Encapsulation: A Strategy to Deliver Therapeutics and Bioactive Compounds?

. 2023 Feb 27 ; 16 (3) : . [epub] 20230227

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36986462

Grantová podpora
European Union's Horizon 2020 Research and Innovation Program under grant agreement No 952594 (ERA Chair project DRIFT-FOOD) European Union
Czech Health Research Council, project no. NU22-05-00402 Ministry of Health Czech Republic

There is a growing demand for efficient medical therapies without undesired side effects that limit their application. Targeted therapies such as deliveries of pharmacologically active compounds to a specific site of action in the human body are still a big challenge. Encapsulation is an effective tool for targeted deliveries of drugs and sensitive compounds. It has been exploited as a technique that can manage the required distribution, action and metabolism of encapsulated agents. Food supplements or functional foods containing encapsulated probiotics, vitamins, minerals or extracts are often part of therapies and currently also a consumption trend. For effective encapsulation, optimal manufacturing has to be ensured. Thus, there is a trend to develop new (or modify existing) encapsulation methods. The most-used encapsulation approaches are based on barriers made from (bio)polymers, liposomes, multiple emulsions, etc. In this paper, recent advances in the use of encapsulation in the fields of medicine, food supplements and functional foods are highlighted, with emphasis on its benefits within targeted and supportive treatments. We have focused on a comprehensive overview of encapsulation options in the field of medicine and functional preparations that complement them with their positive effects on human health.

Zobrazit více v PubMed

Rooke J. Advancing Health Equity With Lifestyle Medicine. Am. J. Lifestyle Med. 2018;12:472–475. doi: 10.1177/1559827618780680. PubMed DOI PMC

Morley J.E., Sanford A.M. Population Health and Aging. J. Nutr. Health Aging. 2019;23:683–686. doi: 10.1007/s12603-019-1227-5. PubMed DOI

Martirosyan D., von Brugger J., Bialow S. Functional Food Science: Differences and Similarities with Food Science. Funct. Foods Health Dis. 2021;11:408–430. doi: 10.31989/ffhd.v11i9.831. DOI

Allison D.B., Fontaine K.R., Manson J.A.E., Stevens J., VanItallie T.B. Annual Deaths Attributable to Obesity in the United States. JAMA. 1999;282:1530–1538. doi: 10.1001/jama.282.16.1530. PubMed DOI

WHO . Obesity and Overweight. WHO; Geneva, Switzerland: 2015. Fact Sheet No 311 January 2015.

Kita K., Dittrich C. Drug Delivery Vehicles with Improved Encapsulation Efficiency: Taking Advantage of Specific Drug-Carrier Interactions. Expert Opin. Drug Deliv. 2011;8:329–342. doi: 10.1517/17425247.2011.553216. PubMed DOI

Aruoma O.I., Hausman-Cohen S., Pizano J., Schmidt M.A., Minich D.M., Joffe Y., Brandhorst S., Evans S.J., Brady D.M. Personalized Nutrition: Translating the Science of NutriGenomics Into Practice: Proceedings From the 2018 American College of Nutrition Meeting. J. Am. Coll. Nutr. 2019;38:287–301. doi: 10.1080/07315724.2019.1582980. PubMed DOI

Martirosyan D., Kanya H., Nadalet C. Can Functional Foods Reduce the Risk of Disease? Advancement of Functional Food Definition and Steps to Create Functional Food Products. Funct. Foods Health Dis. 2021;11:213–221. doi: 10.31989/ffhd.v11i5.788. DOI

Otunola G.A., Martiryosan D. Choosing Suitable Food Vehicles for Functional Food Products. Funct. Foods Health Dis. 2021;11:44–55. doi: 10.31989/ffhd.v11i2.764. DOI

Reque P.M., Brandelli A. Encapsulation of Probiotics and Nutraceuticals: Applications in Functional Food Industry. Trends Food Sci. Technol. 2021;114:1–10. doi: 10.1016/j.tifs.2021.05.022. DOI

Chen L., Yokoyama W., Alves P., Tan Y., Pan J., Zhong F. Effect of Encapsulation on β-Carotene Absorption and Metabolism in Mice. Food Hydrocoll. 2021;121:107009. doi: 10.1016/j.foodhyd.2021.107009. DOI

Madene A., Jacquot M., Scher J., Desobry S. Flavour Encapsulation and Controlled Release—A Review. Int. J. Food Sci. Technol. 2006;41:1–21. doi: 10.1111/j.1365-2621.2005.00980.x. DOI

Speranza B., Petruzzi L., Bevilacqua A., Gallo M., Campaniello D., Sinigaglia M., Corbo M.R. Encapsulation of Active Compounds in Fruit and Vegetable Juice Processing: Current State and Perspectives. J. Food Sci. 2017;82:1291–1301. doi: 10.1111/1750-3841.13727. PubMed DOI

Abd El Kader A.E., Abu Hashish H.M. Encapsulation Techniques of Food Bioproduct. Egypt. J. Chem. 2020;63:1881–1909. doi: 10.21608/ejchem.2019.16269.1993. DOI

Bhujbal S.V., de Vos P., Niclou S.P. Drug and Cell Encapsulation: Alternative Delivery Options for the Treatment of Malignant Brain Tumors. Adv. Drug Deliv. Rev. 2014;67–68:142–153. doi: 10.1016/j.addr.2014.01.010. PubMed DOI

Li W., Lei X., Feng H., Li B., Kong J., Xing M. Layer-by-Layer Cell Encapsulation for Drug Delivery: The History, Technique Basis, and Applications. Pharmaceutics. 2022;14:297. doi: 10.3390/pharmaceutics14020297. PubMed DOI PMC

Risch S.J. Encapsulation: Overview of Uses and Techniques. ACS Publications; Washington, DC, USA: 1995.

Subirana M., Solá I., Garcia J.M., Gich I., Urrútia G. A Nursing Qualitative Systematic Review Required MEDLINE and CINAHL for Study Identification. J. Clin. Epidemiol. 2005;58:20–25. doi: 10.1016/j.jclinepi.2004.06.001. PubMed DOI

Gasparyan A.Y., Ayvazyan L., Blackmore H., Kitas G.D. Writing a Narrative Biomedical Review: Considerations for Authors, Peer Reviewers, and Editors. Rheumatol. Int. 2011;31:1409–1417. doi: 10.1007/s00296-011-1999-3. PubMed DOI

Tan M.X.L., Danquah M.K. Drug and Protein Encapsulation by Emulsification: Technology Enhancement Using Foam Formulations. Chem. Eng. Technol. 2012;35:618–626. doi: 10.1002/ceat.201100358. DOI

Martínez Rivas C.J., Tarhini M., Badri W., Miladi K., Greige-Gerges H., Nazari Q.A., Galindo Rodríguez S.A., Román R.Á., Fessi H., Elaissari A. Nanoprecipitation Process: From Encapsulation to Drug Delivery. Int. J. Pharm. 2017;532:66–81. doi: 10.1016/j.ijpharm.2017.08.064. PubMed DOI

