Circulatory Management of Polymer Waste: Recycling into Fine Fibers and Their Applications

. 2021 Aug 20 ; 14 (16) : . [epub] 20210820

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34443216

Grantová podpora
LTC 19034 Ministerstvo Školství, Mládeže a Tělovýchovy
VEGA 2/0135/19 Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
VEGA 2/0168/21 Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky
APVV-19-0250 Agentúra na Podporu Výskumu a Vývoja

In modern society, it is impossible to imagine life without polymeric materials. However, managing the waste composed of these materials is one of the most significant environmental issues confronting us in the present day. Recycling polymeric waste is the most important action currently available to reduce environmental impacts worldwide and is one of the most dynamic areas in industry today. Utilizing this waste could not only benefit the environment but also promote sustainable development and circular economy management. In its program statement, the European Union has committed to support the use of sorted polymeric waste. This study reviews recent attempts to recycle this waste and convert it by alternative technologies into fine, nano-, and microscale fibers using electrospinning, blowing, melt, or centrifugal spinning. This review provides information regarding applying reprocessed fine fibers in various areas and a concrete approach to mitigate the threat of pollution caused by polymeric materials.

Zobrazit více v PubMed

Hopewell J., Dvorak R., Kosior E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009;27:2115–2126. doi: 10.1098/rstb.2008.0311. PubMed DOI PMC

Singhal R., Ishita I., Sow P.K. Integrated polymer dissolution and solution blow spinning coupled with solvent recovery for expanded polystyrene recycling. J. Polym. Environ. 2019;27:1240–1251. doi: 10.1007/s10924-019-01427-w. DOI

Plastics Europe . Plastics—The Facts 2019: An. Analysis of European Plastic Production, Demand and Waste Data for 2018. Association of Plastics Manufacturers; Brussels, Belgium: 2019. [(accessed on 10 July 2021)]. Available online: https://www.plasticseurope.org/en/resources/market-data.

European Commission Circular Economy. [(accessed on 10 July 2021)]; Available online: https://ec.europa.eu/growth/industry/sustainability/circular-economy_sk.

European Commision Towards a Circular Economy: A Zero Waste Programme for Europe. [(accessed on 10 July 2021)]; Available online: http://www.sbagency.sk/en/the-future-belongs-to-the-circular-economy#.XzmF_egzZPY.

Faraca G., Astrup T. Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Manag. 2019;95:388–398. doi: 10.1016/j.wasman.2019.06.038. PubMed DOI

Ragaert K., Delva L., Geem K.V. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017;69:24–58. doi: 10.1016/j.wasman.2017.07.044. PubMed DOI

Clark J.H., Farmer T.J., Herrero-Davila L., Sherwood J. Circular economy design considerations for research and process development in the chemical sciences. Green Chem. 2016;18:3914–3934. doi: 10.1039/C6GC00501B. DOI

Brachet P., Høydal L.T., Hinrichsen E.L., Melum F. Modification of mechanical properties of recycled polypropylene from post-consumer containers. Waste Manag. 2008;28:2456–2464. doi: 10.1016/j.wasman.2007.10.021. PubMed DOI

Awoyera P.O., Adesina A. Case study. Plastic wastes to construction products: Status limitations and future perspective. Case Stud. Constr. Mater. 2020;12:e00330. doi: 10.1016/j.cscm.2020.e00330. DOI

Grigore M.E. Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling. 2017;2:24. doi: 10.3390/recycling2040024. DOI

Shabunin A.S., Yudin V.E., Dobrovolskaya I.P., Zinovyev E.V., Zubov V., Ivankova E.M., Morganti P. Composite wound dressing based on chitin/chitosan nanofibers: Processing and biomedical applications. Cosmetics. 2019;6:16. doi: 10.3390/cosmetics6010016. DOI

Yin S., Tuladhar R., Shi F., Shanks R.A., Combe M., Collister T. Mechanical reprocessing of polyolefin waste: A review. Polym. Eng. Sci. 2015;55:2899–2909. doi: 10.1002/pen.24182. DOI

Zander N.E., Sweetser D., Cole D.P., Gillan M. Formation of Nanofibers from Pure and Mixed Waste Streams Using Electrospinning. Ind. Eng. Chem. Res. 2015;54:9057–9063. doi: 10.1021/acs.iecr.5b02279. DOI

