The Potential Application of Pickering Multiple Emulsions in Food
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Horizon 2020 No 952594
European Union
PubMed
35681307
PubMed Central
PMC9180460
DOI
10.3390/foods11111558
PII: foods11111558
Knihovny.cz E-zdroje
- Klíčová slova
- Janus emulsion, Janus particles, Pickering multiple emulsions, Pickering particles, food-grade,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Emulsions stabilized by adsorbed particles-Pickering particles (PPs) instead of surfactants and emulsifiers are called Pickering emulsions. Here, we review the possible uses of Pickering multiple emulsions (PMEs) in the food industry. Food-grade PMEs are very complex systems with high potential for application in food technology. They can be prepared by traditional two-step emulsification processes but also using complex techniques, e.g., microfluidic devices. Compared to those stabilized with an emulsifier, PMEs provide more benefits such as lower susceptibility to coalescence, possible encapsulation of functional compounds in PMEs or even PPs with controlled release, etc. Additionally, the PPs can be made from food-grade by-products. Naturally, w/o/w emulsions in the Pickering form can also provide benefits such as fat reduction by partial replacement of fat phase with internal water phase and encapsulation of sensitive compounds in the internal water phase. A possible advanced type of PMEs may be stabilized by Janus particles, which can change their physicochemical properties and control properties of the whole emulsion systems. These emulsions have big potential as biosensors. In this paper, recent advances in the application of PPs in food emulsions are highlighted with emphasis on the potential application in food-grade PMEs.
Zobrazit více v PubMed
Lobato-Calleros C., Recillas-Mota M.T., Espinosa-Solares T., Alvarez-Ramirez J., Vernon-Carter E.J. Microstructural and Rheological Properties of Low-Fat Stirred Yoghurts Made with Skim Milk and Multiple Emulsions. J. Texture Stud. 2009;40:657–675. doi: 10.1111/j.1745-4603.2009.00204.x. DOI
Eslami P., Forootan K., Davarpanh L., Vahabzadeh F. Incorporation of Lactobacillus Casei into the Inner Phase of the Water-in-Oil-in-Water (W1/O/W2) Emulsion Prepared with β-Cyclodextrin and Bacterial Survival in a Model Gastric Environment. Appl. Food Biotechnol. 2020;7:171–182. doi: 10.22037/afb.v7i3.28877. DOI
Carlotti M.E., Gallarate M., Sapino S., Ugazio E., Morel S. W/O/W Multiple Emulsions for Dermatological and Cosmetic Use, Obtained with Ethylene Oxide Free Emulsifiers. J. Dispers. Sci. Technol. 2005;26:183–192. doi: 10.1081/DIS-200045584. DOI
Mahmood T., Akhtar N. Stability of a Cosmetic Multiple Emulsion Loaded with Green Tea Extract. Sci. World J. 2013;2013:153695. doi: 10.1155/2013/153695. PubMed DOI PMC
Lobato-Calleros C., Rodriguez E., Sandoval-Castilla O., Vernon-Carter E.J., Alvarez-Ramirez J. Reduced-Fat White Fresh Cheese-like Products Obtained from W1/O/W2 Multiple Emulsions: Viscoelastic and High-Resolution Image Analyses. Food Res. Int. 2006;39:678–685. doi: 10.1016/j.foodres.2006.01.006. DOI
Charcosset C. Preparation of Emulsions and Particles by Membrane Emulsification for the Food Processing Industry. J. Food Eng. 2009;92:241–249. doi: 10.1016/j.jfoodeng.2008.11.017. DOI
Dickinson E. Double Emulsions Stabilized by Food Biopolymers. Food Biophys. 2011;6:1–11. doi: 10.1007/s11483-010-9188-6. DOI
Garti N. Progress in Stabilization and Transport Phenomena of Double Emulsions in Food Applications. LWT Food Sci. Technol. 1997;30:222–235. doi: 10.1006/fstl.1996.0176. DOI
Jiménez-Colmenero F. Potential Applications of Multiple Emulsions in the Development of Healthy and Functional Foods. Food Res. Int. 2013;52:64–74. doi: 10.1016/j.foodres.2013.02.040. DOI
Klojdová I., Štětina J., Horáčková Š. W/O/W Multiple Emulsions as the Functional Component of Dairy Products. Chem. Eng. Technol. 2019;42:715–727. doi: 10.1002/ceat.201800586. DOI
Lamba H., Sathish K., Sabikhi L. Double Emulsions: Emerging Delivery System for Plant Bioactives. Food Bioprocess Technol. 2015;8:709–728.
Muschiolik G., Dickinson E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr. Rev. Food Sci. Food Saf. 2017;16:532–555. PubMed
Silva M., Chandrapala J. Ultrasonic Emulsification of Milk Proteins Stabilized Primary and Double Emulsions: A Review. Food Rev. Int. 2021:1–23. doi: 10.1080/87559129.2021.1934006. DOI
Muschiolik G. Multiple Emulsions for Food Use. Curr. Opin. Colloid Interface Sci. 2007;12:213–220.