Yadav N., Francis A.P., Priya V.V., Patil S., Mustaq S., Khan S.S., Alzahrani K.J., Banjer H.J., Mohan S.K., Mony U., et al. Polysaccharide-Drug Conjugates: A Tool for Enhanced Cancer Therapy. Polymers. 2022;14:950. doi: 10.3390/polym14050950. PubMed DOI PMC

Ge D., Zou L., Li C., Liu S., Li S., Sun S., Ding W. Simulation of the Osmosis-Based Drug Encapsulation in Erythrocytes. Eur. Biophys. J. 2018;47:261–270. doi: 10.1007/s00249-017-1255-1. PubMed DOI

Alhajamee M., Marai K., al Abbas S.M.N., Homayouni Tabrizi M. Co-Encapsulation of Curcumin and Tamoxifen in Lipid-Chitosan Hybrid Nanoparticles for Cancer Therapy. Mater. Technol. 2022;37:1183–1194. doi: 10.1080/10667857.2021.1926811. DOI

Kim M.R., Feng T., Zhang Q., Chan H.Y.E., Chau Y. Co-Encapsulation and Co-Delivery of Peptide Drugs via Polymeric Nanoparticles. Polymers. 2019;11:288. doi: 10.3390/polym11020288. PubMed DOI PMC

Gómez-Gaete C., Lorena Bustos G., Ricardo Godoy R., Katia Saez C., Pedro Novoa G., Marcos Fernández E., Tsapis N., Fattal E. Successful Factorial Design for the Optimization of Methylprednisolone Encapsulation in Biodegradable Nanoparticles. Drug Dev. Ind. Pharm. 2013;39:310–320. doi: 10.3109/03639045.2012.676049. PubMed DOI

Hunt N.C., Grover L.M. Cell Encapsulation Using Biopolymer Gels for Regenerative Medicine. Biotechnol. Lett. 2010;32:733–742. doi: 10.1007/s10529-010-0221-0. PubMed DOI

Ghidoni I., Chlapanidas T., Bucco M., Crovato F., Marazzi M., Vigo D., Torre M.L., Faustini M. Alginate Cell Encapsulation: New Advances in Reproduction and Cartilage Regenerative Medicine. Cytotechnology. 2008;58:49–56. doi: 10.1007/s10616-008-9161-0. PubMed DOI PMC

Gazda L.S., Vinerean H.V., Laramore M.A., Diehl C.H., Hall R.D., Rubin A.L., Smith B.H. Encapsulation of Porcine Islets Permits Extended Culture Time and Insulin Independence in Spontaneously Diabetic BB Rats. Cell Transplant. 2007;16:609–620. doi: 10.3727/000000007783465028. PubMed DOI

Lahooti S., Sefton M.V. Effect of an Immobilization Matrix and Capsule Membrane Permeability on the Viability of Encapsulated HEK Cells. Biomaterials. 2000;21:987–995. doi: 10.1016/S0142-9612(99)00251-3. PubMed DOI

Hortelano G., Al-Hendy A., Ofosu F.A., Chang P.L. Delivery of Human Factor IX in Mice by Encapsulated Recombinant Myoblasts: A Novel Approach towards Allogeneic Gene Therapy of Hemophilia B. Blood. 1996;87:5095–5103. doi: 10.1182/blood.V87.12.5095.bloodjournal87125095. PubMed DOI

Liu H.W., Ofosu F.A., Chang P.L. Expression of Human Factor IX by Microencapsulated Recombinant Fibroblasts. Hum. Gene Ther. 1993;4:291–301. doi: 10.1089/hum.1993.4.3-291. PubMed DOI

Cheema U., Nazhat S.N., Alp B., Foroughi F., Anandagoda N., Mudera V., Brown R.A. Fabricating Tissues: Analysis of Farming versus Engineering Strategies. Biotechnol. Bioprocess Eng. 2007;12:9–14. doi: 10.1007/BF02931797. DOI

Hunt N.C., Shelton R.M., Grover L.M. An Alginate Hydrogel Matrix for the Localised Delivery of a Fibroblast/Keratinocyte Co-Culture. Biotechnol. J. 2009;4:730–737. doi: 10.1002/biot.200800292. PubMed DOI

Bitar M., Salih V., Brown R.A., Nazhat S.N. Effect of Multiple Unconfined Compression on Cellular Dense Collagen Scaffolds for Bone Tissue Engineering. J. Mater. Sci. Mater. Med. 2007;18:237–244. doi: 10.1007/s10856-006-0685-1. PubMed DOI

Chawda P.J., Shi J., Xue S., Young Quek S. Co-Encapsulation of Bioactives for Food Applications. Food Qual. Saf. 2017;1:302–309. doi: 10.1093/fqsafe/fyx028. DOI

Ribeiro A.M., Estevinho B.N., Rocha F. The Progress and Application of Vitamin E Encapsulation—A Review. Food Hydrocoll. 2021;121:106998. doi: 10.1016/j.foodhyd.2021.106998. DOI

Gonnet M., Lethuaut L., Boury F. New Trends in Encapsulation of Liposoluble Vitamins. J. Control. Release. 2010;146:276–290. doi: 10.1016/j.jconrel.2010.01.037. PubMed DOI

Wojtczak E., Gadzinowski M., Makowski T., Maresz K., Kubisa P., Bednarek M., Pluta M. Encapsulation of Hydrophobic Vitamins by Polylactide Stereocomplexation and Their Release Study. Polym. Int. 2018;67:1523–1534. doi: 10.1002/pi.5674. DOI

Mujica-Álvarez J., Gil-Castell O., Barra P.A., Ribes-Greus A., Bustos R., Faccini M., Matiacevich S. Encapsulation of Vitamins A and e as Spray-Dried Additives for the Feed Industry. Molecules. 2020;25:1357. doi: 10.3390/molecules25061357. PubMed DOI PMC

Ivana M., SKOVáPetra M., Dana B., Klára P., Jitka B., Jana H., SOVáPavla B. Preparation and Stability of Organic Core-Shell Particles with Encapsulated Complex Natural Plant Sources of Phenolics, Caffeine and Vitamins; Proceedings of the NANOCON 2014—Conference Proceedings, 6th International Conference; Brno, Czech Republic. 5–7 November 2014.