Chinchillas-Chinchillas M.J., Gaxiola A., Alvarado-Beltran C.G., Orozco-Carmona V.M., Pellegrini-Cervantes M.J., Rodríguez-Rodríguez M., Castro-Beltran A. A new application of recycled-PET/PAN composite nanofibers to cemente based materials. J. Clean. Prod. 2020;252:119827. doi: 10.1016/j.jclepro.2019.119827. DOI

Niu H., Zhou H., Wang H. Electrospinning: An advanced nanofiber production technology. In: Fang J., Lin T., editors. Energy Harvesting Properties of Electrospun Nanofibers. IOP Publishing; Bristol, UK: 2019. pp. 1–44. DOI

Lunstroot K., Ziernicki D., Vanden Driessche T. A study of black fleece garments: Can fleece fibres be recognized and how variable are they? Sci. Justice. 2016;56:157–164. doi: 10.1016/j.scijus.2015.12.006. PubMed DOI

Cook S. If We Lose Our Snowcapped Mountains, How Will We Shered? [(accessed on 10 July 2020)]; Available online: https://www.nationalgeographic.com/science/2020/02/partner-content-evolution-of-recycled-fabrics/

Statement on the Seventh Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Coronavirus Deseade (COVID-19) Pandemic. [(accessed on 20 June 2020)]; Available online: https://www.who.int/news/item/19-04-2021-statement-on-the-seventh-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic.

Opálková Šišková A., Frajová J., Nosko M. Recycling of poly(ethylene terephthalate) by electrospinning to enhanced the filtration efficiency. Mat. Lett. 2020;278:128426. doi: 10.1016/j.matlet.2020.128426. DOI

Gomes S.S., Oliveira A.M., Maia A., Zanin M.H.A. Recycled PET nanofibers produced by electrospinning technique. Adv. Mater. Tech. Connect. Briefs. 2020;1:335–338. ISBN 978-0-9975-1170-3M.

Munir M.M., Nuryantini A.Y., skandar, Suciati T., Khairurrijal K. Mass production of stacked Styrofoam nanofibers using a multinozzle and drum collector electrospinning system. Adv. Mater. Res. 2014;896:20–23. doi: 10.4028/www.scientific.net/AMR.896.20. DOI

Tshifularo C.A., Patnaik A. Recycling of plastics into textile raw materials and products. In: Nayak N., editor. Sustainable Technologies for Fashion and Textiles. Woodhead Publishing; Sawston, UK: 2020. pp. 311–326. (Woodhead Publishing Series in Textiles). DOI

Eriksen M.K., Christiansen J.D., Daugaard A.E., Astrup T.F. Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling. Waste Manag. 2019;96:75–85. doi: 10.1016/j.wasman.2019.07.005. PubMed DOI

Jiang Q., Izumi T., Yoshida H., Dilixiati D., Leeabai N., Suzuki S., Takahashi F. The effect of recycling bin design on PET bottle collection performance. Waste Manag. 2019;95:32–42. doi: 10.1016/j.wasman.2019.05.054. PubMed DOI

Ryberg M. , Laurent, A., Hauschild, M. Mapping of Global Plastics Value Chain and Plastics Losses to the Environment (with a Particular Focus on Marine Environment) United Nations Environment Programme; Nairobi, Kenya: 2018. [(accessed on 10 July 2020)]. Available online: http://wedocs.unep.org/bitstream/handle/20.500.11822/26745/mapping_plastics.pdf.

Hanna E.G. Recycling of waste mixed plastics blend (PE/PP) J. Eng. Sci. Technol. Rev. 2019;12:87–92. doi: 10.25103/jestr.122.12. DOI

Antonakou E.V., Achilias D.S. Recent advances in polycarbonate recycling: A review of degradation methods and their mechanisms. Waste Biomass Valori. 2013;4:9–21. doi: 10.1007/s12649-012-9159-x. DOI

Le H.H., Carlson E.M., Chua J.P., Belcher S.M. Bisphenol A is releasing from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol. Lett. 2008;176:149–156. doi: 10.1016/j.toxlet.2007.11.001. PubMed DOI PMC

