Poloxamer-Based Mixed Micelles Loaded with Thymol or Eugenol for Topical Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38854547
PubMed Central
PMC11154913
DOI
10.1021/acsomega.3c08917
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Poloxamers (P184, P188, and P407) have been investigated as the carrier system for eugenol or thymol. A synergic effect of mixed Poloxamers was proved by enhanced micellar parameters, with a lower critical micelle concentration (about 0.06 mM) and the highest surface adsorption of 9 × 10-7 mol m-2 for P188/P407. Dynamic light scattering revealed a decrease in micellar size after loading with biomolecules. Three mathematical models were applied to study the release kinetics, of which Korsmeyer-Peppas was the best fitted model. Higher relative release was observed for Poloxamer/eugenol samples, up to a value of 0.8. Poloxamer micelles with thymol were highly influential in bacterial reduction. Single P407/eugenol micelles proved to be bacteriostatic for up to 6 h for S. aureus or up to 48 h for E. coli. Mixed micelles were confirmed to have prolonged bacteriostatic activity for up to 72 h against both bacteria. This trend was also proven by the modified Gompertz model. An optimized P188/P407/eugenol micelle was successfully used as a model system for release study with a particle size of less than 30 nm and high encapsulation efficiency surpassing 90%. The developed mixed micelles were proved to have antibiofilm activity, and thus they provide an innovative approach for controlled release with potential in topical applications.
Zobrazit více v PubMed
Zhang Y.; Cai P.; Cheng G.; Zhang Y. A Brief Review Of Phenolic Compounds Identified From Plants: Their Extraction, Analysis, And Biological Activity. Natural Product Communications 2022, 17.10.1177/1934578X211069721. DOI
Ataei M.; Maghsoudi A. S.; Hassani S.. Eugenol. In Encyclopedia of Toxicology; Elsevier, 2024; pp 513–517.
Escobar A.; Pérez M.; Romanelli G.; Blustein G. Thymol bioactivity: A review focusing on practical applications. Arabian J. Chem. 2020, 13 (12), 9243–9269. 10.1016/j.arabjc.2020.11.009. DOI
Nagoor Meeran M. F.; Javed H.; Al Taee H.; Azimullah S.; Ojha S. K. Pharmacological Properties And Molecular Mechanisms Of Thymol: Prospects For Its Therapeutic Potential And Pharmaceutical Development. Frontiers in Pharmacology 2017, 8, 1–34. 10.3389/fphar.2017.00380. PubMed DOI PMC
Tima S.; Anuchapreeda S.; Ampasavate C.; Berkland C.; Okonogi S. Stable curcumin-loaded polymeric micellar formulation for enhancing cellular uptake and cytotoxicity to FLT3 overexpressing EoL-1 leukemic cells. Eur. J. Pharm. Biopharm. 2017, 114, 57–68. 10.1016/j.ejpb.2016.12.032. PubMed DOI
Sedlarikova J.; Janalikova M.; Peer P.; Pavlatkova L.; Minarik A.; Pleva P. Zein-Based Films Containing Monolaurin/Eugenol or Essential Oils with Potential for Bioactive Packaging Application. Int. J. Mol. Sci. 2022, 23 (1), 384.10.3390/ijms23010384. PubMed DOI PMC
Vashi K.; Pathak Y. Y.. Challenges In Targeting To Brain And Brain Tumors. In Nanocarriers for Drug-Targeting Brain Tumors; Elsevier, 2022; pp 51–68.
