The Potential Application of Pickering Multiple Emulsions in Food

. 2022 May 25 ; 11 (11) : . [epub] 20220525

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35681307

Grantová podpora
Horizon 2020 No 952594 European Union

Emulsions stabilized by adsorbed particles-Pickering particles (PPs) instead of surfactants and emulsifiers are called Pickering emulsions. Here, we review the possible uses of Pickering multiple emulsions (PMEs) in the food industry. Food-grade PMEs are very complex systems with high potential for application in food technology. They can be prepared by traditional two-step emulsification processes but also using complex techniques, e.g., microfluidic devices. Compared to those stabilized with an emulsifier, PMEs provide more benefits such as lower susceptibility to coalescence, possible encapsulation of functional compounds in PMEs or even PPs with controlled release, etc. Additionally, the PPs can be made from food-grade by-products. Naturally, w/o/w emulsions in the Pickering form can also provide benefits such as fat reduction by partial replacement of fat phase with internal water phase and encapsulation of sensitive compounds in the internal water phase. A possible advanced type of PMEs may be stabilized by Janus particles, which can change their physicochemical properties and control properties of the whole emulsion systems. These emulsions have big potential as biosensors. In this paper, recent advances in the application of PPs in food emulsions are highlighted with emphasis on the potential application in food-grade PMEs.

Zobrazit více v PubMed

Lobato-Calleros C., Recillas-Mota M.T., Espinosa-Solares T., Alvarez-Ramirez J., Vernon-Carter E.J. Microstructural and Rheological Properties of Low-Fat Stirred Yoghurts Made with Skim Milk and Multiple Emulsions. J. Texture Stud. 2009;40:657–675. doi: 10.1111/j.1745-4603.2009.00204.x. DOI

Eslami P., Forootan K., Davarpanh L., Vahabzadeh F. Incorporation of Lactobacillus Casei into the Inner Phase of the Water-in-Oil-in-Water (W1/O/W2) Emulsion Prepared with β-Cyclodextrin and Bacterial Survival in a Model Gastric Environment. Appl. Food Biotechnol. 2020;7:171–182. doi: 10.22037/afb.v7i3.28877. DOI

Carlotti M.E., Gallarate M., Sapino S., Ugazio E., Morel S. W/O/W Multiple Emulsions for Dermatological and Cosmetic Use, Obtained with Ethylene Oxide Free Emulsifiers. J. Dispers. Sci. Technol. 2005;26:183–192. doi: 10.1081/DIS-200045584. DOI

Mahmood T., Akhtar N. Stability of a Cosmetic Multiple Emulsion Loaded with Green Tea Extract. Sci. World J. 2013;2013:153695. doi: 10.1155/2013/153695. PubMed DOI PMC

Lobato-Calleros C., Rodriguez E., Sandoval-Castilla O., Vernon-Carter E.J., Alvarez-Ramirez J. Reduced-Fat White Fresh Cheese-like Products Obtained from W1/O/W2 Multiple Emulsions: Viscoelastic and High-Resolution Image Analyses. Food Res. Int. 2006;39:678–685. doi: 10.1016/j.foodres.2006.01.006. DOI

Charcosset C. Preparation of Emulsions and Particles by Membrane Emulsification for the Food Processing Industry. J. Food Eng. 2009;92:241–249. doi: 10.1016/j.jfoodeng.2008.11.017. DOI

Dickinson E. Double Emulsions Stabilized by Food Biopolymers. Food Biophys. 2011;6:1–11. doi: 10.1007/s11483-010-9188-6. DOI

Garti N. Progress in Stabilization and Transport Phenomena of Double Emulsions in Food Applications. LWT Food Sci. Technol. 1997;30:222–235. doi: 10.1006/fstl.1996.0176. DOI

Jiménez-Colmenero F. Potential Applications of Multiple Emulsions in the Development of Healthy and Functional Foods. Food Res. Int. 2013;52:64–74. doi: 10.1016/j.foodres.2013.02.040. DOI

Klojdová I., Štětina J., Horáčková Š. W/O/W Multiple Emulsions as the Functional Component of Dairy Products. Chem. Eng. Technol. 2019;42:715–727. doi: 10.1002/ceat.201800586. DOI

Lamba H., Sathish K., Sabikhi L. Double Emulsions: Emerging Delivery System for Plant Bioactives. Food Bioprocess Technol. 2015;8:709–728.

Muschiolik G., Dickinson E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr. Rev. Food Sci. Food Saf. 2017;16:532–555. PubMed

Silva M., Chandrapala J. Ultrasonic Emulsification of Milk Proteins Stabilized Primary and Double Emulsions: A Review. Food Rev. Int. 2021:1–23. doi: 10.1080/87559129.2021.1934006. DOI

Muschiolik G. Multiple Emulsions for Food Use. Curr. Opin. Colloid Interface Sci. 2007;12:213–220.