Zulfi A., Rezeki Y.A., Edikresnha D., Munir M.M., Khairurrijal K. Synthesis of fibers and particles from polyvinyl chloride (PVC) waste using electrospinning. IOP Conf. Ser. Mater. Sci. Eng. 2018;367:012014. doi: 10.1088/1757-899X/367/1/012014. DOI

Liu Z., Liu W., Walker T.R., Adams M., Zhao J. How does the global plastic waste trade contribute to environmental benefits: Implication for reductions of greenhouse gas emissions? J. Environ. Manag. 2021;287:112283. doi: 10.1016/j.jenvman.2021.112283. PubMed DOI

Piemonte V., Sabatini S., Gironi F. Chemical recycling of PLA: A great opportunity towards the sustainable development. J. Polym. Environ. 2013;21:640–647. doi: 10.1007/s10924-013-0608-9. DOI

Åkesson D., Vrignaud T., Tissot C., Skrifvars M. Mechanical recycling of PLA filled with a high level of cellulose fibers. J. Polym. Environ. 2016;24:185–195. doi: 10.1007/s10924-016-0760-0. DOI

Tavanaie M.A. Melt recycling of poly(lactic acid) plastic wastes to produce biodegradable fibers. Polym. Plast. Technol. Eng. 2014;53:742–751. doi: 10.1080/03602559.2013.877931. DOI

Welker C.M., Balasubramanian V.K., Petti C., Rai K.M., DeBolt S., Mendu V. Engineering Plant Biomass Lignin Content and Composition for Biofuels and Bioproducts. Energies. 2015;8:7654–7676. doi: 10.3390/en8087654. DOI

Wang M., Wang F. Catalytic scissoring of lignin into aryl monomers. Adv. Mater. 2019;31:1901866. doi: 10.1002/adma.201901866. PubMed DOI

Yang H., Yu B., Xu X., Bourbigot S., Wang H., Song P. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chem. 2020;22:2129–2161. doi: 10.1039/D0GC00449A. DOI

Olsson C., Westman G. Direct Dissolution of Cellulose: Background, Means and Applications. In: Van de Ven T., Godbout L., editors. Cellulose, Fundamental Aspects. IntechOpen; London, UK: 2013. pp. 143–178.

Kakoria A., Sinha-Ray S. A review on biopolymer-based fibers via electrospinning and solution blowing and their applications. Fibers. 2018;6:45. doi: 10.3390/fib6030045. DOI

Chen X., Burger C., Wan F., Zhang J., Rong L., Hsiao B.S., Chu B., Cai J., Zhang L. Structure study of cellulose fibers wet-spun from environmentally friendly NaOH/Urea aqueous solutions. Biomacromolecules. 2007;8:1918–1926. doi: 10.1021/bm061186i. PubMed DOI

Ruan D., Zhang L., Zhou J., Jin H., Chen H. Structure and Properties of Novel Fibers Spun from Cellulose in NaOH/Thiourea Aqueous Solution. Macromol. Biosci. 2004;4:1105–1112. doi: 10.1002/mabi.200400120. PubMed DOI

Chen X., Burger C., Fang D., Ruan D., Zhang L., Hsiao B.S., Chu B. X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/Thiourea aqueous aolutions. Polymer. 2006;47:2839–2848. doi: 10.1016/j.polymer.2006.02.044. DOI

Heinze T., Liebert T. Unconventional methods in cellulose functionalization. Prog. Polym. Sci. 2001;26:1689–1762. doi: 10.1016/S0079-6700(01)00022-3. DOI

Fischer S., Leipner H., Thümmler K., Brendler E., Peters J. Inorganic molten salts as solvents for cellulose. Cellulose. 2003;10:227–236. doi: 10.1023/A:1025128028462. DOI

Striegel A. Theory and aplications of DMAC/LiCl in the analysis of polysaccharides. Carbohydr. Polym. 1997;34:267–274. doi: 10.1016/S0144-8617(97)00101-X. DOI

Austin P.R., Brine C.J., Castle J.E., Zikakis J.P. Chitin: New Facets of Research. Science. 1981;212:749–753. doi: 10.1126/science.7221561. PubMed DOI

McCormick C.L., Callais P.A. Derivatization of cellulose in lithium chloride and N-N-Dimethylacetamide solutions. Polymer. 1987;28:2317–2323. doi: 10.1016/0032-3861(87)90393-4. DOI

Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D. Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 2002;124:4974–4975. doi: 10.1021/ja025790m. PubMed DOI

Hemamalini T., Karunakaran S.A., Siva Elango M.K., Senthil Ram T., Giri Dev V.R. Regeneration of cellulose acetate nanofibrous mat from discarded cigarette butts. Ind. J. Fibre Tex. Res. 2019;44:248–252.

