: https://www.plasticseurope.org/en/resources/market-data.
European Commission Circular Economy. [(accessed on 10 July 2021)]; Available online: https://ec.europa.eu/growth/industry/sustainability/circular-economy_sk.
European Commision Towards a Circular Economy: A Zero Waste Programme for Europe. [(accessed on 10 July 2021)]; Available online: http://www.sbagency.sk/en/the-future-belongs-to-the-circular-economy#.XzmF_egzZPY.
Faraca G., Astrup T. Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Manag. 2019;95:388–398. doi: 10.1016/j.wasman.2019.06.038. PubMed DOI
Ragaert K., Delva L., Geem K.V. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017;69:24–58. doi: 10.1016/j.wasman.2017.07.044. PubMed DOI
Clark J.H., Farmer T.J., Herrero-Davila L., Sherwood J. Circular economy design considerations for research and process development in the chemical sciences. Green Chem. 2016;18:3914–3934. doi: 10.1039/C6GC00501B. DOI
Brachet P., Høydal L.T., Hinrichsen E.L., Melum F. Modification of mechanical properties of recycled polypropylene from post-consumer containers. Waste Manag. 2008;28:2456–2464. doi: 10.1016/j.wasman.2007.10.021. PubMed DOI
Awoyera P.O., Adesina A. Case study. Plastic wastes to construction products: Status limitations and future perspective. Case Stud. Constr. Mater. 2020;12:e00330. doi: 10.1016/j.cscm.2020.e00330. DOI
Grigore M.E. Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling. 2017;2:24. doi: 10.3390/recycling2040024. DOI
Shabunin A.S., Yudin V.E., Dobrovolskaya I.P., Zinovyev E.V., Zubov V., Ivankova E.M., Morganti P. Composite wound dressing based on chitin/chitosan nanofibers: Processing and biomedical applications. Cosmetics. 2019;6:16. doi: 10.3390/cosmetics6010016. DOI
Yin S., Tuladhar R., Shi F., Shanks R.A., Combe M., Collister T. Mechanical reprocessing of polyolefin waste: A review. Polym. Eng. Sci. 2015;55:2899–2909. doi: 10.1002/pen.24182. DOI
Zander N.E., Sweetser D., Cole D.P., Gillan M. Formation of Nanofibers from Pure and Mixed Waste Streams Using Electrospinning. Ind. Eng. Chem. Res. 2015;54:9057–9063. doi: 10.1021/acs.iecr.5b02279. DOI
Chinchillas-Chinchillas M.J., Gaxiola A., Alvarado-Beltran C.G., Orozco-Carmona V.M., Pellegrini-Cervantes M.J., Rodríguez-Rodríguez M., Castro-Beltran A. A new application of recycled-PET/PAN composite nanofibers to cemente based materials. J. Clean. Prod. 2020;252:119827. doi: 10.1016/j.jclepro.2019.119827. DOI
Niu H., Zhou H., Wang H. Electrospinning: An advanced nanofiber production technology. In: Fang J., Lin T., editors. Energy Harvesting Properties of Electrospun Nanofibers. IOP Publishing; Bristol, UK: 2019. pp. 1–44. DOI
Lunstroot K., Ziernicki D., Vanden Driessche T. A study of black fleece garments: Can fleece fibres be recognized and how variable are they? Sci. Justice. 2016;56:157–164. doi: 10.1016/j.scijus.2015.12.006. PubMed DOI
Cook S. If We Lose Our Snowcapped Mountains, How Will We Shered? [(accessed on 10 July 2020)]; Available online: https://www.nationalgeographic.com/science/2020/02/partner-content-evolution-of-recycled-fabrics/
Statement on the Seventh Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Coronavirus Deseade (COVID-19) Pandemic. [(accessed on 20 June 2020)]; Available online: https://www.who.int/news/item/19-04-2021-statement-on-the-seventh-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic.