Zhang W., Zhang L., Zhu D., Wu Y., Qin Y., Ou W., Song L., Zhang Q. Influence of Composition on the Encapsulation Properties of P/O/W Multiple Emulsions for Vitamin C. J. Dispers. Sci. Technol. 2019;40:1637–1644. doi: 10.1080/01932691.2018.1527228. DOI

Yan B., Davachi S.M., Ravanfar R., Dadmohammadi Y., Deisenroth T.W., van Pho T., Odorisio P.A., Darji R.H., Abbaspourrad A. Improvement of Vitamin C Stability in Vitamin Gummies by Encapsulation in Casein Gel. Food Hydrocoll. 2021;113:106414. doi: 10.1016/j.foodhyd.2020.106414. DOI

Binda S., Hill C., Johansen E., Obis D., Pot B., Sanders M.E., Tremblay A., Ouwehand A.C. Criteria to Qualify Microorganisms as “Probiotic” in Foods and Dietary Supplements. Front. Microbiol. 2020;11:1662. doi: 10.3389/fmicb.2020.01662. PubMed DOI PMC

Šipailienė A., Petraitytė S. Encapsulation of Probiotics: Proper Selection of the Probiotic Strain and the Influence of Encapsulation Technology and Materials on the Viability of Encapsulated Microorganisms. Probiot. Antimicrob. Proteins. 2018;10:1–10. doi: 10.1007/s12602-017-9347-x. PubMed DOI

Martín M.J., Lara-Villoslada F., Ruiz M.A., Morales M.E. Microencapsulation of Bacteria: A Review of Different Technologies and Their Impact on the Probiotic Effects. Innov. Food Sci. Emerg. Technol. 2015;27:15–25. doi: 10.1016/j.ifset.2014.09.010. DOI

Rashidinejad A., Bahrami A., Rehman A., Rezaei A., Babazadeh A., Singh H., Jafari S.M. Co-Encapsulation of Probiotics with Prebiotics and Their Application in Functional/Synbiotic Dairy Products. Crit. Rev. Food Sci. Nutr. 2022;62:2470–2494. doi: 10.1080/10408398.2020.1854169. PubMed DOI

Pandey K.R., Naik S.R., Vakil B.V. Probiotics, Prebiotics and Synbiotics—A Review. J. Food Sci. Technol. 2015;52:7577–7587. doi: 10.1007/s13197-015-1921-1. PubMed DOI PMC

Fiocco D., Longo A., Arena M.P., Russo P., Spano G., Capozzi V. How Probiotics Face Food Stress: They Get by with a Little Help. Crit. Rev. Food Sci. Nutr. 2020;60:1552–1580. doi: 10.1080/10408398.2019.1580673. PubMed DOI

Chapman C.M.C., Gibson G.R., Rowland I. Health Benefits of Probiotics: Are Mixtures More Effective than Single Strains? Eur. J. Nutr. 2011;50:1–17. doi: 10.1007/s00394-010-0166-z. PubMed DOI

Ashraf R., Shah N.P. Immune System Stimulation by Probiotic Microorganisms. Crit. Rev. Food Sci. Nutr. 2014;54:938–956. doi: 10.1080/10408398.2011.619671. PubMed DOI

Rodrigues F.J., Cedran M.F., Bicas J.L., Sato H.H. Encapsulated Probiotic Cells: Relevant Techniques, Natural Sources as Encapsulating Materials and Food Applications—A Narrative Review. Food Res. Int. 2020;137:109682. doi: 10.1016/j.foodres.2020.109682. PubMed DOI

Suez J., Zmora N., Segal E., Elinav E. The Pros, Cons, and Many Unknowns of Probiotics. Nat. Med. 2019;25:716–729. doi: 10.1038/s41591-019-0439-x. PubMed DOI

Didari T., Solki S., Mozaffari S., Nikfar S., Abdollahi M. A Systematic Review of the Safety of Probiotics. Expert Opin. Drug Saf. 2014;13:227–239. doi: 10.1517/14740338.2014.872627. PubMed DOI

Armendáriz-Barragán B., Zafar N., Badri W., Galindo-Rodríguez S.A., Kabbaj D., Fessi H., Elaissari A. Plant Extracts: From Encapsulation to Application. Expert Opin. Drug Deliv. 2016;13:1165–1175. doi: 10.1080/17425247.2016.1182487. PubMed DOI

Bryła A., Lewandowicz G., Juzwa W. Encapsulation of Elderberry Extract into Phospholipid Nanoparticles. J. Food Eng. 2015;167:189–195. doi: 10.1016/j.jfoodeng.2015.07.025. DOI

Castromonte M., Wacyk J., Valenzuela C. Encapsulation of Antioxidant Extracts from Agroindustrial By-Products: A Review. Rev. Chil. Nutr. 2020;47:836–847. doi: 10.4067/s0717-75182020000500836. DOI

Vinceković M., Viskić M., Jurić S., Giacometti J., Bursać Kovačević D., Putnik P., Donsì F., Barba F.J., Režek Jambrak A. Innovative Technologies for Encapsulation of Mediterranean Plants Extracts. Trends Food Sci. Technol. 2017;69:1–12. doi: 10.1016/j.tifs.2017.08.001. DOI

Su T., Huang C., Yang C., Jiang T., Su J., Chen M., Fatima S., Gong R., Hu X., Bian Z., et al. Apigenin Inhibits STAT3/CD36 Signaling Axis and Reduces Visceral Obesity. Pharmacol. Res. 2020;152:104586. doi: 10.1016/j.phrs.2019.104586. PubMed DOI

Kandasamy S., Naveen R. A Review on the Encapsulation of Bioactive Components Using Spray-drying and Freeze-drying Techniques. J. Food Process Eng. 2022;45:e14059. doi: 10.1111/jfpe.14059. DOI

Kaushal A.M., Gupta P., Bansal A.K. Amorphous Drug Delivery Systems: Molecular Aspects, Design, and Performance. Crit. Rev. Ther. Drug Carr. Syst. 2004;21:62. doi: 10.1615/CritRevTherDrugCarrierSyst.v21.i3.10. PubMed DOI

Jing Z., Ma Y., Zhu J. Application of a Novel Electrostatic Dry Powder Coating Technology on Capsules for Enteric Release. J. Drug Deliv. Sci. Technol. 2022;68:103058. doi: 10.1016/j.jddst.2021.103058. DOI

Oliveira S.M., Gruppi A., Vieira M.V., Matos G.S., Vicente A.A., Teixeira J.A.C., Fuciños P., Spigno G., Pastrana L.M. How Additive Manufacturing Can Boost the Bioactivity of Baked Functional Foods. J. Food Eng. 2021;294:110394. doi: 10.1016/j.jfoodeng.2020.110394. DOI

Di A., Zhang S., Liu X., Tong Z., Sun S., Tang Z., Chen X.D., Wu W.D. Microfluidic Spray Dried and Spray Freeze Dried Uniform Microparticles Potentially for Intranasal Drug Delivery and Controlled Release. Powder Technol. 2021;379:144–153. doi: 10.1016/j.powtec.2020.10.061. DOI

Ke W.R., Kwok P.C.L., Khanal D., Chang R.Y.K., Chan H.K. Co-Spray Dried Hydrophobic Drug Formulations with Crystalline Lactose for Inhalation Aerosol Delivery. Int. J. Pharm. 2021;602:120608. doi: 10.1016/j.ijpharm.2021.120608. PubMed DOI