Dashtbani R., Afra E. Producing cellulose nanofiber from cotton wastes by electrospinning method. Int. J. Nano Dimens. 2015;6:1–9. doi: 10.7508/IJND.2015.06.001. DOI

Jedvert K., Idström A., Köhnke T., Alkhagen M. Cellulosic nonwovens produced via efficient solution blowing technique. J. Appl. Polym. Sci. 2020;137:48339. doi: 10.1002/app.48339. DOI

Whetten R.W., MacKay J.J., Sederoff R.R. Recent advances in understanding lignin biosynthesis. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 1998;49:585–609. doi: 10.1146/annurev.arplant.49.1.585. PubMed DOI

Calvo-Flores F.G., Dobado J.A. Lignin as Renewable Raw Material. Chem. Sus. Chem. 2010;3:1227–1235. doi: 10.1002/cssc.201000157. PubMed DOI

Laurichesse S., Averous L. Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci. 2014;39:1266–1290. doi: 10.1016/j.progpolymsci.2013.11.004. DOI

Fang W., Yang S., Wang X.L., Yuan T.Q., Sun R.C. Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs) Green Chem. 2017;19:1794. doi: 10.1039/C6GC03206K. DOI

Barhoum A., Pal K., Rahier H., Uludag H., Kim I.S., Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today. 2019;17:1–35. doi: 10.1016/j.apmt.2019.06.015. DOI

Mather R.R., Wardman R.H. The Chemistry of Textile Fibres. The Royal Society of Chemistry, Thomas Graham House; Cambridge, UK: 2011.

Pillay V., Dott C., Choonara Y.E., Tyagi C., Tomar L., Kumar P., du Toit L.C., Ndesendo V.M.K. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J. Nanomater. 2013;22:789289. doi: 10.1155/2013/789289. DOI

Shin C., Chase G. Nanofibers from recycle waste expanded polystyrene using natural solvent. Polym. Bull. 2005;55:209–215. doi: 10.1007/s00289-005-0421-2. DOI

Sow P.K., Ishita I., Singhal R. Sustainable approach to recycle waste polystyrene to high-value submicron fibers using solution blow spinning and application towards oil-water separation. J. Environ. Chem. Eng. 2020;8:102786. doi: 10.1016/j.jece.2018.11.031. DOI

Mehdi M., Mahar F.K., Qureshi U.A., Khatri M., Khatri Z., Ahmed F., Kim I.S. Preparation of colored recycled polyethylene terephthalate nanofibers from waste bottles: Physicochemical studies. Adv. Polym. Technol. 2018;37:2820–2827. doi: 10.1002/adv.21954. DOI

Zander N.E., Gillan M., Sweetser D. Recycled PET nanofibers for water filtration applications. Materials. 2016;9:247. doi: 10.3390/ma9040247. PubMed DOI PMC

Bhat G., Narayanan V., Wadsworth L., Dever M. Conversion of recycled polymers fibers into melt-blown nonwovens. Polym. Plast. Technol. Eng. Polym. 1999;38:499–511. doi: 10.1080/03602559909351596. DOI

Tuladhar R., Yin S. Use of Recycled Plastics in Eco-Efficient Concrete. Woodhead Publishing Series in Civil and Structural Engineering; Sawston, UK: 2019. Production of recycled polypropylene (PP) fibers from industrial plastic waste through melt spinning process; pp. 70–84. DOI

Lee J.H., Lim K.S., Hahm W.G., Kim S.H. Properties of recycled and virgin poly(ethylene terephthalate) blend fibers. J. Appl. Polym. Sci. 2013;128:1250–1256. doi: 10.1002/app.38502. DOI

Gurudatt K., De P., Rakshit A.K., Bardhan M.K. Spinning fibers from poly(ethylene terephthalate) bottle-grade waste. J. Appl. Polym. Sci. 2003;90:3536–3545. doi: 10.1002/app.12969. DOI