Tekin Pulatsü E., Sahin S., Sumnu G. Characterization of Different Double-Emulsion Formulations Based on Food-Grade Emulsifiers and Stabilizers. J. Dispers. Sci. Technol. 2018;39:996–1002. doi: 10.1080/01932691.2017.1379021. DOI

Yildirim M., Sumnu G., Sahin S. The Effects of Emulsifier Type, Phase Ratio, and Homogenization Methods on Stability of the Double Emulsion. J. Dispers. Sci. Technol. 2017;38:807–814. doi: 10.1080/01932691.2016.1201768. DOI

Liu J., Zhou H., Tan Y., Muriel Mundo J.L., McClements D.J. Comparison of Plant-Based Emulsifier Performance in Water-in-Oil-in-Water Emulsions: Soy Protein Isolate, Pectin and Gum Arabic. J. Food Eng. 2021;307:110625. doi: 10.1016/j.jfoodeng.2021.110625. DOI

Schuch A., Helfenritter C., Funck M., Schuchmann H.P. Observations on the Influence of Different Biopolymers on Coalescence of Inner Water Droplets in W/O/W (Water-in-Oil-in-Water) Double Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2015;475:2–8. doi: 10.1016/j.colsurfa.2014.06.012. DOI

Mortensen A., Aguilar F., Lambré C. Re-evaluation of Polyglycerol Polyricinoleate (E 476) as a Food Additive. EFSA J. 2017;15:e04743. doi: 10.2903/j.efsa.2017.4743. PubMed DOI PMC

Arenas-Jal M., Suñé-Negre J.M., Pérez-Lozano P., García-Montoya E. Trends in the Food and Sports Nutrition Industry: A Review. Crit. Rev. Food Sci. Nutr. 2020;60:2405–2421. doi: 10.1080/10408398.2019.1643287. PubMed DOI

Salih N., Salimon J. A Review on New Trends, Challenges and Prospects of Ecofriendly Friendly Green Food-Grade Biolubricants. Biointerface Res. Appl. Chem. 2021;12:1185–1207. doi: 10.33263/briac121.11851207. DOI

Pickering S.U. CXCVI—Emulsions. J. Chem. Soc. Trans. 1907;91:2001–2021. doi: 10.1039/CT9079102001. DOI

Chevalier Y., Bolzinger M.A. Emulsions Stabilized with Solid Nanoparticles: Pickering Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2013;439:23–34. doi: 10.1016/j.colsurfa.2013.02.054. DOI

Dickinson E. Advances in Food Emulsions and Foams: Reflections on Research in the Neo-Pickering Era. Curr. Opin. Food Sci. 2020;33:52–60. doi: 10.1016/j.cofs.2019.12.009. DOI

Salerno A., Bolzinger M.A., Rolland P., Chevalier Y., Josse D., Briançon S. Pickering Emulsions for Skin Decontamination. Toxicol. Vitr. 2016;34:45–54. doi: 10.1016/j.tiv.2016.03.005. PubMed DOI

Yang Y., Fang Z., Chen X., Zhang W., Xie Y., Chen Y., Liu Z., Yuan W. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications. Front. Pharmacol. 2017;8:287. doi: 10.3389/fphar.2017.00287. PubMed DOI PMC

Abdullah , Weiss J., Ahmad T., Zhang C., Zhang H. A Review of Recent Progress on High Internal-Phase Pickering Emulsions in Food Science. Trends Food Sci. Technol. 2020;106:91–103. doi: 10.1016/j.tifs.2020.10.016. DOI

Wardana A.A., Koga A., Tanaka F., Tanaka F. Antifungal Features and Properties of Chitosan/Sandalwood Oil Pickering Emulsion Coating Stabilized by Appropriate Cellulose Nanofiber Dosage for Fresh Fruit Application. Sci. Rep. 2021;11:18412. doi: 10.1038/s41598-021-98074-w. PubMed DOI PMC

Bai L., Huan S., Xiang W., Rojas O.J. Pickering Emulsions by Combining Cellulose Nanofibrils and Nanocrystals: Phase Behavior and Depletion Stabilization. Green Chem. 2018;20:1571–1582. doi: 10.1039/C8GC00134K. DOI

Jiang H., Sheng Y., Ngai T. Pickering Emulsions: Versatility of Colloidal Particles and Recent Applications. Curr. Opin. Colloid Interface Sci. 2020;49:1–15. doi: 10.1016/j.cocis.2020.04.010. PubMed DOI PMC