Slavutsky A.M., Chávez M.C., Favaro-trindade C.S., Bertuzzi M.A. Encapsulation of Lactobacillus Acidophilus in a Pilot-Plant Spray-Dryer. Effect of Process Parameters on Cell Viability. J. Food Process Eng. 2017;40:e12394. doi: 10.1111/jfpe.12394. DOI

Ceja-Medina L.I., Ortiz-Basurto R.I., Medina-Torres L., Calderas F., Bernad-Bernad M.J., González-Laredo R.F., Ragazzo-Sánchez J.A., Calderón-Santoyo M., González-ávila M., Andrade-González I., et al. Microencapsulation of Lactobacillus plantarum by Spray Drying with Mixtures of Aloe Vera Mucilage and Agave Fructans as Wall Materials. J. Food Process Eng. 2020;43:e13436. doi: 10.1111/jfpe.13436. DOI

Anthero A.G.d.S., Bezerra E.O., Comunian T.A., Procópio F.R., Hubinger M.D. Effect of Modified Starches and Gum Arabic on the Stability of Carotenoids in Paprika Oleoresin Microparticles. Dry. Technol. 2021;39:1927–1940. doi: 10.1080/07373937.2020.1844227. DOI

Roque M., Geraldes D., da Silva C., Oliveira M., Nascimento L. Long-Circulating and Fusogenic Liposomes Loaded with Paclitaxel and Doxorubicin: Effect of Excipient, Freezing, and Freeze-Drying on Quality Attributes. Pharmaceutics. 2022;15:86. doi: 10.3390/pharmaceutics15010086. PubMed DOI PMC

Sweeney L.G., Wang Z., Loebenberg R., Wong J.P., Lange C.F., Finlay W.H. Spray-Freeze-Dried Liposomal Ciprofloxacin Powder for Inhaled Aerosol Drug Delivery. Int. J. Pharm. 2005;305:180–185. doi: 10.1016/j.ijpharm.2005.09.010. PubMed DOI

Zuanon L.A.C., Malacrida C.R., Telis V.R.N. Effect of Ultrasound on the Stability of Turmeric Oleoresin Microencapsulated in Gelatin-Collagen Matrices. J. Food Process Eng. 2017;40:e12360. doi: 10.1111/jfpe.12360. DOI

Liu Z., Zhao L., Tan X., Wu Z., Zhou N., Dong N., Zhang Y., Yin T., He H., Gou J., et al. Preclinical Evaluations of Norcantharidin Liposome and Emulsion Hybrid Delivery System with Improved Encapsulation Efficiency and Enhanced Antitumor Activity. Expert Opin. Drug Deliv. 2022;19:451–464. doi: 10.1080/17425247.2022.2063834. PubMed DOI

Zhu H., Zhu E., Xie Y., Liu D., Hu Y., Shi Z., Xiong C., Yang Q. Hydrangea-like Nanocellulose Microspheres with High Dye Adsorption and Drug Encapsulation Prepared by Emulsion Method. Carbohydr. Polym. 2022;296:119947. doi: 10.1016/j.carbpol.2022.119947. PubMed DOI

Debotton N., Garsiani S., Cohen Y., Dahan A. Enabling Oral Delivery of Antiviral Drugs: Double Emulsion Carriers to Improve the Intestinal Absorption of Zanamivir. Int. J. Pharm. 2022;629:122392. doi: 10.1016/j.ijpharm.2022.122392. PubMed DOI

Seddari S., ben Seghier N.E.W., Moulai-Mostefa N. Formulation and Characterization of W/O/W Crystallizable Double Emulsions Stabilized by OSA Starch/Xanthan Gum Mixture as Drug Delivery Systems. J. Dispers. Sci. Technol. 2022:1–9. doi: 10.1080/01932691.2022.2116714. DOI

Kabakci C., Sumnu G., Sahin S., Oztop M.H. Encapsulation of Magnesium with Lentil Flour by Using Double Emulsion to Produce Magnesium Enriched Cakes. Food Bioprocess Technol. 2021;14:1773–1790. doi: 10.1007/s11947-021-02672-5. DOI

Zhang Y., Xie Y., Liu H., McClements D.J., Cheng C., Zou L., Liu W., Liu W. Probiotic Encapsulation in Water-in-Oil High Internal Phase Emulsions: Enhancement of Viability under Food and Gastrointestinal Conditions. LWT. 2022;163:113499. doi: 10.1016/j.lwt.2022.113499. DOI

Varankovich N.V., Khan N.H., Nickerson M.T., Kalmokoff M., Korber D.R. Evaluation of Pea Protein-Polysaccharide Matrices for Encapsulation of Acid-Sensitive Bacteria. Food Res. Int. 2015;70:118–124. doi: 10.1016/j.foodres.2015.01.028. DOI

Sun W., Griffiths M.W. Survival of Bifidobacteria in Yogurt and Simulated Gastric Juice Following Immobilization in Gellan-Xanthan Beads. Int. J. Food Microbiol. 2000;61:17–25. doi: 10.1016/S0168-1605(00)00327-5. PubMed DOI

Ashimova A., Yegorov S., Negmetzhanov B., Hortelano G. Cell Encapsulation Within Alginate Microcapsules: Immunological Challenges and Outlook. Front. Bioeng. Biotechnol. 2019;7:380. doi: 10.3389/fbioe.2019.00380. PubMed DOI PMC

Ribeiro J.S., Veloso C.M. Microencapsulation of Natural Dyes with Biopolymers for Application in Food: A Review. Food Hydrocoll. 2021;112:106374. doi: 10.1016/j.foodhyd.2020.106374. DOI

Castro-Rosas J., Ferreira-Grosso C.R., Gómez-Aldapa C.A., Rangel-Vargas E., Rodríguez-Marín M.L., Guzmán-Ortiz F.A., Falfan-Cortes R.N. Recent Advances in Microencapsulation of Natural Sources of Antimicrobial Compounds Used in Food—A Review. Food Res. Int. 2017;102:575–587. doi: 10.1016/j.foodres.2017.09.054. PubMed DOI

Da Silva P.T., Fries L.L.M., de Menezes C.R., Holkem A.T., Schwan C.L., Wigmann É.F., Bastos J.D.O., Silva C.D.B.D. Microencapsulation: Concepts, Mechanisms, Methods and Some Applications in Food Technology. Ciência Rural. 2014;44:1304–1311. doi: 10.1590/0103-8478cr20130971. DOI

Yang T., Qin W., Zhang Q., Luo J., Lin D., Chen H. Essential-Oil Capsule Preparation and Its Application in Food Preservation: A Review. Food Rev. Int. 2022:1–35. doi: 10.1080/87559129.2021.2021934. DOI