Abbasi M., Mojtahedi M.R.M., Khosroshahi A.J. Effect of spinning speed on the structure and physical properties of filament yarns produced from used PET bottles. J. Appl. Polym. Sci. 2007;103:3972. doi: 10.1002/app.25369. DOI

Upasani P.S., Jain A.K., Save N., Agarwal U.S., Kelkar A.K. Chemical recycling of PET flakes into yarn. J. Appl. Polym. Sci. 2012;123:520. doi: 10.1002/app.34503. DOI

Zander N.E., Gillan M., Sweetser D. Composite fibers from recycled plastics using melt centrifugal spinning. Materials. 2017;10:1044. doi: 10.3390/ma10091044. PubMed DOI PMC

Kayaisang S., Saikrasun S., Amornsakchai T. Potential use of recycled PET in comparison with liquid crystalline polyester as a dual functional additive for enhancing heat stability and reinforcement for high density polyethylene composite fibres. J. Polym. Environ. 2013;21:191–206. doi: 10.1007/s10924-012-0446-1. DOI

Telli A., Ozdil N. Effect of recycled PET fibers on the performance properties of knitted fabrics. J. Eng. Fibr. Fabr. 2015;10:47–60. doi: 10.1177/155892501501000206. DOI

De Oliveira Santos R.P., Castro D.O., Ruvolo-Filho A.C., Frolini E. Processing and thermal properties of composite based on recycled PET, sisal fibers and renewable plasticizers. J. Appl. Polym. Sci. 2014;131:40386. doi: 10.1002/app.40386. DOI

Khan W.S., Asmatulu R., Davuluri S., Dandin V.K. Improving the economic values of the recycled plastic using nanotechnology associated studie. J. Mater. Sci. Technol. 2014;30:854–859. doi: 10.1016/j.jmst.2014.07.006. DOI

Mohammadkhani F., Montazer M., Latifi M. Microwave absorption characterization and wettability of magnetic nano iron oxide/recycled PET nanofibers web. J. Text. Inst. 2019;110:989–999. doi: 10.1080/00405000.2018.1559908. DOI

Chatterjee S., Saito T., Bhattacharya P. Lignin-Derived Carbon Fibers. In: Faruk O., Sain M., editors. Lignin in Polymer Composites. Elsevier Inc.; Amsterdam, The Netherlands: 2016. pp. 207–216.

Cayla A., Rault F., Giraud S., Salaün F., Fierro V., Celzard A. PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant Textile. Polymers. 2016;8:331. doi: 10.3390/polym8090331. PubMed DOI PMC

Haider A., Haider S., Kang I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018;11:1165–1188. doi: 10.1016/j.arabjc.2015.11.015. DOI

Bubakir M.M., Li H., Barhoum A., Yang W. Advances in melt electrospinning technique. In: Barhoum A., Bechelany M., Makhlouf A.H., editors. Handbook of Nanofibers. Springer Nature; Basingstoke, UK: 2018. pp. 1–32.

Haichao L., Li H., Bubakir M.M., Yang W., Barhoum A. Engineering nanofibers as electrode and membrane materials for batteries, supercapacitors, and fuel cells. In: Barhoum A., Bechelany M., Makhlouf A., editors. Handbook of Nanofibers. Springer International Publishing; New York, NY, USA: 2018. pp. 1–27. DOI

Bhardwaj N., Kundu S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010;28:325–347. doi: 10.1016/j.biotechadv.2010.01.004. PubMed DOI

Teo W.E., Inai R., Ramakrishna S. Technological advances in electrospinning of nanofibers. Sci. Technol. Adv. Mater. 2011;12:013002. doi: 10.1088/1468-6996/12/1/013002. PubMed DOI PMC

Liu Y., Li K., Mohideen M.M., Ramakrishna S. Melt Electrospinning: A green Method to Produce Superfine Fibers. Elsevier Inc.; Amsterdam, The Netherlands: 2019.