Tekin Pulatsü E., Sahin S., Sumnu G. Characterization of Different Double-Emulsion Formulations Based on Food-Grade Emulsifiers and Stabilizers. J. Dispers. Sci. Technol. 2018;39:996–1002. doi: 10.1080/01932691.2017.1379021. DOI
Yildirim M., Sumnu G., Sahin S. The Effects of Emulsifier Type, Phase Ratio, and Homogenization Methods on Stability of the Double Emulsion. J. Dispers. Sci. Technol. 2017;38:807–814. doi: 10.1080/01932691.2016.1201768. DOI
Liu J., Zhou H., Tan Y., Muriel Mundo J.L., McClements D.J. Comparison of Plant-Based Emulsifier Performance in Water-in-Oil-in-Water Emulsions: Soy Protein Isolate, Pectin and Gum Arabic. J. Food Eng. 2021;307:110625. doi: 10.1016/j.jfoodeng.2021.110625. DOI
Schuch A., Helfenritter C., Funck M., Schuchmann H.P. Observations on the Influence of Different Biopolymers on Coalescence of Inner Water Droplets in W/O/W (Water-in-Oil-in-Water) Double Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2015;475:2–8. doi: 10.1016/j.colsurfa.2014.06.012. DOI
Mortensen A., Aguilar F., Lambré C. Re-evaluation of Polyglycerol Polyricinoleate (E 476) as a Food Additive. EFSA J. 2017;15:e04743. doi: 10.2903/j.efsa.2017.4743. PubMed DOI PMC
Arenas-Jal M., Suñé-Negre J.M., Pérez-Lozano P., García-Montoya E. Trends in the Food and Sports Nutrition Industry: A Review. Crit. Rev. Food Sci. Nutr. 2020;60:2405–2421. doi: 10.1080/10408398.2019.1643287. PubMed DOI
Salih N., Salimon J. A Review on New Trends, Challenges and Prospects of Ecofriendly Friendly Green Food-Grade Biolubricants. Biointerface Res. Appl. Chem. 2021;12:1185–1207. doi: 10.33263/briac121.11851207. DOI
Pickering S.U. CXCVI—Emulsions. J. Chem. Soc. Trans. 1907;91:2001–2021. doi: 10.1039/CT9079102001. DOI
Chevalier Y., Bolzinger M.A. Emulsions Stabilized with Solid Nanoparticles: Pickering Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2013;439:23–34. doi: 10.1016/j.colsurfa.2013.02.054. DOI
Dickinson E. Advances in Food Emulsions and Foams: Reflections on Research in the Neo-Pickering Era. Curr. Opin. Food Sci. 2020;33:52–60. doi: 10.1016/j.cofs.2019.12.009. DOI
Salerno A., Bolzinger M.A., Rolland P., Chevalier Y., Josse D., Briançon S. Pickering Emulsions for Skin Decontamination. Toxicol. Vitr. 2016;34:45–54. doi: 10.1016/j.tiv.2016.03.005. PubMed DOI
Yang Y., Fang Z., Chen X., Zhang W., Xie Y., Chen Y., Liu Z., Yuan W. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications. Front. Pharmacol. 2017;8:287. doi: 10.3389/fphar.2017.00287. PubMed DOI PMC
Abdullah , Weiss J., Ahmad T., Zhang C., Zhang H. A Review of Recent Progress on High Internal-Phase Pickering Emulsions in Food Science. Trends Food Sci. Technol. 2020;106:91–103. doi: 10.1016/j.tifs.2020.10.016. DOI
Wardana A.A., Koga A., Tanaka F., Tanaka F. Antifungal Features and Properties of Chitosan/Sandalwood Oil Pickering Emulsion Coating Stabilized by Appropriate Cellulose Nanofiber Dosage for Fresh Fruit Application. Sci. Rep. 2021;11:18412. doi: 10.1038/s41598-021-98074-w. PubMed DOI PMC
Bai L., Huan S., Xiang W., Rojas O.J. Pickering Emulsions by Combining Cellulose Nanofibrils and Nanocrystals: Phase Behavior and Depletion Stabilization. Green Chem. 2018;20:1571–1582. doi: 10.1039/C8GC00134K. DOI
Jiang H., Sheng Y., Ngai T. Pickering Emulsions: Versatility of Colloidal Particles and Recent Applications. Curr. Opin. Colloid Interface Sci. 2020;49:1–15. doi: 10.1016/j.cocis.2020.04.010. PubMed DOI PMC
Niroula A., Gamot T.D., Ooi C.W., Dhital S. Biomolecule-Based Pickering Food Emulsions: Intrinsic Components of Food Matrix, Recent Trends and Prospects. Food Hydrocoll. 2021;112:106303. doi: 10.1016/j.foodhyd.2020.106303. DOI
Berton-Carabin C.C., Schroën K. Pickering Emulsions for Food Applications: Background, Trends, and Challenges. Annu. Rev. Food Sci. Technol. 2015;6:263–297. doi: 10.1146/annurev-food-081114-110822. PubMed DOI
Chen L., Ao F., Ge X., Shen W. Food-Grade Pickering Emulsions: Preparation, Stabilization and Applications. Molecules. 2020;25:3202. doi: 10.3390/molecules25143202. PubMed DOI PMC
Wang Z., Wang Y. Tuning Amphiphilicity of Particles for Controllable Pickering Emulsion. Materials. 2016;9:903. doi: 10.3390/ma9110903. PubMed DOI PMC
Linke C., Drusch S. Pickering Emulsions in Foods—Opportunities and Limitations. Crit. Rev. Food Sci. Nutr. 2018;58:1971–1985. doi: 10.1080/10408398.2017.1290578. PubMed DOI
Zhu F. Starch Based Pickering Emulsions: Fabrication, Properties, and Applications. Trends Food Sci. Technol. 2019;85:129–137. doi: 10.1016/j.tifs.2019.01.012. DOI