Akdeniz B., Sumnu G., Sahin S. Microencapsulation of Phenolic Compounds Extracted from Onion (Allium Cepa) Skin. J. Food Process. Preserv. 2018;42:e13648. doi: 10.1111/jfpp.13648. DOI

Betz M., Kulozik U. Microencapsulation of Bioactive Bilberry Anthocyanins by Means of Whey Protein Gels. Procedia Food Sci. 2011;1:2047–2056. doi: 10.1016/j.profoo.2011.10.006. DOI

Narin C., Ertugrul U., Tas O., Sahin S., Oztop M.H. Encapsulation of Pea Protein in an Alginate Matrix by Cold Set Gelation Method and Use of the Capsules in Fruit Juices. J. Food Sci. 2020;85:3423–3431. doi: 10.1111/1750-3841.15433. PubMed DOI

Vega-Sagardía M., Rocha J., Sáez K., Smith C.T., Gutierrez-Zamorano C., García-Cancino A. Encapsulation, with and without Oil, of Biofilm Forming Lactobacillus fermentum UCO-979C Strain in Alginate-Xanthan Gum and Its Anti-Helicobacter Pylori Effect. J. Funct. Foods. 2018;46:504–513. doi: 10.1016/j.jff.2018.04.067. DOI

Petraitytė S., Šipailienė A. Enhancing Encapsulation Efficiency of Alginate Capsules Containing Lactic Acid Bacteria by Using Different Divalent Cross-Linkers Sources. LWT. 2019;110:307–315. doi: 10.1016/j.lwt.2019.01.065. DOI

Lamsen M.R.L., Wang T., D’Souza D., Dia V., Chen G., Zhong Q. Encapsulation of Vitamin D3 in Gum Arabic to Enhance Bioavailability and Stability for Beverage Applications. J. Food Sci. 2020;85:2368–2379. doi: 10.1111/1750-3841.15340. PubMed DOI

Dimopoulos G., Katsimichas A., Tsimogiannis D., Oreopoulou V., Taoukis P. Cell Permeabilization Processes for Improved Encapsulation of Oregano Essential Oil in Yeast Cells. J. Food Eng. 2021;294:110408. doi: 10.1016/j.jfoodeng.2020.110408. DOI

Narasimha Murthy S., Shivakumar H.N. CHAPTER 1—Topical and Transdermal Drug Delivery A2. In: Kulkarni V.S., editor. Handbook of Non-Invasive Drug Delivery Systems. William Andrew Publishing; Norwich, NY, USA: 2010. Personal Care & Cosmetic Technology.

Lu W., Kelly A.L., Miao S. Emulsion-Based Encapsulation and Delivery Systems for Polyphenols. Trends Food Sci. Technol. 2016;47:1–9. doi: 10.1016/j.tifs.2015.10.015. DOI

Jaiswal M., Dudhe R., Sharma P.K. Nanoemulsion: An Advanced Mode of Drug Delivery System. 3 Biotech. 2015;5:123–127. doi: 10.1007/s13205-014-0214-0. PubMed DOI PMC

Dickinson E. Advances in Food Emulsions and Foams: Reflections on Research in the Neo-Pickering Era. Curr. Opin. Food Sci. 2020;33:52–60. doi: 10.1016/j.cofs.2019.12.009. DOI

Klojdová I., Stathopoulos C. The Potential Application of Pickering Multiple Emulsions in Food. Foods. 2022;11:1558. doi: 10.3390/foods11111558. PubMed DOI PMC

Aserin A. Multiple Emulsions: Technology and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2007.

Dickinson E. Double Emulsions Stabilized by Food Biopolymers. Food Biophys. 2011;6:1–11. doi: 10.1007/s11483-010-9188-6. DOI

Muschiolik G., Dickinson E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr. Rev. Food Sci. Food Saf. 2017;16:532–555. doi: 10.1111/1541-4337.12261. PubMed DOI

Sarkar A., Dickinson E. Sustainable Food-Grade Pickering Emulsions Stabilized by Plant-Based Particles. Curr. Opin. Colloid Interface Sci. 2020;49:69–81. doi: 10.1016/j.cocis.2020.04.004. DOI

Muschiolik G. Multiple Emulsions for Food Use. Curr. Opin. Colloid Interface Sci. 2007;12:213–220. doi: 10.1016/j.cocis.2007.07.006. DOI

Klojdová I., Štětina J., Horáčková Š. W/O/W Multiple Emulsions as the Functional Component of Dairy Products. Chem. Eng. Technol. 2019;42:715–727. doi: 10.1002/ceat.201800586. DOI

Matos M., Gutiérrez G., Martínez-Rey L., Iglesias O., Pazos C. Encapsulation of Resveratrol Using Food-Grade Concentrated Double Emulsions: Emulsion Characterization and Rheological Behaviour. J. Food Eng. 2018;226:73–81. doi: 10.1016/j.jfoodeng.2018.01.007. DOI

Hemar Y., Cheng L.J., Oliver C.M., Sanguansri L., Augustin M. Encapsulation of Resveratrol Using Water-in-Oil-in-Water Double Emulsions. Food Biophys. 2010;5:120–127. doi: 10.1007/s11483-010-9152-5. DOI

Akhtar M., Murray B.S., Afeisume E.I., Khew S.H. Encapsulation of Flavonoid in Multiple Emulsion Using Spinning Disc Reactor Technology. Food Hydrocoll. 2014;34:62–67. doi: 10.1016/j.foodhyd.2012.12.025. DOI

Mishra B., Panyam J., Sharma A.v. Mechanisms of Drug Release Control by Osmotic Additives from Multiple w/o/w Emulsions Containing Diclofenac Sodium. Acta Pharm. Turc. 1999;41:58–61.

Lindenstruth K., Müller B.W. W/O/W Multiple Emulsions with Diclofenac Sodium. Eur. J. Pharm. Biopharm. 2004;58:621–627. doi: 10.1016/j.ejpb.2004.04.003. PubMed DOI

Dluska E., Metera A., Markowska-Radomska A., Tudek B. Effective Cryopreservation and Recovery of Living Cells Encapsulated in Multiple Emulsions. Biopreserv. Biobank. 2019;17:468–476. doi: 10.1089/bio.2018.0134. PubMed DOI

Cournarie F., Rosilio V., Chéron M., Vauthier C., Lacour B., Grossiord J.L., Seiller M. Improved Formulation of W/O/W Multiple Emulsion for Insulin Encapsulation. Influence of the Chemical Structure of Insulin. Colloid Polym. Sci. 2004;282:562–568. doi: 10.1007/s00396-003-0960-8. DOI

Verma K., Pandey S.P., Mishra P. Development of Multiple Emulsion of Andrographolide for Taste Masking. Asian J. Pharm. 2018;12:S1501.