Esmaeili E., Deymeh F., Rounaghi S.A. Synthesis and characterization of the Electrospun fibers prepared from waste polymeric materials. Int. J. Nano Dimens. 2017;8:171–181. doi: 10.22034/IJND.2017.25087. DOI

Abbas J.A., Said I.A., Mohamed M.A., Yasin S.A., Ali Z.A., Ahmed I.H. Electrospining of polyethylene terephthalate (PET) nanofibers: Optimization study using taguchi design of experiment. IOP Conf. Series Mat. Sci. Eng. 2018;454:012130. doi: 10.1088/1757-899X/454/1/012130. DOI

Han S.O., Youk J.H., Min K.D., Kang Y.O., Park W. Electrosppinnin of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: Effect of solvent composition on the fiber diameter. Mat. Lett. 2008;62:759–762. doi: 10.1016/j.matlet.2007.06.059. DOI

Lallave M., Bedia J., Ruiz-Rosas R., Rodriguez-Mirasol J., Cordero T., Otero J.C., Marquez M., Barrero A., Loscertales I.G. Filled and hollow carbon nanofibers by coaxial electrospinning of alcell lignin without binder polymers. Adv. Mater. 2007;19:4292–4296. doi: 10.1002/adma.200700963. DOI

Naksuwan P., Komárek M., Salačová J., Militký J. The study of recycled poly(ethyeĺene terephthalate) nanofibers from PET bottle. Appl. Mech. Mat. 2016;848:3–6. doi: 10.4028/www.scientific.net/AMM.848.3. DOI

Zhuang X., Yang X., Shi L., Cheng B., Guan K., Kang W. Solution blowing of submicron-scale cellulose fibers. Carbohydr. Polym. 2012;90:982–987. doi: 10.1016/j.carbpol.2012.06.031. PubMed DOI

Daristotle J.L., Behrens A.M., Sandler A.D., Kofinas P. A review of the fundamental principles and applications of solution blow spinning. ACS Appl. Mater. Interfaces. 2016;8:34951–34963. doi: 10.1021/acsami.6b12994. PubMed DOI PMC

Kenry. Lim C.T. Nanofiber technology: Current status and emerging developments. Prog. Polym. Sci. 2017;70:1–17. doi: 10.1016/j.progpolymsci.2017.03.002. DOI

Tutak W., Sarkar S., Lin-Gibson S., Farooque T.M., Jyotsnendu G., Wang D., Kohn J., Bolikal D., Simon C.G., Jr. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds. Biomaterials. 2013;34:2389–2398. doi: 10.1016/j.biomaterials.2012.12.020. PubMed DOI

Fan X., Keynton R.S. Fabrication and characterization of biopolymer fibers for 3D oriented microvascular structures. J. Micromech. Microeng. 2019;29:083003. doi: 10.1088/1361-6439/ab2349. DOI

Zhang Z.M., Duan Y.S., Xu Q., Zhang B. A review on nanofiber fabrication with the effect of high-speed centrifugal force field. J. Eng. Fibers Fabr. 2019;14:1–11. doi: 10.1177/1558925019867517. DOI

Charuchinda A., Molloy R., Siripitayananon J., Molloya N., Sriyai M. Factors influencing the small-scale melt spinning of poly (ε-caprolactone) monofilament fibres. Polym. Int. 2003;52:1175–1181. doi: 10.1002/pi.1234. DOI

Jiang Z., Guo Z., Zhang Z., Qi Y., Pu C., Wang Q., Jia Z., Xiao C. Preparation and properties of bottle-recycled polyethylene terephthalate (PET) filaments. Tex. Res. J. 2018;89:1207–1214. doi: 10.1177/0040517518767146. DOI

Abbasi M., Mojtahedi M.R.M., Kotek R. Effect of melt spinning variables on the structure changes of recycled and bottle grade filament yarn PET. J. Text. Polym. 2018;6:67–75. doi: 10.1177/0040517520925859. DOI

Bishal H., Tavanaie M.A., Mahmudi A.G. Biodegradability modification of synthetic polyamide 6 fibers via in-situ melt blending with recycled poly(lactic) acid plastic food container flakes during the melt spinning process. Modares J. Biotechnol. 2018;9:69–78.