Das A. K.; Nanda P. K.; Bandyopadhyay S.; Banerjee R.; Biswas S.; McClements D. J. Application Of Nanoemulsion-Based Approaches For Improving The Quality And Safety Of Muscle Foods: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety 2020, 19 (5), 2677–2700. 10.1111/1541-4337.12604. PubMed DOI
Klojdová I.; Milota T.; Smetanová J.; Stathopoulos C. Encapsulation: A Strategy To Deliver Therapeutics And Bioactive Compounds?. Pharmaceuticals 2023, 16 (3), 362.10.3390/ph16030362. PubMed DOI PMC
Nugraha D. H.; Anggadiredja K.; Rachmawati H. Mini-Review Of Poloxamer As A Biocompatible Polymer. For Advanced Drug Delivery. Braz. J. Pharm. Sci. 2022, 58, e2112510.1590/s2175-97902022e21125. DOI
Cai X.; Zhai J.; Tran N.; Mulet X.; Drummond C. J.. Lipid Nanoparticle Steric Stabilization Roadmap. In Advances in Biomembranes and Lipid Self-Assembly; Elsevier, 2022; pp 41–75.
Di Spirito N. A.; Grizzuti N.; Lutz-Bueno V.; Urciuoli G.; Auriemma F.; Pasquino R. Pluronic F68 Micelles As Carriers For An Anti-Inflammatory Drug: A Rheological And Scattering Investigation. Langmuir 2024, 40, 1544–1554. 10.1021/acs.langmuir.3c03682. PubMed DOI PMC
Martins J.; Lucredi N.; Oliveira M.; Oliveira A.; Godoy M.; Sá-Nakanishi A.; Bracht L.; Cesar G.; Gonçalves R.; Vicentini V.; Caetano W.; Godoy V.; Bracht A.; Comar J. Poloxamers-based nanomicelles as delivery vehicles of hypericin for hepatic photodynamic therapy. Journal of Drug Delivery Science and Technology 2023, 79, 10404310.1016/j.jddst.2022.104043. DOI
Saffarionpour S. One-step preparation of double emulsions stabilized with amphiphilic and stimuli-responsive block copolymers and nanoparticles for nutraceuticals and drug delivery. J. Colloid Interface Sci. Open 2021, 3, 10002010.1016/j.jciso.2021.100020. DOI
Pleva P.; Bartošová L.; Máčalová D.; Zálešáková L.; Sedlaříková J.; Janalíková M. Biofilm Formation Reduction by Eugenol and Thymol on Biodegradable Food Packaging Material. Foods 2022, 11 (1), 2.10.3390/foods11010002. PubMed DOI PMC
Riess G. Micellization of block copolymers. Prog. Polym. Sci. 2003, 28 (7), 1107–1170. 10.1016/S0079-6700(03)00015-7. DOI
Ćirin D.; Krstonošić V.; Poša M. Properties of poloxamer 407 and polysorbate mixed micelles: Influence of polysorbate hydrophobic chain. Journal of Industrial and Engineering Chemistry 2017, 47, 194–201. 10.1016/j.jiec.2016.11.032. DOI
Darpentigny C.; Marcoux P.; Menneteau M.; Michel B.; Ricoul F.; Jean B.; Bras J.; Nonglaton G. Antimicrobial Cellulose Nanofibril Porous Materials Obtained by Supercritical Impregnation of Thymol. ACS Appl. Bio Mater. 2020, 3 (5), 2965–2975. 10.1021/acsabm.0c00033. PubMed DOI
Opálková Šišková A.; Pleva P.; Hru°za J.; Frajová J.; Sedlaříková J.; Peer P.; Kleinová A.; Janalíková M. Reuse of Textile Waste to Production of the Fibrous Antibacterial Membrane with Filtration Potential. Nanomaterials 2022, 12 (1), 50.10.3390/nano12010050. PubMed DOI PMC
Molecular probes: LIVE/DEAD BacLight Bacterial Viability Kits. ThermoFisher Scientific. https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets%2FLSG%2Fmanuals%2Fmp07007.pdf (accessed June 6, 2023).