Sharkawy A., Barreiro M.F., Rodrigues A.E. Chitosan-Based Pickering Emulsions and Their Applications: A Review. Carbohydr. Polym. 2020;250:116885. doi: 10.1016/j.carbpol.2020.116885. PubMed DOI
Jafari S.M., Sedaghat Doost A., Nikbakht Nasrabadi M., Boostani S., van der Meeren P. Phytoparticles for the Stabilization of Pickering Emulsions in the Formulation of Novel Food Colloidal Dispersions. Trends Food Sci. Technol. 2020;98:117–128. doi: 10.1016/j.tifs.2020.02.008. DOI
Zhao Q., Zaaboul F., Liu Y., Li J. Recent Advances on Protein-Based Pickering High Internal Phase Emulsions (Pickering HIPEs): Fabrication, Characterization, and Applications. Compr. Rev. Food Sci. Food Saf. 2020;19:1934–1968. doi: 10.1111/1541-4337.12570. PubMed DOI
Sarkar A., Dickinson E. Sustainable Food-Grade Pickering Emulsions Stabilized by Plant-Based Particles. Curr. Opin. Colloid Interface Sci. 2020;49:69–81. doi: 10.1016/j.cocis.2020.04.004. DOI
Xiao J., Li Y., Huang Q. Recent Advances on Food-Grade Particles Stabilized Pickering Emulsions: Fabrication, Characterization and Research Trends. Trends Food Sci. Technol. 2016;55:48–60. doi: 10.1016/j.tifs.2016.05.010. DOI
Murray B.S. Pickering Emulsions for Food and Drinks. Curr. Opin. Food Sci. 2019;27:57–63. doi: 10.1016/j.cofs.2019.05.004. DOI
Haaj S.B., Thielemans W., Magnin A., Boufi S. Starch Nanocrystal Stabilized Pickering Emulsion Polymerization for Nanocomposites with Improved Performance. ACS Appl. Mater. Interfaces. 2014;6:8263–8273. doi: 10.1021/am501077e. PubMed DOI
Lu Z., Ye F., Zhou G., Gao R., Qin D., Zhao G. Micronized Apple Pomace as a Novel Emulsifier for Food O/W Pickering Emulsion. Food Chem. 2020;330:127325. doi: 10.1016/j.foodchem.2020.127325. PubMed DOI
He K., Li Q., Li Y., Li B., Liu S. Water-Insoluble Dietary Fibers from Bamboo Shoot Used as Plant Food Particles for the Stabilization of O/W Pickering Emulsion. Food Chem. 2020;310:125925. doi: 10.1016/j.foodchem.2019.125925. PubMed DOI
Sun Y., Zhong S. Molecularly Imprinted Polymers Fabricated via Pickering Emulsions Stabilized Solely by Food-Grade Casein Colloidal Nanoparticles for Selective Protein Recognition. Anal. Bioanal. Chem. 2018;410:3133–3143. doi: 10.1007/s00216-018-1006-x. PubMed DOI
Guo Y., Wu C., Du M., Lin S., Xu X., Yu P. In-Situ Dispersion of Casein to Form Nanoparticles for Pickering High Internal Phase Emulsions. LWT. 2021;139:110538. doi: 10.1016/j.lwt.2020.110538. DOI
Li Q., Wu Y., Fang R., Lei C., Li Y., Li B., Pei Y., Luo X., Liu S. Application of Nanocellulose as Particle Stabilizer in Food Pickering Emulsion: Scope, Merits and Challenges. Trends Food Sci. Technol. 2021;110:573–583. doi: 10.1016/j.tifs.2021.02.027. DOI
Sanchez-Salvador J.L., Balea A., Monte M.C., Blanco A., Negro C. Pickering Emulsions Containing Cellulose Microfibers Produced by Mechanical Treatments as Stabilizer in the Food Industry. Appl. Sci. 2019;9:359. doi: 10.3390/app9020359. DOI
Zhai X., Lin D., Liu D., Yang X. Emulsions Stabilized by Nanofibers from Bacterial Cellulose: New Potential Food-Grade Pickering Emulsions. Food Res. Int. 2018;103:12–20. doi: 10.1016/j.foodres.2017.10.030. PubMed DOI
Angkuratipakorn T., Chung C., Koo C.K.W., Mundo J.L.M., McClements D.J., Decker E.A., Singkhonrat J. Development of Food-Grade Pickering Oil-in-Water Emulsions: Tailoring Functionality Using Mixtures of Cellulose Nanocrystals and Lauric Arginate. Food Chem. 2020;327:127039. doi: 10.1016/j.foodchem.2020.127039. PubMed DOI
Lim H.P., Ho K.W., Surjit Singh C.K., Ooi C.W., Tey B.T., Chan E.S. Pickering Emulsion Hydrogel as a Promising Food Delivery System: Synergistic Effects of Chitosan Pickering Emulsifier and Alginate Matrix on Hydrogel Stability and Emulsion Delivery. Food Hydrocoll. 2020;103:105659. doi: 10.1016/j.foodhyd.2020.105659. DOI
Alehosseini E., Jafari S.M., Shahiri Tabarestani H. Production of D-Limonene-Loaded Pickering Emulsions Stabilized by Chitosan Nanoparticles. Food Chem. 2021;354:129591. doi: 10.1016/j.foodchem.2021.129591. PubMed DOI
Wei Z., Cheng J., Huang Q. Food-Grade Pickering Emulsions Stabilized by Ovotransferrin Fibrils. Food Hydrocoll. 2019;94:592–602. doi: 10.1016/j.foodhyd.2019.04.005. DOI
Du Z., Li Q., Li J., Su E., Liu X., Wan Z., Yang X. Self-Assembled Egg Yolk Peptide Micellar Nanoparticles as a Versatile Emulsifier for Food-Grade Oil-in-Water Pickering Nanoemulsions. J. Agric. Food Chem. 2019;67:11728–11740. doi: 10.1021/acs.jafc.9b04595. PubMed DOI