Opálková Šišková A., Frajová J., Nosko M. Recycling of poly(ethylene terephthalate) by electrospinning to enhanced the filtration efficiency. Mat. Lett. 2020;278:128426. doi: 10.1016/j.matlet.2020.128426. DOI
Gomes S.S., Oliveira A.M., Maia A., Zanin M.H.A. Recycled PET nanofibers produced by electrospinning technique. Adv. Mater. Tech. Connect. Briefs. 2020;1:335–338. ISBN 978-0-9975-1170-3M.
Munir M.M., Nuryantini A.Y., skandar, Suciati T., Khairurrijal K. Mass production of stacked Styrofoam nanofibers using a multinozzle and drum collector electrospinning system. Adv. Mater. Res. 2014;896:20–23. doi: 10.4028/www.scientific.net/AMR.896.20. DOI
Tshifularo C.A., Patnaik A. Recycling of plastics into textile raw materials and products. In: Nayak N., editor. Sustainable Technologies for Fashion and Textiles. Woodhead Publishing; Sawston, UK: 2020. pp. 311–326. (Woodhead Publishing Series in Textiles). DOI
Eriksen M.K., Christiansen J.D., Daugaard A.E., Astrup T.F. Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling. Waste Manag. 2019;96:75–85. doi: 10.1016/j.wasman.2019.07.005. PubMed DOI
Jiang Q., Izumi T., Yoshida H., Dilixiati D., Leeabai N., Suzuki S., Takahashi F. The effect of recycling bin design on PET bottle collection performance. Waste Manag. 2019;95:32–42. doi: 10.1016/j.wasman.2019.05.054. PubMed DOI
Ryberg M. , Laurent, A., Hauschild, M. Mapping of Global Plastics Value Chain and Plastics Losses to the Environment (with a Particular Focus on Marine Environment) United Nations Environment Programme; Nairobi, Kenya: 2018. [(accessed on 10 July 2020)]. Available online: http://wedocs.unep.org/bitstream/handle/20.500.11822/26745/mapping_plastics.pdf.
Hanna E.G. Recycling of waste mixed plastics blend (PE/PP) J. Eng. Sci. Technol. Rev. 2019;12:87–92. doi: 10.25103/jestr.122.12. DOI
Antonakou E.V., Achilias D.S. Recent advances in polycarbonate recycling: A review of degradation methods and their mechanisms. Waste Biomass Valori. 2013;4:9–21. doi: 10.1007/s12649-012-9159-x. DOI
Le H.H., Carlson E.M., Chua J.P., Belcher S.M. Bisphenol A is releasing from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol. Lett. 2008;176:149–156. doi: 10.1016/j.toxlet.2007.11.001. PubMed DOI PMC
Zulfi A., Rezeki Y.A., Edikresnha D., Munir M.M., Khairurrijal K. Synthesis of fibers and particles from polyvinyl chloride (PVC) waste using electrospinning. IOP Conf. Ser. Mater. Sci. Eng. 2018;367:012014. doi: 10.1088/1757-899X/367/1/012014. DOI
Liu Z., Liu W., Walker T.R., Adams M., Zhao J. How does the global plastic waste trade contribute to environmental benefits: Implication for reductions of greenhouse gas emissions? J. Environ. Manag. 2021;287:112283. doi: 10.1016/j.jenvman.2021.112283. PubMed DOI
Piemonte V., Sabatini S., Gironi F. Chemical recycling of PLA: A great opportunity towards the sustainable development. J. Polym. Environ. 2013;21:640–647. doi: 10.1007/s10924-013-0608-9. DOI
Åkesson D., Vrignaud T., Tissot C., Skrifvars M. Mechanical recycling of PLA filled with a high level of cellulose fibers. J. Polym. Environ. 2016;24:185–195. doi: 10.1007/s10924-016-0760-0. DOI
Tavanaie M.A. Melt recycling of poly(lactic acid) plastic wastes to produce biodegradable fibers. Polym. Plast. Technol. Eng. 2014;53:742–751. doi: 10.1080/03602559.2013.877931. DOI
Welker C.M., Balasubramanian V.K., Petti C., Rai K.M., DeBolt S., Mendu V. Engineering Plant Biomass Lignin Content and Composition for Biofuels and Bioproducts. Energies. 2015;8:7654–7676. doi: 10.3390/en8087654. DOI
Wang M., Wang F. Catalytic scissoring of lignin into aryl monomers. Adv. Mater. 2019;31:1901866. doi: 10.1002/adma.201901866. PubMed DOI
Yang H., Yu B., Xu X., Bourbigot S., Wang H., Song P. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chem. 2020;22:2129–2161. doi: 10.1039/D0GC00449A. DOI
Olsson C., Westman G. Direct Dissolution of Cellulose: Background, Means and Applications. In: Van de Ven T., Godbout L., editors. Cellulose, Fundamental Aspects. IntechOpen; London, UK: 2013. pp. 143–178.
