• This record comes from PubMed

Type IV pili interactions promote intercellular association and moderate swarming of Pseudomonas aeruginosa

. 2014 Dec 16 ; 111 (50) : 18013-8. [epub] 20141202

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
R01 GM095959 NIGMS NIH HHS - United States
UL1 TR000006 NCATS NIH HHS - United States
UL1 TR001108 NCATS NIH HHS - United States
1R01GM095959-01A1 NIGMS NIH HHS - United States

Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility. The role these appendages play when not facilitating motility or attachment, however, is unclear. Here we discern a passive intercellular role of TFP during flagellar-mediated swarming of P. aeruginosa that does not require TFP extension or retraction. We studied swarming at the cellular level using a combination of laboratory experiments and computational simulations to explain the resultant patterns of cells imaged from in vitro swarms. Namely, we used a computational model to simulate swarming and to probe for individual cell behavior that cannot currently be otherwise measured. Our simulations showed that TFP of swarming P. aeruginosa should be distributed all over the cell and that TFP-TFP interactions between cells should be a dominant mechanism that promotes cell-cell interaction, limits lone cell movement, and slows swarm expansion. This predicted physical mechanism involving TFP was confirmed in vitro using pairwise mixtures of strains with and without TFP where cells without TFP separate from cells with TFP. While TFP slow swarm expansion, we show in vitro that TFP help alter collective motion to avoid toxic compounds such as the antibiotic carbenicillin. Thus, TFP physically affect P. aeruginosa swarming by actively promoting cell-cell association and directional collective motion within motile groups to aid their survival.

See more in PubMed

Gaynes R, Edwards JR. National Nosocomial Infections Surveillance System Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis. 2005;41(6):848–854. PubMed

Köhler T, Curty LK, Barja F, van Delden C, Pechère JC. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol. 2000;182(21):5990–5996. PubMed PMC

Morris JD, et al. Imaging and analysis of Pseudomonas aeruginosa swarming and rhamnolipid production. Appl Environ Microbiol. 2011;77(23):8310–8317. PubMed PMC

Partridge JD, Harshey RM. Swarming: Flexible roaming plans. J Bacteriol. 2013;195(5):909–918. PubMed PMC

Wu Y, Kaiser AD, Jiang Y, Alber MS. Periodic reversal of direction allows Myxobacteria to swarm. Proc Natl Acad Sci USA. 2009;106(4):1222–1227. PubMed PMC

Czirók A, Ben-Jacob E, Cohen I, Vicsek T. Formation of complex bacterial colonies via self-generated vortices. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996;54(2):1791–1801. PubMed

Du H, et al. High density waves of the bacterium Pseudomonas aeruginosa in propagating swarms result in efficient colonization of surfaces. Biophys J. 2012;103(3):601–609. PubMed PMC

Romanczuk P, Couzin ID, Schimansky-Geier L. Collective motion due to individual escape and pursuit response. Phys Rev Lett. 2009;102(1):010602. PubMed

Pelling AE, et al. Self-organized and highly ordered domain structures within swarms of Myxococcus xanthus. Cell Motil Cytoskeleton. 2006;63(3):141–148. PubMed

Zhang HP, Be’er A, Florin E-L, Swinney HL. Collective motion and density fluctuations in bacterial colonies. Proc Natl Acad Sci USA. 2010;107(31):13626–13630. PubMed PMC

Darnton NC, Turner L, Rojevsky S, Berg HC. Dynamics of bacterial swarming. Biophys J. 2010;98(10):2082–2090. PubMed PMC

Kuchma SL, et al. BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol. 2007;189(22):8165–8178. PubMed PMC

Hickman JW, Harwood CS. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol. 2008;69(2):376–389. PubMed PMC

Huangyutitham V, Güvener ZT, Harwood CS. Subcellular clustering of the phosphorylated WspR response regulator protein stimulates its diguanylate cyclase activity. MBio. 2013;4(3):e00242-13. PubMed PMC

Burrows LL. Pseudomonas aeruginosa twitching motility: Type IV pili in action. Annu Rev Microbiol. 2012;66:493–520. PubMed

Conrad JC, et al. Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophys J. 2011;100(7):1608–1616. PubMed PMC

Gibiansky ML, et al. Bacteria use type IV pili to walk upright and detach from surfaces. Science. 2010;330(6001):197. PubMed