Wei Z., Cheng Y., Huang Q. Heteroprotein Complex Formation of Ovotransferrin and Lysozyme: Fabrication of Food-Grade Particles to Stabilize Pickering Emulsions. Food Hydrocoll. 2019;96:190–200. doi: 10.1016/j.foodhyd.2019.05.024. DOI
Zhao J., Dai Y., Gao J., Deng Q., Wan C., Li B., Zhou B. Desalted Duck Egg White Nanogels Combined with κ-Carrageenan as Stabilisers for Food-Grade Pickering Emulsion. Int. J. Food Sci. Technol. 2021;57:2819–2829. doi: 10.1111/ijfs.15400. DOI
Feng X., Dai H., Ma L., Yu Y., Tang M., Li Y., Hu W., Liu T., Zhang Y. Food-Grade Gelatin Nanoparticles: Preparation, Characterization, and Preliminary Application for Stabilizing Pickering Emulsions. Foods. 2019;8:479. doi: 10.3390/foods8100479. PubMed DOI PMC
Feng X., Dai H., Ma L., Fu Y., Yu Y., Zhou H., Guo T., Zhu H., Wang H., Zhang Y. Properties of Pickering Emulsion Stabilized by Food-Grade Gelatin Nanoparticles: Influence of the Nanoparticles Concentration. Colloids Surf. B Biointerfaces. 2020;196:111294. doi: 10.1016/j.colsurfb.2020.111294. PubMed DOI
Burgos-Díaz C., Wandersleben T., Olivos M., Lichtin N., Bustamante M., Solans C. Food-Grade Pickering Stabilizers Obtained from a Protein-Rich Lupin Cultivar (AluProt-CGNA®): Chemical Characterization and Emulsifying Properties. Food Hydrocoll. 2019;87:847–857. doi: 10.1016/j.foodhyd.2018.09.018. DOI
Zhang S., Holmes M., Ettelaie R., Sarkar A. Pea Protein Microgel Particles as Pickering Stabilisers of Oil-in-Water Emulsions: Responsiveness to PH and Ionic Strength. Food Hydrocoll. 2020;102:105583. doi: 10.1016/j.foodhyd.2019.105583. DOI
Ning F., Ge Z., Qiu L., Wang X., Luo L., Xiong H., Huang Q. Double-Induced Se-Enriched Peanut Protein Nanoparticles Preparation, Characterization and Stabilized Food-Grade Pickering Emulsions. Food Hydrocoll. 2020;99:105308. doi: 10.1016/j.foodhyd.2019.105308. DOI
Qin X.S., Luo Z.G., Peng X.C. Fabrication and Characterization of Quinoa Protein Nanoparticle-Stabilized Food-Grade Pickering Emulsions with Ultrasound Treatment: Interfacial Adsorption/Arrangement Properties. J. Agric. Food Chem. 2018;66:4449–4457. doi: 10.1021/acs.jafc.8b00225. PubMed DOI
Wang Z., Zhang N., Chen C., He R., Ju X. Rapeseed Protein Nanogels As Novel Pickering Stabilizers for Oil-in-Water Emulsions. J. Agric. Food Chem. 2020;68:3607–3614. doi: 10.1021/acs.jafc.0c00128. PubMed DOI
Lu X., Liu H., Huang Q. Fabrication and Characterization of Resistant Starch Stabilized Pickering Emulsions. Food Hydrocoll. 2020;103:105703. doi: 10.1016/j.foodhyd.2020.105703. DOI
Lu X., Xiao J., Huang Q. Pickering Emulsions Stabilized by Media-Milled Starch Particles. Food Res. Int. 2018;105:140–149. doi: 10.1016/j.foodres.2017.11.006. PubMed DOI
Liu F., Ou S.Y., Tang C.H. Ca2+-Induced Soy Protein Nanoparticles as Pickering Stabilizers: Fabrication and Characterization. Food Hydrocoll. 2017;65:175–186. doi: 10.1016/j.foodhyd.2016.11.011. DOI
Ruan Q., Guo J., Wan Z., Ren J., Yang X. PH Switchable Pickering Emulsion Based on Soy Peptides Functionalized Calcium Phosphate Particles. Food Hydrocoll. 2017;70:219–228. doi: 10.1016/j.foodhyd.2017.03.023. DOI
Ren Z., Chen Z., Zhang Y., Lin X., Li B. Novel Food-Grade Pickering Emulsions Stabilized by Tea Water-Insoluble Protein Nanoparticles from Tea Residues. Food Hydrocoll. 2019;96:322–330. doi: 10.1016/j.foodhyd.2019.05.015. DOI
Tong Q., Yi Z., Ran Y., Chen X., Chen G., Li X. Green Tea Polyphenol-Stabilized Gel-Like High Internal Phase Pickering Emulsions. ACS Sustain. Chem. Eng. 2021;9:4076–4090. doi: 10.1021/acssuschemeng.0c08633. DOI
Liu Q., Zhang D.J., Huang Q. Engineering Miscellaneous Particles from Media-Milled Defatted Walnut Flour as Novel Food-Grade Pickering Stabilizers. Food Res. Int. 2021;147:110554. doi: 10.1016/j.foodres.2021.110554. PubMed DOI
Jiang F., Pan Y., Peng D., Huang W., Shen W., Jin W., Huang Q. Tunable Self-Assemblies of Whey Protein Isolate Fibrils for Pickering Emulsions Structure Regulation. Food Hydrocoll. 2022;124:107264. doi: 10.1016/j.foodhyd.2021.107264. DOI
Zhou B., Gao S., Li X., Liang H., Li S. Antioxidant Pickering Emulsions Stabilised by Zein/Tannic Acid Colloidal Particles with Low Concentration. Int. J. Food Sci. Technol. 2020;55:1924–1934. doi: 10.1111/ijfs.14419. DOI
Li W., Huang D., Jiang Y., Liu Y., Li F., Huang Q., Li D. Preparation of Pickering Emulsion Stabilised by Zein/Grape Seed Proanthocyanidins Binary Composite. Int. J. Food Sci. Technol. 2021;56:3763–3772. doi: 10.1111/ijfs.15067. DOI
Gould J., Garcia-Garcia G., Wolf B. Pickering Particles Prepared from Food Waste. Materials. 2016;9:791. doi: 10.3390/ma9090791. PubMed DOI PMC