Kakoria A., Sinha-Ray S. A review on biopolymer-based fibers via electrospinning and solution blowing and their applications. Fibers. 2018;6:45. doi: 10.3390/fib6030045. DOI
Chen X., Burger C., Wan F., Zhang J., Rong L., Hsiao B.S., Chu B., Cai J., Zhang L. Structure study of cellulose fibers wet-spun from environmentally friendly NaOH/Urea aqueous solutions. Biomacromolecules. 2007;8:1918–1926. doi: 10.1021/bm061186i. PubMed DOI
Ruan D., Zhang L., Zhou J., Jin H., Chen H. Structure and Properties of Novel Fibers Spun from Cellulose in NaOH/Thiourea Aqueous Solution. Macromol. Biosci. 2004;4:1105–1112. doi: 10.1002/mabi.200400120. PubMed DOI
Chen X., Burger C., Fang D., Ruan D., Zhang L., Hsiao B.S., Chu B. X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/Thiourea aqueous aolutions. Polymer. 2006;47:2839–2848. doi: 10.1016/j.polymer.2006.02.044. DOI
Heinze T., Liebert T. Unconventional methods in cellulose functionalization. Prog. Polym. Sci. 2001;26:1689–1762. doi: 10.1016/S0079-6700(01)00022-3. DOI
Fischer S., Leipner H., Thümmler K., Brendler E., Peters J. Inorganic molten salts as solvents for cellulose. Cellulose. 2003;10:227–236. doi: 10.1023/A:1025128028462. DOI
Striegel A. Theory and aplications of DMAC/LiCl in the analysis of polysaccharides. Carbohydr. Polym. 1997;34:267–274. doi: 10.1016/S0144-8617(97)00101-X. DOI
Austin P.R., Brine C.J., Castle J.E., Zikakis J.P. Chitin: New Facets of Research. Science. 1981;212:749–753. doi: 10.1126/science.7221561. PubMed DOI
McCormick C.L., Callais P.A. Derivatization of cellulose in lithium chloride and N-N-Dimethylacetamide solutions. Polymer. 1987;28:2317–2323. doi: 10.1016/0032-3861(87)90393-4. DOI
Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D. Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 2002;124:4974–4975. doi: 10.1021/ja025790m. PubMed DOI
Hemamalini T., Karunakaran S.A., Siva Elango M.K., Senthil Ram T., Giri Dev V.R. Regeneration of cellulose acetate nanofibrous mat from discarded cigarette butts. Ind. J. Fibre Tex. Res. 2019;44:248–252.