Bąk A.; Pilarek M.; Podgórska W.; Markowska-Radomska A.; Hubacz R. Surface Properties Ofperfluorodecalin–Containing Liquid/Liquid Systems: The Influence Of Pluronic F-68 Dissolved In The Aqueous Phase. J. Fluorine Chem. 2018, 215, 36–43. 10.1016/j.jfluchem.2018.09.002. DOI
Prasanthan P.; Kishore N. Self-Assemblies Of Pluronic Micelles In Partitioning Of Anticancer Drugs And Effectiveness Of This System Towards Target Protein. RSC Adv. 2021, 11 (36), 22057–22069. 10.1039/D1RA03770F. PubMed DOI PMC
Singla P.; Garg S.; Bhatti R.; Peeters M.; Singh O.; Mahajan R. Solubilization of hydrophobic drugs clozapine and oxcarbazepine in the lower and higher molecular weight pluronic mixed micelles-a physicochemical, In vitro release and In vitro anti-oxidant study. J. Mol. Liq. 2020, 317, 11381610.1016/j.molliq.2020.113816. DOI
Patel D.; Patel D.; Ray D.; Kuperkar K.; Aswal V. K.; Bahadur P. Single And Mixed Pluronics Micelles With Solubilized Hydrophobic Additives: Underscoring The Aqueous Solution Demeanor And Micellar Transition. J. Mol. Liq. 2021, 343, 11762510.1016/j.molliq.2021.117625. DOI
Vivero-Lopez M.; Sparacino C.; Quelle-Regaldie A.; Sánchez L.; Candal E.; Barreiro-Iglesias A.; Huete-Toral F.; Carracedo G.; Otero A.; Concheiro A.; Alvarez-Lorenzo C. Pluronic/casein micelles for ophthalmic delivery of resveratrol: In vitro, ex vivo, and in vivo tests. Int. J. Pharm. 2022, 628, 12228110.1016/j.ijpharm.2022.122281. PubMed DOI
Tănase M. A.; Soare A. C.; Diţu L. M.; Nistor C. L.; Mihaescu C. I.; Gifu I. C.; Petcu C.; Cinteza L. O.. Influence Of The Hydrophobicity Of Pluronic Micelles Encapsulating Curcumin On The Membrane Permeability And Enhancement Of Photoinduced Antibacterial Activity. Pharmaceutics 2022, 14 ( (10), ). DOI: 2137.10.3390/pharmaceutics14102137. PubMed DOI PMC
Kaur J.; Singla P.; Kaur I. Labrasol mediated enhanced solubilization of natural hydrophobic drugs in Pluronic micelles: Physicochemical and in vitro release studies. J. Mol. Liq. 2022, 361, 11959610.1016/j.molliq.2022.119596. DOI
Piombino C.; Lange H.; Sabuzi F.; Galloni P.; Conte V.; Crestini C. Lignosulfonate Microcapsules for Delivery and Controlled Release of Thymol and Derivatives. Molecules 2020, 25 (4), 866.10.3390/molecules25040866. PubMed DOI PMC
Zhu Z.; Min T.; Zhang X.; Wen Y. Microencapsulation of Thymol in Poly(lactide-co-glycolide) (PLGA): Physical and Antibacterial Properties. Materials 2019, 12 (7), 113310.3390/ma12071133. PubMed DOI PMC
Sotoudegan F.; Amini M.; Faizi M.; Aboofazeli R. Nimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In-vitro and In-vivo Studies. Iran. J. Pharm. Res. 2016, 15 (4), 641–661. 10.22037/ijpr.2016.1922. PubMed DOI PMC
Garg S.; Peeters M.; Mahajan R.; Singla P. Loading of hydrophobic drug silymarin in pluronic and reverse pluronic mixed micelles. J. Drug Delivery Sci. Technol. 2022, 75, 10369910.1016/j.jddst.2022.103699. DOI
Russo J.; Fiegel J.; Brogden N. K. Rheological And Drug Delivery Characteristics Of Poloxamer-Based Diclofenac Sodium Formulations For Chronic Wound Site Analgesia. Pharmaceutics 2020, 12 (12), 121410.3390/pharmaceutics12121214. PubMed DOI PMC
Mod Razif M. R. F.; Chan S. Y.; Widodo R. T.; Chew Y.-L.; Hassan M.; Hisham S. A.; Rahman S. A.; Ming L. C.; Tan C. S.; Lee S.-K.; Liew K. B. Optimization Of A Luteolin-Loaded Tpgs/Poloxamer 407 Nanomicelle: The Effects Of Copolymers, Hydration Temperature And Duration, And Freezing Temperature On Encapsulation Efficiency, Particle Size and Solubility. Cancers 2023, 15 (14), 3741.10.3390/cancers15143741. PubMed DOI PMC
Bruschi M. L.Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing, 2015, ISBN 9780081001127.