Lafarga T., Hayes M. Bioactive Peptides from Meat Muscle and By-Products: Generation, Functionality and Application as Functional Ingredients. Meat Sci. 2014;98:227–239. doi: 10.1016/j.meatsci.2014.05.036. PubMed DOI
Schieber A., Stintzing F.C., Carle R. By-Products of Plant Food Processing as a Source of Functional Compounds—Recent Developments. Trends Food Sci. Technol. 2001;12:401–413. doi: 10.1016/S0924-2244(02)00012-2. DOI
Schröder A., Laguerre M., Sprakel J., Schroën K., Berton-Carabin C.C. Pickering Particles as Interfacial Reservoirs of Antioxidants. J. Colloid Interface Sci. 2020;575:489–498. doi: 10.1016/j.jcis.2020.04.069. PubMed DOI
Gençdağ E., Görgüç A., Yılmaz F.M. Recent Advances in the Recovery Techniques of Plant-Based Proteins from Agro-Industrial By-Products. Food Rev. Int. 2021;37:447–468. doi: 10.1080/87559129.2019.1709203. DOI
Galali Y., Omar Z.A., Sajadi S.M. Biologically Active Components in By-Products of Food Processing. Food Sci. Nutr. 2020;8:3004–3022. doi: 10.1002/fsn3.1665. PubMed DOI PMC
Kumar A., Li S., Cheng C.M., Lee D. Recent Developments in Phase Inversion Emulsification. Ind. Eng. Chem. Res. 2015;54:8375–8396. doi: 10.1021/acs.iecr.5b01122. DOI
Tang J., Quinlan P.J., Tam K.C. Stimuli-Responsive Pickering Emulsions: Recent Advances and Potential Applications. Soft Matter. 2015;11:3512–3529. doi: 10.1039/C5SM00247H. PubMed DOI
Huang X.N., Zhou F.Z., Yang T., Yin S.W., Tang C.H., Yang X.Q. Fabrication and Characterization of Pickering High Internal Phase Emulsions (HIPEs) Stabilized by Chitosan-Caseinophosphopeptides Nanocomplexes as Oral Delivery Vehicles. Food Hydrocoll. 2019;93:34–45. doi: 10.1016/j.foodhyd.2019.02.005. DOI
Albert C., Beladjine M., Tsapis N., Fattal E., Agnely F., Huang N. Pickering Emulsions: Preparation Processes, Key Parameters Governing Their Properties and Potential for Pharmaceutical Applications. J. Control. Release. 2019;309:302–332. doi: 10.1016/j.jconrel.2019.07.003. PubMed DOI
Costa A.L.R., Gomes A., Furtado G.d.F., Tibolla H., Menegalli F.C., Cunha R.L. Modulating in Vitro Digestibility of Pickering Emulsions Stabilized by Food-Grade Polysaccharides Particles. Carbohydr. Polym. 2020;227:115344. doi: 10.1016/j.carbpol.2019.115344. PubMed DOI
Liu W., Liu J., Salt L.J., Ridout M.J., Han J., Wilde P.J. Structural Stability of Liposome-Stabilized Oil-in-Water Pickering Emulsions and Their Fate during: In Vitro Digestion. Food Funct. 2019;10:7262–7274. doi: 10.1039/C9FO00967A. PubMed DOI
Gamot T.D., Bhattacharyya A.R., Sridhar T., Beach F., Tabor R.F., Majumder M. Synthesis and Stability of Water-in-Oil Emulsion Using Partially Reduced Graphene Oxide as a Tailored Surfactant. Langmuir. 2017;33:10311–10321. doi: 10.1021/acs.langmuir.7b02320. PubMed DOI
He Y., Wu F., Sun X., Li R., Guo Y., Li C., Zhang L., Xing F., Wang W., Gao J. Factors That Affect Pickering Emulsions Stabilized by Graphene Oxide. ACS Appl. Mater. Interfaces. 2013;5:4843–4855. doi: 10.1021/am400582n. PubMed DOI
Nonomura Y., Kobayashi N., Nakagawa N. Multiple Pickering Emulsions Stabilized by Microbowls. Langmuir. 2011;27:4557–4562. doi: 10.1021/la2003707. PubMed DOI
Shi A., Feng X., Wang Q., Adhikari B. Pickering and High Internal Phase Pickering Emulsions Stabilized by Protein-Based Particles: A Review of Synthesis, Application and Prospective. Food Hydrocoll. 2020;109:106117. doi: 10.1016/j.foodhyd.2020.106117. DOI
Liu Z., Geng S., Jiang Z., Liu B. Fabrication and Characterization of Food-Grade Pickering High Internal Emulsions Stabilized with β-Cyclodextrin. LWT. 2020;134:110134. doi: 10.1016/j.lwt.2020.110134. DOI
Marefati A., Sjöö M., Timgren A., Dejmek P., Rayner M. Fabrication of Encapsulated Oil Powders from Starch Granule Stabilized W/O/W Pickering Emulsions by Freeze-Drying. Food Hydrocoll. 2015;51:261–271. doi: 10.1016/j.foodhyd.2015.04.022. DOI
Stasse M., Laurichesse E., Ribaut T., Anthony O., Héroguez V., Schmitt V. Formulation of Concentrated Oil-in-Water-in-Oil Double Emulsions for Fragrance Encapsulation. Colloids Surf. A Physicochem. Eng. Asp. 2020;592:124564. doi: 10.1016/j.colsurfa.2020.124564. DOI
Low L.E., Siva S.P., Ho Y.K., Chan E.S., Tey B.T. Recent Advances of Characterization Techniques for the Formation, Physical Properties and Stability of Pickering Emulsion. Adv. Colloid Interface Sci. 2020;277:102117. doi: 10.1016/j.cis.2020.102117. PubMed DOI
Li G., Lee W.J., Liu N., Lu X., Tan C.P., Lai O.M., Qiu C., Wang Y. Stabilization Mechanism of Water-in-Oil Emulsions by Medium- and Long-Chain Diacylglycerol: Post-Crystallization vs. Pre-Crystallization. LWT. 2021;146:111649. doi: 10.1016/j.lwt.2021.111649. DOI