Dashtbani R., Afra E. Producing cellulose nanofiber from cotton wastes by electrospinning method. Int. J. Nano Dimens. 2015;6:1–9. doi: 10.7508/IJND.2015.06.001. DOI
Jedvert K., Idström A., Köhnke T., Alkhagen M. Cellulosic nonwovens produced via efficient solution blowing technique. J. Appl. Polym. Sci. 2020;137:48339. doi: 10.1002/app.48339. DOI
Whetten R.W., MacKay J.J., Sederoff R.R. Recent advances in understanding lignin biosynthesis. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 1998;49:585–609. doi: 10.1146/annurev.arplant.49.1.585. PubMed DOI
Calvo-Flores F.G., Dobado J.A. Lignin as Renewable Raw Material. Chem. Sus. Chem. 2010;3:1227–1235. doi: 10.1002/cssc.201000157. PubMed DOI
Laurichesse S., Averous L. Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci. 2014;39:1266–1290. doi: 10.1016/j.progpolymsci.2013.11.004. DOI
Fang W., Yang S., Wang X.L., Yuan T.Q., Sun R.C. Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs) Green Chem. 2017;19:1794. doi: 10.1039/C6GC03206K. DOI
Barhoum A., Pal K., Rahier H., Uludag H., Kim I.S., Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today. 2019;17:1–35. doi: 10.1016/j.apmt.2019.06.015. DOI
Mather R.R., Wardman R.H. The Chemistry of Textile Fibres. The Royal Society of Chemistry, Thomas Graham House; Cambridge, UK: 2011.
Pillay V., Dott C., Choonara Y.E., Tyagi C., Tomar L., Kumar P., du Toit L.C., Ndesendo V.M.K. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J. Nanomater. 2013;22:789289. doi: 10.1155/2013/789289. DOI
Shin C., Chase G. Nanofibers from recycle waste expanded polystyrene using natural solvent. Polym. Bull. 2005;55:209–215. doi: 10.1007/s00289-005-0421-2. DOI
Sow P.K., Ishita I., Singhal R. Sustainable approach to recycle waste polystyrene to high-value submicron fibers using solution blow spinning and application towards oil-water separation. J. Environ. Chem. Eng. 2020;8:102786. doi: 10.1016/j.jece.2018.11.031. DOI
Mehdi M., Mahar F.K., Qureshi U.A., Khatri M., Khatri Z., Ahmed F., Kim I.S. Preparation of colored recycled polyethylene terephthalate nanofibers from waste bottles: Physicochemical studies. Adv. Polym. Technol. 2018;37:2820–2827. doi: 10.1002/adv.21954. DOI
Zander N.E., Gillan M., Sweetser D. Recycled PET nanofibers for water filtration applications. Materials. 2016;9:247. doi: 10.3390/ma9040247. PubMed DOI PMC
Bhat G., Narayanan V., Wadsworth L., Dever M. Conversion of recycled polymers fibers into melt-blown nonwovens. Polym. Plast. Technol. Eng. Polym. 1999;38:499–511. doi: 10.1080/03602559909351596. DOI
Tuladhar R., Yin S. Use of Recycled Plastics in Eco-Efficient Concrete. Woodhead Publishing Series in Civil and Structural Engineering; Sawston, UK: 2019. Production of recycled polypropylene (PP) fibers from industrial plastic waste through melt spinning process; pp. 70–84. DOI
Lee J.H., Lim K.S., Hahm W.G., Kim S.H. Properties of recycled and virgin poly(ethylene terephthalate) blend fibers. J. Appl. Polym. Sci. 2013;128:1250–1256. doi: 10.1002/app.38502. DOI
Gurudatt K., De P., Rakshit A.K., Bardhan M.K. Spinning fibers from poly(ethylene terephthalate) bottle-grade waste. J. Appl. Polym. Sci. 2003;90:3536–3545. doi: 10.1002/app.12969. DOI