Niroula A., Gamot T.D., Ooi C.W., Dhital S. Biomolecule-Based Pickering Food Emulsions: Intrinsic Components of Food Matrix, Recent Trends and Prospects. Food Hydrocoll. 2021;112:106303. doi: 10.1016/j.foodhyd.2020.106303. DOI

Berton-Carabin C.C., Schroën K. Pickering Emulsions for Food Applications: Background, Trends, and Challenges. Annu. Rev. Food Sci. Technol. 2015;6:263–297. doi: 10.1146/annurev-food-081114-110822. PubMed DOI

Chen L., Ao F., Ge X., Shen W. Food-Grade Pickering Emulsions: Preparation, Stabilization and Applications. Molecules. 2020;25:3202. doi: 10.3390/molecules25143202. PubMed DOI PMC

Wang Z., Wang Y. Tuning Amphiphilicity of Particles for Controllable Pickering Emulsion. Materials. 2016;9:903. doi: 10.3390/ma9110903. PubMed DOI PMC

Linke C., Drusch S. Pickering Emulsions in Foods—Opportunities and Limitations. Crit. Rev. Food Sci. Nutr. 2018;58:1971–1985. doi: 10.1080/10408398.2017.1290578. PubMed DOI

Zhu F. Starch Based Pickering Emulsions: Fabrication, Properties, and Applications. Trends Food Sci. Technol. 2019;85:129–137. doi: 10.1016/j.tifs.2019.01.012. DOI

Sharkawy A., Barreiro M.F., Rodrigues A.E. Chitosan-Based Pickering Emulsions and Their Applications: A Review. Carbohydr. Polym. 2020;250:116885. doi: 10.1016/j.carbpol.2020.116885. PubMed DOI

Jafari S.M., Sedaghat Doost A., Nikbakht Nasrabadi M., Boostani S., van der Meeren P. Phytoparticles for the Stabilization of Pickering Emulsions in the Formulation of Novel Food Colloidal Dispersions. Trends Food Sci. Technol. 2020;98:117–128. doi: 10.1016/j.tifs.2020.02.008. DOI

Zhao Q., Zaaboul F., Liu Y., Li J. Recent Advances on Protein-Based Pickering High Internal Phase Emulsions (Pickering HIPEs): Fabrication, Characterization, and Applications. Compr. Rev. Food Sci. Food Saf. 2020;19:1934–1968. doi: 10.1111/1541-4337.12570. PubMed DOI

Sarkar A., Dickinson E. Sustainable Food-Grade Pickering Emulsions Stabilized by Plant-Based Particles. Curr. Opin. Colloid Interface Sci. 2020;49:69–81. doi: 10.1016/j.cocis.2020.04.004. DOI

Xiao J., Li Y., Huang Q. Recent Advances on Food-Grade Particles Stabilized Pickering Emulsions: Fabrication, Characterization and Research Trends. Trends Food Sci. Technol. 2016;55:48–60. doi: 10.1016/j.tifs.2016.05.010. DOI

Murray B.S. Pickering Emulsions for Food and Drinks. Curr. Opin. Food Sci. 2019;27:57–63. doi: 10.1016/j.cofs.2019.05.004. DOI

Haaj S.B., Thielemans W., Magnin A., Boufi S. Starch Nanocrystal Stabilized Pickering Emulsion Polymerization for Nanocomposites with Improved Performance. ACS Appl. Mater. Interfaces. 2014;6:8263–8273. doi: 10.1021/am501077e. PubMed DOI

Lu Z., Ye F., Zhou G., Gao R., Qin D., Zhao G. Micronized Apple Pomace as a Novel Emulsifier for Food O/W Pickering Emulsion. Food Chem. 2020;330:127325. doi: 10.1016/j.foodchem.2020.127325. PubMed DOI

He K., Li Q., Li Y., Li B., Liu S. Water-Insoluble Dietary Fibers from Bamboo Shoot Used as Plant Food Particles for the Stabilization of O/W Pickering Emulsion. Food Chem. 2020;310:125925. doi: 10.1016/j.foodchem.2019.125925. PubMed DOI

Sun Y., Zhong S. Molecularly Imprinted Polymers Fabricated via Pickering Emulsions Stabilized Solely by Food-Grade Casein Colloidal Nanoparticles for Selective Protein Recognition. Anal. Bioanal. Chem. 2018;410:3133–3143. doi: 10.1007/s00216-018-1006-x. PubMed DOI

Guo Y., Wu C., Du M., Lin S., Xu X., Yu P. In-Situ Dispersion of Casein to Form Nanoparticles for Pickering High Internal Phase Emulsions. LWT. 2021;139:110538. doi: 10.1016/j.lwt.2020.110538. DOI