Gonzalez Ortiz D., Pochat-Bohatier C., Cambedouzou J., Bechelany M., Miele P. Current Trends in Pickering Emulsions: Particle Morphology and Applications. Engineering. 2020;6:468–482. doi: 10.1016/j.eng.2019.08.017. DOI
Tambe D., Paulis J., Sharma M.M. Factors Controlling the Stability of Colloid-Stabilized Emulsions. J. Colloid Interface Sci. 1995;171:244–253. doi: 10.1006/jcis.1995.1202. DOI
Abend S., Bonnke N., Gutschner U., Lagaly G. Stabilization of Emulsions by Heterocoagulation of Clay Minerals and Layered Double Hydroxides. Colloid Polym. Sci. 1998;276:730–737. doi: 10.1007/s003960050303. DOI
Destribats M., Rouvet M., Gehin-Delval C., Schmitt C., Binks B.P. Emulsions Stabilised by Whey Protein Microgel Particles: Towards Food-Grade Pickering Emulsions. Soft Matter. 2014;10:6941–6954. doi: 10.1039/C4SM00179F. PubMed DOI
Binks B.P., Desforges A., Duff D.G. Synergistic Stabilization of Emulsions by a Mixture of Surface-Active Nanoparticles and Surfactant. Langmuir. 2007;23:1098–1106. doi: 10.1021/la062510y. PubMed DOI
Chung C., Sher A., Rousset P., McClements D.J. Impact of electrostatic interactions on lecithin-stabilized model O/W emulsions. Food Biophys. 2018;13:292–303. doi: 10.1007/s11483-018-9535-6. DOI
Zou S., Wang C., Gao Q., Tong Z. Surfactant-Free Multiple Pickering Emulsions Stabilized by Combining Hydrophobic and Hydrophilic Nanoparticles. J. Dispers. Sci. Technol. 2013;34:173–181. doi: 10.1080/01932691.2012.657947. DOI
Vladisavljević G.T., Williams R.A. Recent Developments in Manufacturing Emulsions and Particulate Products Using Membranes. Adv. Colloid Interface Sci. 2005;113:1–20. doi: 10.1016/j.cis.2004.10.002. PubMed DOI
Vladisavljević G.T., Kobayashi I., Nakajima M. Production of Uniform Droplets Using Membrane, Microchannel and Microfluidic Emulsification Devices. Microfluid. Nanofluid. 2012;13:151–178. doi: 10.1007/s10404-012-0948-0. DOI
Krstić D.M., Höflinger W., Koris A.K., Vatai G.N. Energy-Saving Potential of Cross-Flow Ultrafiltration with Inserted Static Mixer: Application to an Oil-in-Water Emulsion. Sep. Purif. Technol. 2007;57:134–139. doi: 10.1016/j.seppur.2007.03.023. DOI
Scott K., Mahmood A.J., Jachuck R.J., Hu B. Intensified Membrane Filtration with Corrugated Membranes. J. Membr. Sci. 2000;173:1–16. doi: 10.1016/S0376-7388(00)00327-6. DOI
Manga M.S., Cayre O.J., Williams R.A., Biggs S., York D.W. Production of Solid-Stabilised Emulsions through Rotational Membrane Emulsification: Influence of Particle Adsorption Kinetics. Soft Matter. 2012;8:1532–1538. doi: 10.1039/C1SM06547E. DOI
Yuan Q., Cayre O.J., Manga M., Williams R.A., Biggs S. Preparation of Particle-Stabilized Emulsions Using Membrane Emulsification. Soft Matter. 2010;6:1580–1588. doi: 10.1039/b921372d. DOI
Huang Z., Jurewicz I., Muñoz E., Garriga R., Keddie J.L. Pickering Emulsions Stabilized by Carboxylated Nanodiamonds over a Broad PH Range. J. Colloid Interface Sci. 2022;608:2025–2038. doi: 10.1016/j.jcis.2021.10.130. PubMed DOI
Arkoumanis P.G., Norton I.T., Spyropoulos F. Pickering Particle and Emulsifier Co-Stabilised Emulsions Produced via Rotating Membrane Emulsification. Colloids Surf. A Physicochem. Eng. Asp. 2019;568:481–492. doi: 10.1016/j.colsurfa.2019.02.036. DOI
Zhao H., Yang Y., Chen Y., Li J., Wang L., Li C. A Review of Multiple Pickering Emulsions: Solid Stabilization, Preparation, Particle Effect, and Application. Chem. Eng. Sci. 2022;248:117085. doi: 10.1016/j.ces.2021.117085. DOI
Sabri F., Raphael W., Berthomier K., Fradette L., Tavares J.R., Virgilio N. One-Step Processing of Highly Viscous Multiple Pickering Emulsions. J. Colloid Interface Sci. 2020;560:536–545. doi: 10.1016/j.jcis.2019.10.098. PubMed DOI
Ma L., Zou L., McClements D.J., Liu W. One-Step Preparation of High Internal Phase Emulsions Using Natural Edible Pickering Stabilizers: Gliadin Nanoparticles/Gum Arabic. Food Hydrocoll. 2020;100:105381. doi: 10.1016/j.foodhyd.2019.105381. DOI
Ruan Q., Zeng L., Ren J., Yang X. One-Step Formation of a Double Pickering Emulsion via Modulation of the Oil Phase Composition. Food Funct. 2018;9:4508–4517. doi: 10.1039/C8FO00937F. PubMed DOI
Vladisavljević G.T., al Nuumani R., Nabavi S.A. Microfluidic Production of Multiple Emulsions. Micromachines. 2017;8:75. doi: 10.3390/mi8030075. DOI
Vladisavljević G.T. Recent Advances in the Production of Controllable Multiple Emulsions Using Microfabricated Devices. Particuology. 2016;24:1–17. doi: 10.1016/j.partic.2015.10.001. DOI