Abbasi M., Mojtahedi M.R.M., Khosroshahi A.J. Effect of spinning speed on the structure and physical properties of filament yarns produced from used PET bottles. J. Appl. Polym. Sci. 2007;103:3972. doi: 10.1002/app.25369. DOI
Upasani P.S., Jain A.K., Save N., Agarwal U.S., Kelkar A.K. Chemical recycling of PET flakes into yarn. J. Appl. Polym. Sci. 2012;123:520. doi: 10.1002/app.34503. DOI
Zander N.E., Gillan M., Sweetser D. Composite fibers from recycled plastics using melt centrifugal spinning. Materials. 2017;10:1044. doi: 10.3390/ma10091044. PubMed DOI PMC
Kayaisang S., Saikrasun S., Amornsakchai T. Potential use of recycled PET in comparison with liquid crystalline polyester as a dual functional additive for enhancing heat stability and reinforcement for high density polyethylene composite fibres. J. Polym. Environ. 2013;21:191–206. doi: 10.1007/s10924-012-0446-1. DOI
Telli A., Ozdil N. Effect of recycled PET fibers on the performance properties of knitted fabrics. J. Eng. Fibr. Fabr. 2015;10:47–60. doi: 10.1177/155892501501000206. DOI
De Oliveira Santos R.P., Castro D.O., Ruvolo-Filho A.C., Frolini E. Processing and thermal properties of composite based on recycled PET, sisal fibers and renewable plasticizers. J. Appl. Polym. Sci. 2014;131:40386. doi: 10.1002/app.40386. DOI
Khan W.S., Asmatulu R., Davuluri S., Dandin V.K. Improving the economic values of the recycled plastic using nanotechnology associated studie. J. Mater. Sci. Technol. 2014;30:854–859. doi: 10.1016/j.jmst.2014.07.006. DOI
Mohammadkhani F., Montazer M., Latifi M. Microwave absorption characterization and wettability of magnetic nano iron oxide/recycled PET nanofibers web. J. Text. Inst. 2019;110:989–999. doi: 10.1080/00405000.2018.1559908. DOI
Chatterjee S., Saito T., Bhattacharya P. Lignin-Derived Carbon Fibers. In: Faruk O., Sain M., editors. Lignin in Polymer Composites. Elsevier Inc.; Amsterdam, The Netherlands: 2016. pp. 207–216.
Cayla A., Rault F., Giraud S., Salaün F., Fierro V., Celzard A. PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant Textile. Polymers. 2016;8:331. doi: 10.3390/polym8090331. PubMed DOI PMC
Haider A., Haider S., Kang I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018;11:1165–1188. doi: 10.1016/j.arabjc.2015.11.015. DOI
Bubakir M.M., Li H., Barhoum A., Yang W. Advances in melt electrospinning technique. In: Barhoum A., Bechelany M., Makhlouf A.H., editors. Handbook of Nanofibers. Springer Nature; Basingstoke, UK: 2018. pp. 1–32.
Haichao L., Li H., Bubakir M.M., Yang W., Barhoum A. Engineering nanofibers as electrode and membrane materials for batteries, supercapacitors, and fuel cells. In: Barhoum A., Bechelany M., Makhlouf A., editors. Handbook of Nanofibers. Springer International Publishing; New York, NY, USA: 2018. pp. 1–27. DOI
Bhardwaj N., Kundu S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010;28:325–347. doi: 10.1016/j.biotechadv.2010.01.004. PubMed DOI
Teo W.E., Inai R., Ramakrishna S. Technological advances in electrospinning of nanofibers. Sci. Technol. Adv. Mater. 2011;12:013002. doi: 10.1088/1468-6996/12/1/013002. PubMed DOI PMC
Liu Y., Li K., Mohideen M.M., Ramakrishna S. Melt Electrospinning: A green Method to Produce Superfine Fibers. Elsevier Inc.; Amsterdam, The Netherlands: 2019.