Suñer-Carbó J., Calpena-Campmany A., Halbaut-Bellowa L., Clares-Naveros B., Rodriguez-Lagunas M.J., Barbolini E., Zamarbide-Losada J., Boix-Montañés A. Biopharmaceutical Development of a Bifonazole Multiple Emulsion for Enhanced Epidermal Delivery. Pharmaceutics. 2019;11:66. doi: 10.3390/pharmaceutics11020066. PubMed DOI PMC

Brannon-Peppas L., Ghosn B., Roy K., Cornetta K. Encapsulation of Nucleic Acids and Opportunities for Cancer Treatment. Pharm. Res. 2007;24:618–627. doi: 10.1007/s11095-006-9208-x. PubMed DOI

Kalani M., Yunus R. Application of Supercritical Antisolvent Method in Drug Encapsulation: A Review. Int. J. Nanomed. 2011;6:1429–1442. doi: 10.2147/IJN.S19021. PubMed DOI PMC

Campuzano S., Esteban-Fernández De Ávila B., Yáñez-Sedeño P., Pingarrón J.M., Wang J. Nano/Microvehicles for Efficient Delivery and (Bio)Sensing at the Cellular Level. Chem. Sci. 2017;8:6750–6763. doi: 10.1039/C7SC02434G. PubMed DOI PMC

Hu J., Zhou S., Sun Y., Fang X., Wu L. Fabrication, Properties and Applications of Janus Particles. Chem. Soc. Rev. 2012;41:4356–4378. doi: 10.1039/c2cs35032g. PubMed DOI

Lim Y.G.J., Poh K.C.W., Loo S.C.J. Hybrid Janus Microparticles Achieving Selective Encapsulation for Theranostic Applications via a Facile Solvent Emulsion Method. Macromol. Rapid Commun. 2019;40:1800801. doi: 10.1002/marc.201800801. PubMed DOI

Duan Y., Zhao X., Sun M., Hao H. Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials. Ind. Eng. Chem. Res. 2021;60:1071–1095. doi: 10.1021/acs.iecr.0c04304. DOI

Zhou W., Sun W., Yang P. Preparation and Functional Application of Janus Particles. Prog. Chem. 2018;30:1601–1614.

Istenič K., Balanč B.D., Djordjević V.B., Bele M., Nedović V.A., Bugarski B.M., Ulrih N.P. Encapsulation of Resveratrol into Ca-Alginate Submicron Particles. J. Food Eng. 2015;167:196–203. doi: 10.1016/j.jfoodeng.2015.04.007. DOI

Elabbadi A., Jeckelmann N., Haefliger O.P., Ouali L. Complexation/Encapsulation of Green Tea Polyphenols in Mixed Calcium Carbonate and Phosphate Micro-Particles. J. Microencapsul. 2011;28:1–9. doi: 10.3109/02652048.2010.520091. PubMed DOI

Ghatak D., Iyyaswami R. Selective Encapsulation of Quercetin from Dry Onion Peel Crude Extract in Reassembled Casein Particles. Food Bioprod. Process. 2019;115:100–109. doi: 10.1016/j.fbp.2019.03.003. DOI

Fang Z., Xu X., Cheng H., Li J., Guang C., Liang L. Comparison of Whey Protein Particles and Emulsions for the Encapsulation and Protection of α-Tocopherol. J. Food Eng. 2019;247:56–63. doi: 10.1016/j.jfoodeng.2018.11.028. DOI

Gonzalez Gomez A., Hosseinidoust Z. Liposomes for Antibiotic Encapsulation and Delivery. ACS Infect. Dis. 2020;6:896–908. doi: 10.1021/acsinfecdis.9b00357. PubMed DOI

Eloy J.O., Claro de Souza M., Petrilli R., Barcellos J.P.A., Lee R.J., Marchetti J.M. Liposomes as Carriers of Hydrophilic Small Molecule Drugs: Strategies to Enhance Encapsulation and Delivery. Colloids Surf. B Biointerfaces. 2014;123:345–363. doi: 10.1016/j.colsurfb.2014.09.029. PubMed DOI

Lin W., Goldberg R., Klein J. Poly-Phosphocholination of Liposomes Leads to Highly-Extended Retention Time in Mice Joints. J. Mater. Chem. B. 2022;10:2820–2827. doi: 10.1039/D1TB02346B. PubMed DOI PMC

Sherry M., Charcosset C., Fessi H., Greige-Gerges H. Essential Oils Encapsulated in Liposomes: A Review. J. Liposome Res. 2013;23:268–275. doi: 10.3109/08982104.2013.819888. PubMed DOI

Mohammadi A., Jafari S.M., Mahoonak A.S., Ghorbani M. Liposomal/Nanoliposomal Encapsulation of Food-Relevant Enzymes and Their Application in the Food Industry. Food Bioprocess Technol. 2021;14:23–38. doi: 10.1007/s11947-020-02513-x. DOI

Mohan A., McClements D.J., Udenigwe C.C. Encapsulation of Bioactive Whey Peptides in Soy Lecithin-Derived Nanoliposomes: Influence of Peptide Molecular Weight. Food Chem. 2016;213:143–148. doi: 10.1016/j.foodchem.2016.06.075. PubMed DOI

Tavakoli H., Hosseini O., Jafari S.M., Katouzian I. Evaluation of Physicochemical and Antioxidant Properties of Yogurt Enriched by Olive Leaf Phenolics within Nanoliposomes. J. Agric. Food Chem. 2018;66:9231–9240. doi: 10.1021/acs.jafc.8b02759. PubMed DOI

Zhang R., Song X., Liang C., Yi X., Song G., Chao Y., Yang Y., Yang K., Feng L., Liu Z. Catalase-Loaded Cisplatin-Prodrug-Constructed Liposomes to Overcome Tumor Hypoxia for Enhanced Chemo-Radiotherapy of Cancer. Biomaterials. 2017;138:13–21. doi: 10.1016/j.biomaterials.2017.05.025. PubMed DOI

Jahadi M., Keighobadi K., Azimzadeh B., Keivani H., Khosravi-Darani K. Liposomes as Herbal Compound Carriers: An Updated Review. Curr. Nutr. Food Sci. 2021;17:790–797. doi: 10.2174/1573401317666210224122418. DOI

Wang X., Song Y., Su Y., Tian Q., Li B., Quan J., Deng Y. Are PEGylated Liposomes Better than Conventional Liposomes? A Special Case for Vincristine. Drug Deliv. 2016;23:1092–1100. doi: 10.3109/10717544.2015.1027015. PubMed DOI

Badri W., Miladi K., Nazari Q.A., Greige-Gerges H., Fessi H., Elaissari A. Encapsulation of NSAIDs for Inflammation Management: Overview, Progress, Challenges and Prospects. Int. J. Pharm. 2016;515:757–773. doi: 10.1016/j.ijpharm.2016.11.002. PubMed DOI

Chatzikleanthous D., O’Hagan D.T., Adamo R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol. Pharm. 2021;18:2867–2888. doi: 10.1021/acs.molpharmaceut.1c00447. PubMed DOI