Caiazza NC, Shanks RMQ, O’Toole GA. Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol. 2005;187(21):7351–7361. PubMed PMC

Shrout JD, et al. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol. 2006;62(5):1264–1277. PubMed

Be’er A, Strain SK, Hernández RA, Ben-Jacob E, Florin E-L. Periodic reversals in Paenibacillus dendritiformis swarming. J Bacteriol. 2013;195(12):2709–2717. PubMed PMC

Morgenstein RM, Szostek B, Rather PN. Regulation of gene expression during swarmer cell differentiation in Proteus mirabilis. FEMS Microbiol Rev. 2010;34(5):753–763. PubMed

Gode-Potratz CJ, Kustusch RJ, Breheny PJ, Weiss DS, McCarter LL. Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Mol Microbiol. 2011;79(1):240–263. PubMed PMC

Deforet M, van Ditmarsch D, Carmona-Fontaine C, Xavier JB. Hyperswarming adaptations in a bacterium improve collective motility without enhancing single cell motility. Soft Matter. 2014;10(14):2405–2413. PubMed PMC

O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 1998;30(2):295–304. PubMed

Bucior I, Pielage JF, Engel JN. Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS Pathog. 2012;8(4):e1002616. PubMed PMC

Kuchma SL, Griffin EF, O’Toole GA. Minor pilins of the type IV pilus system participate in the negative regulation of swarming motility. J Bacteriol. 2012;194(19):5388–5403. PubMed PMC

Kuchma SL, et al. Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa: The pilY1 gene and its impact on surface-associated behaviors. J Bacteriol. 2010;192(12):2950–2964. PubMed PMC

Yeung ATY, et al. Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of transcriptional regulators, including MetR. J Bacteriol. 2009;191(18):5592–5602. PubMed PMC

Henrichsen J. Bacterial surface translocation: A survey and a classification. Bacteriol Rev. 1972;36(4):478–503. PubMed PMC

Huang R, et al. Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nat Phys. 2011;7(7):576–580.

Dhar P, et al. Autonomously moving nanorods at a viscous interface. Nano Lett. 2006;6(1):66–72. PubMed

Rafaï S, Jibuti L, Peyla P. Effective viscosity of microswimmer suspensions. Phys Rev Lett. 2010;104(9):098102. PubMed

Bernier SP, Ha D-G, Khan W, Merritt JH, O’Toole GA. Modulation of Pseudomonas aeruginosa surface-associated group behaviors by individual amino acids through c-di-GMP signaling. Res Microbiol. 2011;162(7):680–688. PubMed PMC

Lai S, Tremblay J, Déziel E. Swarming motility: A multicellular behaviour conferring antimicrobial resistance. Environ Microbiol. 2009;11(1):126–136. PubMed

Klausen M, et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol. 2003;48(6):1511–1524. PubMed

Klausen M, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol. 2003;50(1):61–68. PubMed

Barken KB, et al. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol. 2008;10(9):2331–2343. PubMed

Skerker JM, Berg HC. Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci USA. 2001;98(12):6901–6904. PubMed PMC

Chiang P, et al. Functional role of conserved residues in the characteristic secretion NTPase motifs of the Pseudomonas aeruginosa type IV pilus motor proteins PilB, PilT and PilU. Microbiology. 2008;154(Pt 1):114–126. PubMed

Jude BA, Taylor RK. The physical basis of type 4 pilus-mediated microcolony formation by Vibrio cholerae O1. J Struct Biol. 2011;175(1):1–9. PubMed PMC

Caiazza NC, Merritt JH, Brothers KM, O’Toole GA. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol. 2007;189(9):3603–3612. PubMed PMC

van Ditmarsch D, et al. Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria. Cell Reports. 2013;4(4):697–708. PubMed PMC

Jass J, et al. Physical properties of Escherichia coli P pili measured by optical tweezers. Biophys J. 2004;87(6):4271–4283. PubMed PMC

Andersson M, Axner O, Almqvist F, Uhlin BE, Fällman E. Physical properties of biopolymers assessed by optical tweezers: Analysis of folding and refolding of bacterial pili. ChemPhysChem. 2008;9(2):221–235. PubMed

Touhami A, Jericho MH, Boyd JM, Beveridge TJ. Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa pili by using atomic force microscopy. J Bacteriol. 2006;188(2):370–377. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...