Esmaeili E., Deymeh F., Rounaghi S.A. Synthesis and characterization of the Electrospun fibers prepared from waste polymeric materials. Int. J. Nano Dimens. 2017;8:171–181. doi: 10.22034/IJND.2017.25087. DOI
Abbas J.A., Said I.A., Mohamed M.A., Yasin S.A., Ali Z.A., Ahmed I.H. Electrospining of polyethylene terephthalate (PET) nanofibers: Optimization study using taguchi design of experiment. IOP Conf. Series Mat. Sci. Eng. 2018;454:012130. doi: 10.1088/1757-899X/454/1/012130. DOI
Han S.O., Youk J.H., Min K.D., Kang Y.O., Park W. Electrosppinnin of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: Effect of solvent composition on the fiber diameter. Mat. Lett. 2008;62:759–762. doi: 10.1016/j.matlet.2007.06.059. DOI
Lallave M., Bedia J., Ruiz-Rosas R., Rodriguez-Mirasol J., Cordero T., Otero J.C., Marquez M., Barrero A., Loscertales I.G. Filled and hollow carbon nanofibers by coaxial electrospinning of alcell lignin without binder polymers. Adv. Mater. 2007;19:4292–4296. doi: 10.1002/adma.200700963. DOI
Naksuwan P., Komárek M., Salačová J., Militký J. The study of recycled poly(ethyeĺene terephthalate) nanofibers from PET bottle. Appl. Mech. Mat. 2016;848:3–6. doi: 10.4028/www.scientific.net/AMM.848.3. DOI
Zhuang X., Yang X., Shi L., Cheng B., Guan K., Kang W. Solution blowing of submicron-scale cellulose fibers. Carbohydr. Polym. 2012;90:982–987. doi: 10.1016/j.carbpol.2012.06.031. PubMed DOI
Daristotle J.L., Behrens A.M., Sandler A.D., Kofinas P. A review of the fundamental principles and applications of solution blow spinning. ACS Appl. Mater. Interfaces. 2016;8:34951–34963. doi: 10.1021/acsami.6b12994. PubMed DOI PMC
Kenry. Lim C.T. Nanofiber technology: Current status and emerging developments. Prog. Polym. Sci. 2017;70:1–17. doi: 10.1016/j.progpolymsci.2017.03.002. DOI
Tutak W., Sarkar S., Lin-Gibson S., Farooque T.M., Jyotsnendu G., Wang D., Kohn J., Bolikal D., Simon C.G., Jr. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Biomaterials. 2013;34:2389–2398. doi: 10.1016/j.biomaterials.2012.12.020. PubMed DOI
Fan X., Keynton R.S. Fabrication and characterization of biopolymer fibers for 3D oriented microvascular structures. J. Micromech. Microeng. 2019;29:083003. doi: 10.1088/1361-6439/ab2349. DOI
Zhang Z.M., Duan Y.S., Xu Q., Zhang B. A review on nanofiber fabrication with the effect of high-speed centrifugal force field. J. Eng. Fibers Fabr. 2019;14:1–11. doi: 10.1177/1558925019867517. DOI
Charuchinda A., Molloy R., Siripitayananon J., Molloya N., Sriyai M. Factors influencing the small-scale melt spinning of poly (ε-caprolactone) monofilament fibres. Polym. Int. 2003;52:1175–1181. doi: 10.1002/pi.1234. DOI
Jiang Z., Guo Z., Zhang Z., Qi Y., Pu C., Wang Q., Jia Z., Xiao C. Preparation and properties of bottle-recycled polyethylene terephthalate (PET) filaments. Tex. Res. J. 2018;89:1207–1214. doi: 10.1177/0040517518767146. DOI
Abbasi M., Mojtahedi M.R.M., Kotek R. Effect of melt spinning variables on the structure changes of recycled and bottle grade filament yarn PET. J. Text. Polym. 2018;6:67–75. doi: 10.1177/0040517520925859. DOI
Bishal H., Tavanaie M.A., Mahmudi A.G. Biodegradability modification of synthetic polyamide 6 fibers via in-situ melt blending with recycled poly(lactic) acid plastic food container flakes during the melt spinning process. Modares J. Biotechnol. 2018;9:69–78.