Peng R.; Yang Z.; Gao Y.; Nie J.; Sun F. Synthesis and Properties of Cationic Photocurable Polymethylsiloxane/Eugenol-Modified Oxetane Monomers. Ind. Eng. Chem. Res. 2022, 61 (7), 2792–2798. 10.1021/acs.iecr.1c04020. DOI
Rathod N.; Kulawik P.; Ozogul F.; Regenstein J.; Ozogul Y. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends in Food Science & Technology 2021, 116, 733–748. 10.1016/j.tifs.2021.08.023. DOI
Zhou W.; Wang Z.; Mo H.; Zhao Y.; Li H.; Zhang H.; Hu L.; Zhou X. Thymol Mediates Bactericidal Activity against Staphylococcus aureus by Targeting an Aldo–Keto Reductase and Consequent Depletion of NADPH. J. Agric. Food Chem. 2019, 67 (30), 8382–8392. 10.1021/acs.jafc.9b03517. PubMed DOI
Ulloa P.; Guarda A.; Valenzuela X.; Rubilar J.; Galotto M. Modeling the release of antimicrobial agents (thymol and carvacrol) from two different encapsulation materials. Food Sci. Biotechnol. 2017, 26 (6), 1763–1772. 10.1007/s10068-017-0226-8. PubMed DOI PMC
Du E.; Gan L.; Li Z.; Wang W.; Liu D.; Guo Y. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol. 2015, 6 (1), 58.10.1186/s40104-015-0055-7. PubMed DOI PMC
Lambert R.; Skandamis P.; Coote P.; Nychas G. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91 (3), 453–462. 10.1046/j.1365-2672.2001.01428.x. PubMed DOI
Walsh S.; Maillard J.; Russell A.; Catrenich C.; Charbonneau D.; Bartolo R. Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. J. Appl. Microbiol. 2003, 94 (2), 240–247. 10.1046/j.1365-2672.2003.01825.x. PubMed DOI
Wang L.; Zhang Y. Eugenol Nanoemulsion Stabilized with Zein and Sodium Caseinate by Self-Assembly. J. Agric. Food Chem. 2017, 65 (14), 2990–2998. 10.1021/acs.jafc.7b00194. PubMed DOI
An S.; Ban E.; Chung I.; Cho Y.; Kim A. Antimicrobial Activities of Propolis in Poloxamer Based Topical Gels. Pharmaceutics 2021, 13 (12), 2021.10.3390/pharmaceutics13122021. PubMed DOI PMC
Namivandi-Zangeneh R.; Yang Y.; Xu S.; Wong E.; Boyer C. Antibiofilm Platform based on the Combination of Antimicrobial Polymers and Essential Oils. Biomacromolecules 2020, 21 (1), 262–272. 10.1021/acs.biomac.9b01278. PubMed DOI
Garcia-Salinas S.; Gámez E.; Landa G.; Arruebo M.; Irusta S.; Mendoza G. Antimicrobial Wound Dressings against Fluorescent and Methicillin-Sensitive Intracellular Pathogenic Bacteria. ACS Appl. Mater. Interfaces 2020, 12 (46), 51302–51313. 10.1021/acsami.0c17043. PubMed DOI