Mukherjee S., Ray S., Thakur R.S. Solid Lipid Nanoparticles: A Modern Formulation Approach in Drug Delivery System. Indian J. Pharm. Sci. 2009;71:349–358. doi: 10.4103/0250-474X.57282. PubMed DOI PMC

Hou X., Zaks T., Langer R., Dong Y. Lipid Nanoparticles for MRNA Delivery. Nat. Rev. Mater. 2021;6:1078–1094. doi: 10.1038/s41578-021-00358-0. PubMed DOI PMC

Scioli Montoto S., Muraca G., Ruiz M.E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci. 2020;7:587997. doi: 10.3389/fmolb.2020.587997. PubMed DOI PMC

Ren Z., Chen Z., Zhang Y., Lin X., Li B. Novel Food-Grade Pickering Emulsions Stabilized by Tea Water-Insoluble Protein Nanoparticles from Tea Residues. Food Hydrocoll. 2019;96:322–330. doi: 10.1016/j.foodhyd.2019.05.015. DOI

McQuilken S.A. The Mouth, Stomach and Intestines. Anaesth. Intensive Care Med. 2021;22:330–335. doi: 10.1016/j.mpaic.2021.04.001. DOI

Mackie A., Mulet-Cabero A.I., Torcello-Gomez A. Simulating Human Digestion: Developing Our Knowledge to Create Healthier and More Sustainable Foods. Food Funct. 2020;11:9397–9431. doi: 10.1039/D0FO01981J. PubMed DOI

Urbain J.L.C., Siegel J.A., Charkes N.D., Maurer A.H., Malmud L.S., Fisher R.S. The Two-Component Stomach: Effects of Meal Particle Size on Fundal and Antral Emptying. Eur. J. Nucl. Med. 1989;15:254–259. doi: 10.1007/BF00257543. PubMed DOI

Cardoso A., Gonzaga Vaz Coelho L., Savassi-Rocha P.R., Vignolo M.C., Abrantes M.M., Miranda De Almeida A., Dias E.E., Vieira G., Moreira De Castro M., Vieira Lemos Y. Gastric Emptying of Solids and Semi-Solids in Morbidly Obese and Non-Obese Subjects: An Assessment Using the 13C-Octanoic Acid and 13C-Acetic Acid Breath Tests. Obes. Surg. 2007;17:236–241. doi: 10.1007/s11695-007-9031-4. PubMed DOI

Wu P., Chen X.D. On Designing Biomimic in Vitro Human and Animal Digestion Track Models: Ideas, Current and Future Devices. Curr. Opin. Food Sci. 2020;35:10–19. doi: 10.1016/j.cofs.2019.12.004. DOI

Li C., Yu W., Wu P., Chen X.D. Current in Vitro Digestion Systems for Understanding Food Digestion in Human Upper Gastrointestinal Tract. Trends Food Sci. Technol. 2020;96:114–126. doi: 10.1016/j.tifs.2019.12.015. DOI

Klojdová I., Kumherová M., Veselá K., Horáčková Š., Štětina J. Functional W1/o/W2 Model Food Product with Encapsulated Colostrum and High Protein Content. Eur. Food Res. Technol. 2022;248:899–903. doi: 10.1007/s00217-021-03937-1. DOI

Akbari A., Jabbari N., Sharifi R., Ahmadi M., Vahhabi A., Seyedzadeh S.J., Nawaz M., Szafert S., Mahmoodi M., Jabbari E., et al. Free and Hydrogel Encapsulated Exosome-Based Therapies in Regenerative Medicine. Life Sci. 2020;249:117447. doi: 10.1016/j.lfs.2020.117447. PubMed DOI

Rajkovic O., Potjewyd G., Pinteaux E. Regenerative Medicine Therapies for Targeting Neuroinflammation after Stroke. Front. Neurol. 2018;9:734. doi: 10.3389/fneur.2018.00734. PubMed DOI PMC

Gonzalez-Pujana A., Santos E., Orive G., Pedraz J.L., Hernandez R.M. Cell Microencapsulation Technology: Current Vision of Its Therapeutic Potential through the Administration Routes. J. Drug Deliv. Sci. Technol. 2017;42:49–62. doi: 10.1016/j.jddst.2017.03.028. DOI

Garate A., Ciriza J., Casado J.G., Blazquez R., Pedraz J.L., Orive G., Hernandez R.M. Assessment of the Behavior of Mesenchymal Stem Cells Immobilized in Biomimetic Alginate Microcapsules. Mol. Pharm. 2015;12:3953–3962. doi: 10.1021/acs.molpharmaceut.5b00419. PubMed DOI

Short A.R., Koralla D., Deshmukh A., Wissel B., Stocker B., Calhoun M., Dean D., Winter J.O. Hydrogels That Allow and Facilitate Bone Repair, Remodeling, and Regeneration. J. Mater. Chem. B. 2015;3:7818–7830. doi: 10.1039/C5TB01043H. PubMed DOI PMC

Lee K.Y., Mooney D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012;37:106–126. doi: 10.1016/j.progpolymsci.2011.06.003. PubMed DOI PMC

Jeon O., Bouhadir K.H., Mansour J.M., Alsberg E. Photocrosslinked Alginate Hydrogels with Tunable Biodegradation Rates and Mechanical Properties. Biomaterials. 2009;30:2724–2734. doi: 10.1016/j.biomaterials.2009.01.034. PubMed DOI

Murua A., Orive G., Hernández R.M., Pedraz J.L. Emerging Technologies in the Delivery of Erythropoietin for Therapeutics. Med. Res. Rev. 2011;31:284–309. doi: 10.1002/med.20184. PubMed DOI

Selimoglu S.M., Elibol M. Alginate as an Immobilization Material for MAb Production via Encapsulated Hybridoma Cells. Crit. Rev. Biotechnol. 2010;30:145–159. doi: 10.3109/07388550903451652. PubMed DOI

Kwak N., Okamoto N., Wood J.M., Campochiaro P.A. VEGF Is Major Stimulator in Model of Choroidal Neovascularization. Investig. Ophthalmol. Vis. Sci. 2000;41:3158–3164. PubMed

De Vos P., van Hoogmoed C.G., van Zanten J., Netter S., Strubbe J.H., Busscher H.J. Long-Term Biocompatibility, Chemistry, and Function of Microencapsulated Pancreatic Islets. Biomaterials. 2003;24:305–312. doi: 10.1016/S0142-9612(02)00319-8. PubMed DOI

Del Giudice G., Rappuoli R., Didierlaurent A.M. Correlates of Adjuvanticity: A Review on Adjuvants in Licensed Vaccines. Semin. Immunol. 2018;39:14–21. doi: 10.1016/j.smim.2018.05.001. PubMed DOI