Tavanaie M.A., Mahmudi A. Green engineered polypropylene biodegradable fibers through blending with recycled poly(lactic) acid plastic waste. Polym. Plast. Technol. Eng. 2014;53:1506–1517. doi: 10.1080/03602559.2014.910524. DOI
Soekoco A.S., Noerat, Komalasari M., Kurniawan, Hananto A. Characterization of eco-friendly polyethylene fiber from plastic bag waste. AIP Conf. Proc. 2017;1868:020003. doi: 10.1063/1.4995089. DOI
Weitz R.T., Harnau L., Rauschenbach S., Burghard M., Kern K. Polymer nanofibers via nozzle-free centrifugal spinning. Nano Lett. 2008;8:1187–1191. doi: 10.1021/nl080124q. PubMed DOI
Zhang X., Lu Y. Centrifugal spinning: An alternative approach to fabricate nanofibers at high speed and low cost. Polym. Rev. 2014;54:677–701. doi: 10.1080/15583724.2014.935858. DOI
Vo P.P., Doan H.N., Kinashi K., Sakai W., Tsutsumi N., Huynh D.R. Centrifugally spun recycled PET Processing and characterization. Polymers. 2018;10:680. doi: 10.3390/polym10060680. PubMed DOI PMC
Saleem H., Trabzon L., Kilic A., Zaidi S.J. Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination. Desalination. 2020;478:114178. doi: 10.1016/j.desal.2019.114178. DOI
Dos Reis Paganotto G.F., Duarte de Barros G., Marques V.G., Takimi A.S. Production of recycled EPS fibers by centrifugal spinning. Rev. Matéria. 2021;26 doi: 10.1590/S1517-707620210002.1254. DOI
Kamrani H., Nosrati A. Fabrication of nanofiber filtration membranes using polyethylene terephthalate (PET): A review. J. Membr. Sci. Technol. 2018;8:1000183. doi: 10.4172/2155-9589.1000183. DOI
Rajabinejad H., Khajavi R., Rashidi A., Mansouri N., Yazdanshenas M.E. Recycling of used bottle grade poly ethyleneterephthalate to nanofibers by melt-electrospinning method. Int. J. Enviton. Res. 2009;3:663–670. doi: 10.22059/IJER.2010.82. DOI
Yasin S.A., Zeebaree S.Y.S., Zeebaree A.Y.S., Zebari O.I.H., Saeed I.A. The efficient removal of methylene blue dye using CuO/PET nanocomposite in aqueous solutions. Catalysts. 2021;11:241. doi: 10.3390/catal11020241. DOI
Grumezescu A.M., Stoica A.E., Balcescu M.S.D., Chircov C., Gharbia S., Balta C., Rosu M., Herman H., Holban A.M., Ficai A., et al. Electrospun polyethylene terephthalate nanofibers loaded with silver nanoparticles: Novel approach in anti-infective therapy. J. Clin. Med. 2019;8:1039. doi: 10.3390/jcm8071039. PubMed DOI PMC
Rajak A., Hapidin D.A., Iskandar F., Munir M., Khairurrijal K. Controlled morphology of electrospun nanofibers from waste expanded polystyrene for aerosol filtration. Nanotechnology. 2019;30:425602. doi: 10.1088/1361-6528/ab2e3b. PubMed DOI
Liu C., Hsu P.C., Lee H.W., Ye M., Zheng G., Liu N., Li W., Cui Y. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 2015;6:6205. doi: 10.1038/ncomms7205. PubMed DOI
Zhang R., Liu C., Hsu P.C., Zhang C.F., Liu N., Zhang J.S., Lee H.R., Lu Y.Y., Qiu Y.C., Chu S., et al. Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett. 2016;16:3642. doi: 10.1021/acs.nanolett.6b00771. PubMed DOI
Shin C., Chase G.G., Reneker D.H. Recycled expanded polystyrene nanofibers applied in filter media. Colloids Surf. A Physicochem. Eng. Asp. 2005;262:211–215. doi: 10.1016/j.colsurfa.2005.04.034. DOI
Shin C. Filtration application from recycled expanded polystyrene. J. Colloid Interf. Sci. 2006;302:267–271. doi: 10.1016/j.jcis.2006.05.058. PubMed DOI
Ezzatzedeh E., Langroudi M., Sheshdeh F.J. Synthesis of magnetic iron-oxide nanofiber composite using electrospinning: An absorbent for removal of nitrate from aqueous solution. J. Appl. Chem. Res. 2017;11:46–59.