Tavanaie M.A., Mahmudi A. Green engineered polypropylene biodegradable fibers through blending with recycled poly(lactic) acid plastic waste. Polym. Plast. Technol. Eng. 2014;53:1506–1517. doi: 10.1080/03602559.2014.910524. DOI

Soekoco A.S., Noerat, Komalasari M., Kurniawan, Hananto A. Characterization of eco-friendly polyethylene fiber from plastic bag waste. AIP Conf. Proc. 2017;1868:020003. doi: 10.1063/1.4995089. DOI

Weitz R.T., Harnau L., Rauschenbach S., Burghard M., Kern K. Polymer nanofibers via nozzle-free centrifugal spinning. Nano Lett. 2008;8:1187–1191. doi: 10.1021/nl080124q. PubMed DOI

Zhang X., Lu Y. Centrifugal spinning: An alternative approach to fabricate nanofibers at high speed and low cost. Polym. Rev. 2014;54:677–701. doi: 10.1080/15583724.2014.935858. DOI

Vo P.P., Doan H.N., Kinashi K., Sakai W., Tsutsumi N., Huynh D.R. Centrifugally spun recycled PET Processing and characterization. Polymers. 2018;10:680. doi: 10.3390/polym10060680. PubMed DOI PMC

Saleem H., Trabzon L., Kilic A., Zaidi S.J. Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination. Desalination. 2020;478:114178. doi: 10.1016/j.desal.2019.114178. DOI

Dos Reis Paganotto G.F., Duarte de Barros G., Marques V.G., Takimi A.S. Production of recycled EPS fibers by centrifugal spinning. Rev. Matéria. 2021;26 doi: 10.1590/S1517-707620210002.1254. DOI

Kamrani H., Nosrati A. Fabrication of nanofiber filtration membranes using polyethylene terephthalate (PET): A review. J. Membr. Sci. Technol. 2018;8:1000183. doi: 10.4172/2155-9589.1000183. DOI

Rajabinejad H., Khajavi R., Rashidi A., Mansouri N., Yazdanshenas M.E. Recycling of used bottle grade poly ethyleneterephthalate to nanofibers by melt-electrospinning method. Int. J. Enviton. Res. 2009;3:663–670. doi: 10.22059/IJER.2010.82. DOI

Yasin S.A., Zeebaree S.Y.S., Zeebaree A.Y.S., Zebari O.I.H., Saeed I.A. The efficient removal of methylene blue dye using CuO/PET nanocomposite in aqueous solutions. Catalysts. 2021;11:241. doi: 10.3390/catal11020241. DOI

Grumezescu A.M., Stoica A.E., Balcescu M.S.D., Chircov C., Gharbia S., Balta C., Rosu M., Herman H., Holban A.M., Ficai A., et al. Electrospun polyethylene terephthalate nanofibers loaded with silver nanoparticles: Novel approach in anti-infective therapy. J. Clin. Med. 2019;8:1039. doi: 10.3390/jcm8071039. PubMed DOI PMC

Rajak A., Hapidin D.A., Iskandar F., Munir M., Khairurrijal K. Controlled morphology of electrospun nanofibers from waste expanded polystyrene for aerosol filtration. Nanotechnology. 2019;30:425602. doi: 10.1088/1361-6528/ab2e3b. PubMed DOI

Liu C., Hsu P.C., Lee H.W., Ye M., Zheng G., Liu N., Li W., Cui Y. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 2015;6:6205. doi: 10.1038/ncomms7205. PubMed DOI

Zhang R., Liu C., Hsu P.C., Zhang C.F., Liu N., Zhang J.S., Lee H.R., Lu Y.Y., Qiu Y.C., Chu S., et al. Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett. 2016;16:3642. doi: 10.1021/acs.nanolett.6b00771. PubMed DOI

Shin C., Chase G.G., Reneker D.H. Recycled expanded polystyrene nanofibers applied in filter media. Colloids Surf. A Physicochem. Eng. Asp. 2005;262:211–215. doi: 10.1016/j.colsurfa.2005.04.034. DOI

Shin C. Filtration application from recycled expanded polystyrene. J. Colloid Interf. Sci. 2006;302:267–271. doi: 10.1016/j.jcis.2006.05.058. PubMed DOI

Ezzatzedeh E., Langroudi M., Sheshdeh F.J. Synthesis of magnetic iron-oxide nanofiber composite using electrospinning: An absorbent for removal of nitrate from aqueous solution. J. Appl. Chem. Res. 2017;11:46–59.