Chu L.Y., Utada A.S., Shah R.K., Kim J.W., Weitz D.A. Controllable Monodisperse Multiple Emulsions. Angew. Chem. Int. Ed. 2007;46:9128–9132. doi: 10.1002/ange.200701358. PubMed DOI
Shah R.K., Kim J.W., Agresti J.J., Weitz D.A., Chu L.Y. Fabrication of Monodisperse Thermosensitive Microgels and Gel Capsules in Microfluidic Devices. Soft Matter. 2008;4:2303–2309. doi: 10.1039/b808653m. DOI
Al Nuumani R., Vladisavljević G.T., Kasprzak M., Wolf B. In-Vitro Oral Digestion of Microfluidically Produced Monodispersed W/O/W Food Emulsions Loaded with Concentrated Sucrose Solution Designed to Enhance Sweetness Perception. J. Food Eng. 2020;267:109701. doi: 10.1016/j.jfoodeng.2019.109701. DOI
Thorsen T., Roberts R.W., Arnold F.H., Quake S.R. Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Phys. Rev. Lett. 2001;86:4163. doi: 10.1103/PhysRevLett.86.4163. PubMed DOI
Xu Q.Y., Nakajima M., Binks B.P. Preparation of Particle-Stabilized Oil-in-Water Emulsions with the Microchannel Emulsification Method. Colloids Surf. A Physicochem. Eng. Asp. 2005;262:94–100. doi: 10.1016/j.colsurfa.2005.04.019. DOI
Mackie A.R., Rafiee H., Malcolm P., Salt L., van Aken G. Specific Food Structures Supress Appetite through Reduced Gastric Emptying Rate. Am. J. Physiol. Gastrointest. Liver Physiol. 2013;304:G1038–G1043. doi: 10.1152/ajpgi.00060.2013. PubMed DOI PMC
Wang Y., Wang W., Jia H., Gao G., Wang X., Zhang X., Wang Y. Using Cellulose Nanofibers and Its Palm Oil Pickering Emulsion as Fat Substitutes in Emulsified Sausage. J. Food Sci. 2018;83:1740–1747. doi: 10.1111/1750-3841.14164. PubMed DOI
Xie Y., Lei Y., Rong J., Zhang X., Li J., Chen Y., Liang H., Li Y., Li B., Fang Z., et al. Physico-Chemical Properties of Reduced-Fat Biscuits Prepared Using O/W Cellulose-Based Pickering Emulsion. LWT. 2021;148:111745. doi: 10.1016/j.lwt.2021.111745. DOI
Feng X., Sun Y., Yang Y., Zhou X., Cen K., Yu C., Xu T., Tang X. Zein Nanoparticle Stabilized Pickering Emulsion Enriched with Cinnamon Oil and Its Effects on Pound Cakes. LWT. 2020;122:109025. doi: 10.1016/j.lwt.2020.109025. DOI
Aserin A. Multiple Emulsions: Technology and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2007.
Matos M., Timgren A., Sjöö M., Dejmek P., Rayner M. Preparation and Encapsulation Properties of Double Pickering Emulsions Stabilized by Quinoa Starch Granules. Colloids Surf. A Physicochem. Eng. Asp. 2013;423:147–153. doi: 10.1016/j.colsurfa.2013.01.060. DOI
Boostani S., Riazi M., Marefati A., Rayner M., Hosseini S.M.H. Development and Characterization of Medium and High Internal Phase Novel Multiple Pickering Emulsions Stabilized by Hordein Nanoparticles. Food Chem. 2022;372:131354. doi: 10.1016/j.foodchem.2021.131354. PubMed DOI
Jiang H., Zhang T., Smits J., Huang X., Maas M., Yin S., Ngai T. Edible High Internal Phase Pickering Emulsion with Double-Emulsion Morphology. Food Hydrocoll. 2021;111:106405. doi: 10.1016/j.foodhyd.2020.106405. DOI
Low L.E., Tan L.T.H., Goh B.H., Tey B.T., Ong B.H., Tang S.Y. Magnetic Cellulose Nanocrystal Stabilized Pickering Emulsions for Enhanced Bioactive Release and Human Colon Cancer Therapy. Int. J. Biol. Macromol. 2019;127:76–84. doi: 10.1016/j.ijbiomac.2019.01.037. PubMed DOI
Hu J., Zhou S., Sun Y., Fang X., Wu L. Fabrication, Properties and Applications of Janus Particles. Chem. Soc. Rev. 2012;41:4356–4378. doi: 10.1039/c2cs35032g. PubMed DOI
Walther A., Müller A.H.E. Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. 2013;113:5194–5261. doi: 10.1021/cr300089t. PubMed DOI
Kierulf A., Azizi M., Eskandarloo H., Whaley J., Liu W., Perez-Herrera M., You Z., Abbaspourrad A. Starch-Based Janus Particles: Proof-of-Concept Heterogeneous Design via a Spin-Coating Spray Approach. Food Hydrocoll. 2019;91:301–310. doi: 10.1016/j.foodhyd.2019.01.037. DOI
Jia R., Jiang H., Jin M., Wang X., Huang J. Silver/Chitosan-Based Janus Particles: Synthesis, Characterization, and Assessment of Antimicrobial Activity in Vivo and Vitro. Food Res. Int. 2015;78:433–441. doi: 10.1016/j.foodres.2015.08.035. PubMed DOI
Tu F., Lee D. One-Step Encapsulation and Triggered Release Based on Janus Particle-Stabilized Multiple Emulsions. Chem. Commun. 2014;50:15549–15552. doi: 10.1039/C4CC07854C. PubMed DOI
Zhang Q., Savagatrup S., Kaplonek P., Seeberger P.H., Swager T.M. Janus Emulsions for the Detection of Bacteria. ACS Cent. Sci. 2017;3:309–313. doi: 10.1021/acscentsci.7b00021. PubMed DOI PMC
Liao D.H., Zhao J.B., Gregersen H. Gastrointestinal Tract Modelling in Health and Disease. World J. Gastroenterol. 2009;15:169–176. doi: 10.3748/wjg.15.169. PubMed DOI PMC