Pulido B.A., Habboub O.S., Aristizabal S.L., Szekely G., Nunes S.P. Recycled poly (ethylene terephthalate) for high temperature solvent resistant membranes. ACS Appl. Polym. Mat. 2019;1:2379–2387. doi: 10.1021/acsapm.9b00493. DOI
Strain I.N., Wu Q., Pourrahimi A.M., Hedenquvist M.S., Olsson R.T., Andersson R.L. Electrospinning of recycled PET to generate tough mesomorphic fibre membranes for smoke filtration. J. Mat. Chem. A. 2015;3:1632–1640. doi: 10.1039/C4TA06191H. DOI
Opálková Šišková A., Mosnáčková K., Hrůza J., Frajová J., Opálek A., Bučková M., Kozics K., Peer P., Eckstein Andicsová A. Electrospun poly(ethylene terephthalate/silk fibroin composite for filtration application. Polymers. 2021;13:2499. doi: 10.3390/polym13152499. PubMed DOI PMC
Bonfim D.P.F., Cruz F.G.S., Bretas R.E.S., Guerra V.G., Aguiar M.L. A sstainable recycling alternative: Electrospun PET-membranes for air nanofiltration. Polymers. 2021;13:1166. doi: 10.3390/polym13071166. PubMed DOI PMC
Attia A.A.M., Abas K.M., Nada A.A.A., Shouman M.A.H., Opálková Šišková A., Mosnáček J. Fabrication, modification, and characterization of lignin-based electrospun fibers ferived from distinctive biomass sources. Polymers. 2021;13:2277. doi: 10.3390/polym13142277. PubMed DOI PMC
Böhm R., Thieme M., Wohlfahrt D., Wolz D.S., Richter B., Jäger H. Reinforcement systems for carbon concrete composites based on low-cost carbon fibers. Fibers. 2018;6:56. doi: 10.3390/fib6030056. DOI
Rajak A., Munir M.M., Abdullah M., Khairurrijal K. Photocatalytic activities of Electrospun TiO2/Styrofoam composite nanofiber membrane in degradation of waste water. Mater. Sci. Forum. 2015;827:7–12. doi: 10.4028/www.scientific.net/MSF.827.7. DOI
Datsyuk V., Trotsenko S., Peikert K., Hoeflich K., Wedel N., Allar C., Sick T., Deinhart V., Reich S., Krcmar W. Polystyrene nanofibers for nonwoven porous building insulation materials. Eng. Rep. 2019;1:e12037. doi: 10.1002/eng2.12037. DOI
Textiles in Europe’s Circular Economy. [(accessed on 4 August 2021)];2019 Available online: https://www.eea.europa.eu/publications/textiles-in-europes-circular-economy.
Lebreton L., Andrady A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019;5:6. doi: 10.1057/s41599-018-0212-7. DOI
Shanks R. 5-Recycled synthetic polymer fibers in composites. In: Baillie C., Jayasinghe R., editors. Woodhead Publishing Series in Composites Science and Engineering, Green Composites. 2nd ed. Woodhead Publishing; Sawston, UK: 2017. pp. 73–93. DOI
Oliveux G., Dandy L.O., Leeke G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015;72:61–99. doi: 10.1016/j.pmatsci.2015.01.004. DOI
Muzzy J. Composite products from post-consumer carpet. In: Wang Y., editor. Recycling in Textiles. Woodhead Publishing; Cambridge, UK: 2006. pp. 203–212.
Hollaway L.C. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr. Build. Mater. 2010;24:2419. doi: 10.1016/j.conbuildmat.2010.04.062. DOI
Wiliński D., Łukowski P., Rokicki G. Application of fibres from recycled PET bottles for concrete reinforcement. J. Build. Chem. 2016;1:1–9. doi: 10.1016/j.compstruct.2012.09.019. DOI
Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. [(accessed on 3 August 2021)]; Available online: https://eur-lex.europa.eu/eli/dir/2008/98/2018-07-05.
Ritchie H., Roser M. Plastic Pollution. [(accessed on 3 August 2020)];2018 Available online: https://ourworldindata.org/plastic-pollution.
Reuse of Textile Waste to Production of the Fibrous Antibacterial Membrane with Filtration Potential