Modified Nanofibrous Filters with Durable Antibacterial Properties
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000843
Hybrid Materials for Hierarchical Structures, Operational Programme Research, Development and Education, European Structural and Investment Funds
PubMed
33652616
PubMed Central
PMC7956445
DOI
10.3390/molecules26051255
PII: molecules26051255
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial properties, copper oxide, electrospinning, filtration, microparticles, nanofibers, nanoparticles, polyurethane,
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- bakteriální infekce farmakoterapie mikrobiologie patologie MeSH
- lidé MeSH
- měď chemie MeSH
- membrány umělé MeSH
- nanočástice chemie MeSH
- nanovlákna chemie MeSH
- polyurethany chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- cuprous oxide MeSH Prohlížeč
- měď MeSH
- membrány umělé MeSH
- polyurethany MeSH
The main aims of the research were to produce efficient nanofibrous filters with long-term antibacterial properties and to confirm the functionality of samples under real filtration conditions. A polyurethane solution was modified by micro- or nanoparticles of copper oxide in order to juxtapose the aggregation tendency of particles depending on their size. Modified solutions were electrospun by the Nanospider technique. The roller spinning electrode with a needle surface and static wire electrode were used for the production of functionalized nanofibers. The antibacterial properties of the modified nanofibrous layers were studied under simulated conditions of water and air filtration. Particular attention was paid to the fixation mechanism of modifiers in the structure of filters. It was determined that the rotating electrode with the needle surface is more efficient for the spinning of composite solutions due to the continuous mixing and the avoidance of particle precipitation at the bottom of the bath with modified polyurethane. Moreover, it was possible to state that microparticles of copper oxide are more appropriate antimicrobial additives due to their weaker aggregation tendency but stronger fixation in the fibrous structure than nanoparticles. From the results, it is possible to conclude that nanofibers with well-studied durable antibacterial properties may be recommended as excellent materials for water and air filtration applications.
Zobrazit více v PubMed
Fang J., Wang X., Lin T. Functional Applications of Electrospun Nanofibers. Nanofibers Prod. Prop. Funct. Appl. 2011;14:287–302.
Graham K., Ouyang M., Raether T., Grafe T., Mcdonald B., Knauf P. Polymeric Nanofibers in Air Filtration Applications; Proceedings of the 15th Annual Technical Conference & Expo of the American Filtration & Separations Society; Galveston, TX, USA. 9 April 2002; pp. 9–12.
Pant H.R., Kim H.J., Joshi M.K., Pant B., Park C.H., Kim J.I., Hui K.S., Kim C.S. One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification. J. Hazard. Mater. 2014;264:25–33. doi: 10.1016/j.jhazmat.2013.10.066. PubMed DOI
Liao Y., Loh C.H., Tian M., Wang R., Fane A.G. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog. Polym. Sci. 2018;77:69–94. doi: 10.1016/j.progpolymsci.2017.10.003. DOI
Homaeigohar S., Elbahri M. Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials. 2014;7:1017–1045. doi: 10.3390/ma7021017. PubMed DOI PMC
Fahimirad S., Fahimirad Z., Sillanpää M. Efficient removal of water bacteria and viruses using electrospun nanofibers. Sci. Total Environ. 2021;751:141673. doi: 10.1016/j.scitotenv.2020.141673. PubMed DOI PMC
Guo L.L., Liu Y.B., Yao J.B. A Review on Existing Tecgnology of Electrospinning at Large Scale; Proceedings of the 2010 International Conference on Information Technology and Scientific Management; Tianjin, China. 20–21 December 2010; pp. 279–282.
Forward K.M., Rutledge G.C. Free surface electrospinning from a wire electrode. Chem. Eng. J. 2012;183:492–503. doi: 10.1016/j.cej.2011.12.045. DOI
Kim I.G., Lee J.H., Unnithan A.R., Park C.H., Kim C.S. A comprehensive electric field analysis of cylinder-type multi-nozzle electrospinning system for mass production of nanofibers. J. Ind. Eng. Chem. 2015;31:251–256. doi: 10.1016/j.jiec.2015.06.033. DOI
Yao L.R., Song X.M., Zhang G.Y., Xu S.Q., Jiang Y.Q., Cheng D.H., Lu Y.H. Preparation of Ag/HBP/PAN Nanofiber Web and Its Antimicrobial and Filtration Property. J. Nanomater. 2016;2016:4515769. doi: 10.1155/2016/4515769. DOI
Khayet M. Polymeric Nano-Fibers and Modified Nano-Fibers Assembly in 3D Network for Different Potential Applications. J. Mater. Sci. Nanotechnol. 2013;1:e104. doi: 10.15744/2348-9812.1.e104. DOI
Kendouli S., Khalfallah O., Sobti N., Bensouissi A., Avci A., Eskizeybek V., Achour S. Modification of cellulose acetate nanofibers with PVP/Ag addition. Mater. Sci. Semicond. Process. 2014;28:13–19. doi: 10.1016/j.mssp.2014.03.010. DOI
Khalil K.A., Fouad H., Elsarnagawy T., Almajhdi F.N. Preparation and Characterization of Electrospun PLGA / silver Composite Nanofibers for Biomedical Applications. Int. J. Electrochem. Sci. 2013;8:3483–3493.