Wu Z., Liu K. Overview of Vaccine Adjuvants. Med. Drug Discov. 2021;11:100103. doi: 10.1016/j.medidd.2021.100103. DOI

Pulendran B., Arunachalam P.S., O’Hagan D.T. Emerging Concepts in the Science of Vaccine Adjuvants. Nat. Rev. Drug Discov. 2021;20:454–475. doi: 10.1038/s41573-021-00163-y. PubMed DOI PMC

Ghimire T.R. The Mechanisms of Action of Vaccines Containing Aluminum Adjuvants: An In Vitro vs In Vivo Paradigm. Springerplus. 2015;4:181. doi: 10.1186/s40064-015-0972-0. PubMed DOI PMC

O’Hagan D.T., Ott G.S., van Nest G., Rappuoli R., del Giudice G. The History of MF59® Adjuvant: A Phoenix That Arose from the Ashes. Expert Rev. Vaccines. 2013;12:13–30. doi: 10.1586/erv.12.140. PubMed DOI

Garçon N., Vaughn D.W., Didierlaurent A.M. Development and Evaluation of AS03, an Adjuvant System Containing α-Tocopherol and Squalene in an Oil-in-Water Emulsion. Expert Rev. Vaccines. 2012;11:349–366. doi: 10.1586/erv.11.192. PubMed DOI

Nguyen-Contant P., Sangster M.Y., Topham D.J. Squalene-Based Influenza Vaccine Adjuvants and Their Impact on the Hemagglutinin-Specific b Cell Response. Pathogens. 2021;10:355. doi: 10.3390/pathogens10030355. PubMed DOI PMC

Ko E.J., Kang S.M. Immunology and Efficacy of MF59-Adjuvanted Vaccines. Hum. Vaccines Immunother. 2018;14:3041–3045. doi: 10.1080/21645515.2018.1495301. PubMed DOI PMC

Goll J.B., Jain A., Jensen T.L., Assis R., Nakajima R., Jasinskas A., Coughlan L., Cherikh S.R., Gelber C.E., Khan S., et al. The Antibody Landscapes Following AS03 and MF59 Adjuvanted H5N1 Vaccination. NPJ Vaccines. 2022;7:103. doi: 10.1038/s41541-022-00524-7. PubMed DOI PMC

Wang N., Chen M., Wang T. Liposomes Used as a Vaccine Adjuvant-Delivery System: From Basics to Clinical Immunization. J. Control. Release. 2019;303:130–150. doi: 10.1016/j.jconrel.2019.04.025. PubMed DOI PMC

Rao M., Peachman K.K., Alving C.R. Current Topics in Microbiology and Immunology. Volume 433 Springer; Cham, Switzerland: 2021. Liposome Formulations as Adjuvants for Vaccines. PubMed

Chen C., Zhang C., Li R., Wang Z., Yuan Y., Li H., Fu Z., Zhou M., Zhao L. Monophosphoryl-Lipid A (MPLA) Is an Efficacious Adjuvant for Inactivated Rabies Vaccines. Viruses. 2019;11:1118. doi: 10.3390/v11121118. PubMed DOI PMC

Rajput Z.I., Hu S.H., Xiao C.-W., Arijo A.G. Adjuvant Effects of Saponins on Animal Immune Responses. J. Zhejiang Univ. Sci. B. 2007;8:153–161. doi: 10.1631/jzus.2007.B0153. PubMed DOI PMC

Zhu B., He T., Gao X., Shi M., Sun H. Evaluation and Characteristics of Immunological Adjuvant Activity of Purified Fraction of Albizia Julibrissin Saponins. Immunol. Investig. 2019;48:283–302. doi: 10.1080/08820139.2018.1523923. PubMed DOI

Kato H., Oh S.W., Fujita T. RIG-I-like Receptors and Type I Interferonopathies. J. Interferon Cytokine Res. 2017;37:207–213. doi: 10.1089/jir.2016.0095. PubMed DOI PMC

Hua Z., Hou B. TLR Signaling in B-Cell Development and Activation. Cell Mol. Immunol. 2013;10:103–106. doi: 10.1038/cmi.2012.61. PubMed DOI PMC

Ablasser A., Poeck H., Anz D., Berger M., Schlee M., Kim S., Bourquin C., Goutagny N., Jiang Z., Fitzgerald K.A., et al. Selection of Molecular Structure and Delivery of RNA Oligonucleotides to Activate TLR7 versus TLR8 and to Induce High Amounts of IL-12p70 in Primary Human Monocytes. J. Immunol. 2009;182:6824–6833. doi: 10.4049/jimmunol.0803001. PubMed DOI

Swaminathan G., Thoryk E.A., Cox K.S., Meschino S., Dubey S.A., Vora K.A., Celano R., Gindy M., Casimiro D.R., Bett A.J. A Novel Lipid Nanoparticle Adjuvant Significantly Enhances B Cell and T Cell Responses to Sub-Unit Vaccine Antigens. Vaccine. 2016;34:110–119. doi: 10.1016/j.vaccine.2015.10.132. PubMed DOI

Shirai S., Kawai A., Shibuya M., Munakata L., Omata D., Suzuki R., Yoshioka Y. Lipid Nanoparticle Acts as a Potential Adjuvant for Influenza Split Vaccine without Inducing Inflammatory Responses. Vaccines. 2020;8:433. doi: 10.3390/vaccines8030433. PubMed DOI PMC

Awasthi S., Hook L.M., Swaminathan G., Cairns T.M., Brooks B., Smith J.S., Ditto N.T., Gindy M.E., Bett A.J., Espeseth A.S., et al. Antibody Responses to Crucial Functional Epitopes as a Novel Approach to Assess Immunogenicity of Vaccine Adjuvants. Vaccine. 2019;37:3770–3778. doi: 10.1016/j.vaccine.2019.05.068. PubMed DOI PMC

Alameh M.G., Tombácz I., Bettini E., Lederer K., Sittplangkoon C., Wilmore J.R., Gaudette B.T., Soliman O.Y., Pine M., Hicks P., et al. Lipid Nanoparticles Enhance the Efficacy of MRNA and Protein Subunit Vaccines by Inducing Robust T Follicular Helper Cell and Humoral Responses. Immunity. 2021;54:2877–2892.e7. doi: 10.1016/j.immuni.2021.11.001. PubMed DOI PMC

Dolgin E. The Tangled History of MRNA Vaccines. Nature. 2021;597:318–324. doi: 10.1038/d41586-021-02483-w. PubMed DOI

Strizova Z., Smetanova J., Bartunkova J., Milota T. Principles and Challenges in Anti-COVID-19 Vaccine Development. Int. Arch. Allergy Immunol. 2021;182:339–349. doi: 10.1159/000514225. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Poloxamer-Based Mixed Micelles Loaded with Thymol or Eugenol for Topical Applications

. 2024 Jun 04 ; 9 (22) : 23209-23219. [epub] 20240520

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...