Kitazawa H., Toba T., Itoh T., Kumano N., Adachi S., Yamaguchi T. Antitumoral Activity of Slime-Forming, Encapsulated Lctococcus Lactis Subsp. Cremoris Isol. Scand. Ropy Sour Milk Viili Nihon Chikusan Gakkaiho. 1991;62:277–283. doi: 10.2508/chikusan.62.277. DOI
Charteris W.P., Kelly P.M., Morelli L., Collins J.K. Development and Application of an in Vitro Methodology to Determine the Transit Tolerance of Potentially Probiotic Lactobacillus and Bifidobacterium Species in the Upper Human Gastrointestinal Tract. J. Appl. Microbiol. 1998;84:759–768. doi: 10.1046/j.1365-2672.1998.00407.x. PubMed DOI
Sumeri I., Arike L., Adamberg K., Paalme T. Single Bioreactor Gastrointestinal Tract Simulator for Study of Survival of Probiotic Bacteria. Appl. Microbiol. Biotechnol. 2008;80:317–324. doi: 10.1007/s00253-008-1553-8. PubMed DOI
Li C., Yu W., Wu P., Chen X.D. Current in Vitro Digestion Systems for Understanding Food Digestion in Human Upper Gastrointestinal Tract. Trends Food Sci. Technol. 2020;96:114–126. doi: 10.1016/j.tifs.2019.12.015. DOI
Mulet-Cabero A.I., Egger L., Portmann R., Ménard O., Marze S., Minekus M., le Feunteun S., Sarkar A., Grundy M.M.L., Carrière F., et al. A Standardised Semi-Dynamic: In Vitro Digestion Method Suitable for Food-an International Consensus. Food Funct. 2020;11:1702–1720. doi: 10.1039/C9FO01293A. PubMed DOI
Brodkorb A., Egger L., Alminger M., Alvito P., Assunção R., Ballance S., Bohn T., Bourlieu-Lacanal C., Boutrou R., Carrière F., et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019;14:991–1014. doi: 10.1038/s41596-018-0119-1. PubMed DOI
Sjöö M., Emek S.C., Hall T., Rayner M., Wahlgren M. Barrier Properties of Heat Treated Starch Pickering Emulsions. J. Colloid Interface Sci. 2015;450:182–188. doi: 10.1016/j.jcis.2015.03.004. PubMed DOI
Sarkar A., Goh K.K.T., Singh R.P., Singh H. Behaviour of an Oil-in-Water Emulsion Stabilized by β-Lactoglobulin in an in Vitro Gastric Model. Food Hydrocoll. 2009;23:1563–1569. doi: 10.1016/j.foodhyd.2008.10.014. DOI
Sarkar A., Goh K.K.T., Singh H. Properties of Oil-in-Water Emulsions Stabilized by β-Lactoglobulin in Simulated Gastric Fluid as Influenced by Ionic Strength and Presence of Mucin. Food Hydrocoll. 2010;24:534–541. doi: 10.1016/j.foodhyd.2009.12.005. DOI
Mao L., Miao S. Structuring Food Emulsions to Improve Nutrient Delivery During Digestion. Food Eng. Rev. 2015;7:439–451. doi: 10.1007/s12393-015-9108-0. DOI
Maldonado-Valderrama J., Woodward N.C., Patrick Gunning A., Ridout M.J., Husband F.A., Mackie A.R., Morris V.J., Wilde P.J. Interfacial Characterization of β-Lactoglobulin Networks: Displacement by Bile Salts. Langmuir. 2008;24:6759–6767. doi: 10.1021/la800551u. PubMed DOI
Patel V., Andrade J., Rousseau D. Fat Crystal-Stabilized Water-in-Oil Emulsion Breakdown and Marker Release during in Vitro Digestion. LWT. 2021;149:111802. doi: 10.1016/j.lwt.2021.111802. DOI
Lee Y.K., Chang Y.H. Structural and in Vitro Digestibility Properties of Esterified Maca Starch with Citric Acid and Its Application as an Oil-in-Water (O/W) Pickering Emulsion Stabilizer. Int. J. Biol. Macromol. 2019;134:798–806. doi: 10.1016/j.ijbiomac.2019.05.081. PubMed DOI
Li X., Kuang Y., Jiang Y., Dong H., Han W., Ding Q., Lou J., Wang Y., Cao T., Li J., et al. In Vitro Gastrointestinal Digestibility of Corn Oil-in-Water Pickering Emulsions Stabilized by Three Types of Nanocellulose. Carbohydr. Polym. 2022;277:118835. doi: 10.1016/j.carbpol.2021.118835. PubMed DOI
Marefati A., Wiege B., Abdul Hadi N., Dejmek P., Rayner M. In Vitro Intestinal Lipolysis of Emulsions Based on Starch Granule Pickering Stabilization. Food Hydrocoll. 2019;95:468–475. doi: 10.1016/j.foodhyd.2019.04.051. DOI
Xiao Y., Chen C., Wang B., Mao Z., Xu H., Zhong Y., Zhang L., Sui X., Qu S. In Vitro Digestion of Oil-in-Water Emulsions Stabilized by Regenerated Chitin. J. Agric. Food Chem. 2018;66:12344–12352. doi: 10.1021/acs.jafc.8b03873. PubMed DOI
Xiao J., Lu X., Huang Q. Double Emulsion Derived from Kafirin Nanoparticles Stabilized Pickering Emulsion: Fabrication, Microstructure, Stability and in Vitro Digestion Profile. Food Hydrocoll. 2017;62:230–238. doi: 10.1016/j.foodhyd.2016.08.014. DOI
Cai L., Cao M., Regenstein J. Slow-Release and Nontoxic Pickering Emulsion Platform for Antimicrobial Peptide. J. Agric. Food Chem. 2020;68:7453–7466. doi: 10.1021/acs.jafc.0c00874. PubMed DOI
Encapsulation: A Strategy to Deliver Therapeutics and Bioactive Compounds?