Kostakova E., Meszaros L., Gregr J. Composite nanofibers produced by modified needleless electrospinning. Mater. Lett. 2009;63:2419–2422. doi: 10.1016/j.matlet.2009.08.014. DOI
Celebioglu A., Aytac Z., Umu O.C.O., Dana A., Tekinay T., Uyar T. One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers. Carbohydr. Polym. 2014;99:808–816. doi: 10.1016/j.carbpol.2013.08.097. PubMed DOI
Wang C., Lv J., Ren Y., Zhou Q., Chen J., Zhi T., Lu Z., Gao D., Ma Z., Jin L. Cotton fabric with plasma pretreatment and ZnO/Carboxymethyl chitosan composite finishing for durable UV resistance and antibacterial property. Carbohydr. Polym. 2016;138:106–113. doi: 10.1016/j.carbpol.2015.11.046. PubMed DOI
Nirmala R., Jeon K.S., Lim B.H., Navamathavan R., Kim H.Y. Preparation and characterization of copper oxide particles incorporated polyurethane composite nanofibers by electrospinning. Ceram. Int. 2013;39:9651–9658. doi: 10.1016/j.ceramint.2013.05.087. DOI
Sheikh F.A., Kanjwal M.A., Saran S., Chung W.J., Kim H. Polyurethane nanofibers containing copper nanoparticles as future materials. Appl. Surf. Sci. 2011;257:3020–3026. doi: 10.1016/j.apsusc.2010.10.110. DOI
Dizaj S.M., Lotfipour F., Barzegar-Jalali M., Zarrintan M.H., Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C. 2014;44:278–284. doi: 10.1016/j.msec.2014.08.031. PubMed DOI
Ahamed M., Alhadlaq H.A., Khan M.A.M., Karuppiah P., Al-Dhabi N.A. Synthesis, characterization and antimicrobial activity of copper oxide nanoparticles. J. Nanomater. 2014;2014:637858. doi: 10.1155/2014/637858. DOI
Chang Y., Zhang M., Xia L., Zhang J., Xing G. The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles. Materials. 2012;5:2850–2871. doi: 10.3390/ma5122850. DOI
Kango S., Kalia S., Celli A., Njuguna J., Habibi Y., Kumar R. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—A review. Prog. Polym. Sci. 2013;38:1232–1261. doi: 10.1016/j.progpolymsci.2013.02.003. DOI
Hashmi M., Ullah S., Kim I.S. Copper oxide (CuO) loaded polyacrylonitrile (PAN) nanofiber membranes for antimicrobial breath mask applications. Curr. Res. Biotechnol. 2019;1:1–10. doi: 10.1016/j.crbiot.2019.07.001. DOI
Shalaby T., Mahmoud O., Al-oufy A. Antibacterial Silver Embedded Nanofibers for Water Disinfection. Int. J. Mater. Sci. Appl. 2015;4:293–298. doi: 10.11648/j.ijmsa.20150405.13. DOI
Lala N.L., Ramaseshan R., Bojun L., Sundarrajan S., Barhate R.S., Ying-Jun L., Ramakrishna S. Fabrication of Nanofibers With Antimicrobial Functionality Used as Filters: Protection Against Bacterial Contaminants. Biotechnol. Bioeng. 2007;97:1357–1365. doi: 10.1002/bit.21351. PubMed DOI
Cengiz F., Jirsak O. The effect of salt on the roller electrospinning of polyurethane nanofibers. Fibers Polym. 2009;10:177–184. doi: 10.1007/s12221-009-0177-7. DOI
Chaudhary A., Gupta A., Mathur R.B., Dhakate S.R. Effective antimicrobial filter from electrospun polyacrylonitrile-silver composite nanofibers membrane for conducive environment. Adv. Mater. Lett. 2014;5:562–568. doi: 10.5185/amlett.2014.572. DOI
Felix Swamidoss V., Bangaru M., Nalathambi G., Sangeetha D., Selvam A.K. Silver-incorporated poly vinylidene fluoride nanofibers for bacterial filtration. Aerosol Sci. Technol. 2019;53:196–206. doi: 10.1080/02786826.2018.1554892. DOI
Hajipour M.J., Fromm K.M., Ashkarran A.A., de Aberasturi D.J., de Larramendi I.R., Rojo T., Serpooshan V., Parak W.J., Mahmoudi M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30:499–511. doi: 10.1016/j.tibtech.2012.06.004. PubMed DOI
Wu Y., Wu W., Zhao W., Lan X. Revealing the antibacterial mechanism of copper surfaces with controllable microstructures. Surf. Coat. Technol. 2020;395:125911. doi: 10.1016/j.surfcoat.2020.125911. DOI
Mai-Prochnow A., Clauson M., Hong J., Murphy A.B. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep. 2016;6:38610. doi: 10.1038/srep38610. PubMed DOI PMC
Mohraz M.H., Yu I.J., Beitollahi A., Dehghan S.F., Shin J.H., Golbabaei F. Assessment of the potential release of nanomaterials from electrospun nanofiber filter media. NanoImpact. 2020;19:100223. doi: 10.1016/j.impact.2020.100223. DOI