Pulido B.A., Habboub O.S., Aristizabal S.L., Szekely G., Nunes S.P. Recycled poly (ethylene terephthalate) for high temperature solvent resistant membranes. ACS Appl. Polym. Mat. 2019;1:2379–2387. doi: 10.1021/acsapm.9b00493. DOI

Strain I.N., Wu Q., Pourrahimi A.M., Hedenquvist M.S., Olsson R.T., Andersson R.L. Electrospinning of recycled PET to generate tough mesomorphic fibre membranes for smoke filtration. J. Mat. Chem. A. 2015;3:1632–1640. doi: 10.1039/C4TA06191H. DOI

Opálková Šišková A., Mosnáčková K., Hrůza J., Frajová J., Opálek A., Bučková M., Kozics K., Peer P., Eckstein Andicsová A. Electrospun poly(ethylene terephthalate/silk fibroin composite for filtration application. Polymers. 2021;13:2499. doi: 10.3390/polym13152499. PubMed DOI PMC

Bonfim D.P.F., Cruz F.G.S., Bretas R.E.S., Guerra V.G., Aguiar M.L. A sstainable recycling alternative: Electrospun PET-membranes for air nanofiltration. Polymers. 2021;13:1166. doi: 10.3390/polym13071166. PubMed DOI PMC

Attia A.A.M., Abas K.M., Nada A.A.A., Shouman M.A.H., Opálková Šišková A., Mosnáček J. Fabrication, modification, and characterization of lignin-based electrospun fibers ferived from distinctive biomass sources. Polymers. 2021;13:2277. doi: 10.3390/polym13142277. PubMed DOI PMC

Böhm R., Thieme M., Wohlfahrt D., Wolz D.S., Richter B., Jäger H. Reinforcement systems for carbon concrete composites based on low-cost carbon fibers. Fibers. 2018;6:56. doi: 10.3390/fib6030056. DOI

Rajak A., Munir M.M., Abdullah M., Khairurrijal K. Photocatalytic activities of Electrospun TiO2/Styrofoam composite nanofiber membrane in degradation of waste water. Mater. Sci. Forum. 2015;827:7–12. doi: 10.4028/www.scientific.net/MSF.827.7. DOI

Datsyuk V., Trotsenko S., Peikert K., Hoeflich K., Wedel N., Allar C., Sick T., Deinhart V., Reich S., Krcmar W. Polystyrene nanofibers for nonwoven porous building insulation materials. Eng. Rep. 2019;1:e12037. doi: 10.1002/eng2.12037. DOI

Textiles in Europe’s Circular Economy. [(accessed on 4 August 2021)];2019 Available online: https://www.eea.europa.eu/publications/textiles-in-europes-circular-economy.

Lebreton L., Andrady A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019;5:6. doi: 10.1057/s41599-018-0212-7. DOI

Shanks R. 5-Recycled synthetic polymer fibers in composites. In: Baillie C., Jayasinghe R., editors. Woodhead Publishing Series in Composites Science and Engineering, Green Composites. 2nd ed. Woodhead Publishing; Sawston, UK: 2017. pp. 73–93. DOI

Oliveux G., Dandy L.O., Leeke G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015;72:61–99. doi: 10.1016/j.pmatsci.2015.01.004. DOI

Muzzy J. Composite products from post-consumer carpet. In: Wang Y., editor. Recycling in Textiles. Woodhead Publishing; Cambridge, UK: 2006. pp. 203–212.

Hollaway L.C. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr. Build. Mater. 2010;24:2419. doi: 10.1016/j.conbuildmat.2010.04.062. DOI

Wiliński D., Łukowski P., Rokicki G. Application of fibres from recycled PET bottles for concrete reinforcement. J. Build. Chem. 2016;1:1–9. doi: 10.1016/j.compstruct.2012.09.019. DOI

Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. [(accessed on 3 August 2021)]; Available online: https://eur-lex.europa.eu/eli/dir/2008/98/2018-07-05.

Ritchie H., Roser M. Plastic Pollution. [(accessed on 3 August 2020)];2018 Available online: https://ourworldindata.org/plastic-pollution.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Reuse of Textile Waste to Production of the Fibrous Antibacterial Membrane with Filtration Potential

. 2021 Dec 24 ; 12 (1) : . [epub] 20211224

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...