Li Q., Wu Y., Fang R., Lei C., Li Y., Li B., Pei Y., Luo X., Liu S. Application of Nanocellulose as Particle Stabilizer in Food Pickering Emulsion: Scope, Merits and Challenges. Trends Food Sci. Technol. 2021;110:573–583. doi: 10.1016/j.tifs.2021.02.027. DOI

Sanchez-Salvador J.L., Balea A., Monte M.C., Blanco A., Negro C. Pickering Emulsions Containing Cellulose Microfibers Produced by Mechanical Treatments as Stabilizer in the Food Industry. Appl. Sci. 2019;9:359. doi: 10.3390/app9020359. DOI

Zhai X., Lin D., Liu D., Yang X. Emulsions Stabilized by Nanofibers from Bacterial Cellulose: New Potential Food-Grade Pickering Emulsions. Food Res. Int. 2018;103:12–20. doi: 10.1016/j.foodres.2017.10.030. PubMed DOI

Angkuratipakorn T., Chung C., Koo C.K.W., Mundo J.L.M., McClements D.J., Decker E.A., Singkhonrat J. Development of Food-Grade Pickering Oil-in-Water Emulsions: Tailoring Functionality Using Mixtures of Cellulose Nanocrystals and Lauric Arginate. Food Chem. 2020;327:127039. doi: 10.1016/j.foodchem.2020.127039. PubMed DOI

Lim H.P., Ho K.W., Surjit Singh C.K., Ooi C.W., Tey B.T., Chan E.S. Pickering Emulsion Hydrogel as a Promising Food Delivery System: Synergistic Effects of Chitosan Pickering Emulsifier and Alginate Matrix on Hydrogel Stability and Emulsion Delivery. Food Hydrocoll. 2020;103:105659. doi: 10.1016/j.foodhyd.2020.105659. DOI

Alehosseini E., Jafari S.M., Shahiri Tabarestani H. Production of D-Limonene-Loaded Pickering Emulsions Stabilized by Chitosan Nanoparticles. Food Chem. 2021;354:129591. doi: 10.1016/j.foodchem.2021.129591. PubMed DOI

Wei Z., Cheng J., Huang Q. Food-Grade Pickering Emulsions Stabilized by Ovotransferrin Fibrils. Food Hydrocoll. 2019;94:592–602. doi: 10.1016/j.foodhyd.2019.04.005. DOI

Du Z., Li Q., Li J., Su E., Liu X., Wan Z., Yang X. Self-Assembled Egg Yolk Peptide Micellar Nanoparticles as a Versatile Emulsifier for Food-Grade Oil-in-Water Pickering Nanoemulsions. J. Agric. Food Chem. 2019;67:11728–11740. doi: 10.1021/acs.jafc.9b04595. PubMed DOI

Wei Z., Cheng Y., Huang Q. Heteroprotein Complex Formation of Ovotransferrin and Lysozyme: Fabrication of Food-Grade Particles to Stabilize Pickering Emulsions. Food Hydrocoll. 2019;96:190–200. doi: 10.1016/j.foodhyd.2019.05.024. DOI

Zhao J., Dai Y., Gao J., Deng Q., Wan C., Li B., Zhou B. Desalted Duck Egg White Nanogels Combined with κ-Carrageenan as Stabilisers for Food-Grade Pickering Emulsion. Int. J. Food Sci. Technol. 2021;57:2819–2829. doi: 10.1111/ijfs.15400. DOI

Feng X., Dai H., Ma L., Yu Y., Tang M., Li Y., Hu W., Liu T., Zhang Y. Food-Grade Gelatin Nanoparticles: Preparation, Characterization, and Preliminary Application for Stabilizing Pickering Emulsions. Foods. 2019;8:479. doi: 10.3390/foods8100479. PubMed DOI PMC

Feng X., Dai H., Ma L., Fu Y., Yu Y., Zhou H., Guo T., Zhu H., Wang H., Zhang Y. Properties of Pickering Emulsion Stabilized by Food-Grade Gelatin Nanoparticles: Influence of the Nanoparticles Concentration. Colloids Surf. B Biointerfaces. 2020;196:111294. doi: 10.1016/j.colsurfb.2020.111294. PubMed DOI

Burgos-Díaz C., Wandersleben T., Olivos M., Lichtin N., Bustamante M., Solans C. Food-Grade Pickering Stabilizers Obtained from a Protein-Rich Lupin Cultivar (AluProt-CGNA®): Chemical Characterization and Emulsifying Properties. Food Hydrocoll. 2019;87:847–857. doi: 10.1016/j.foodhyd.2018.09.018. DOI

Zhang S., Holmes M., Ettelaie R., Sarkar A. Pea Protein Microgel Particles as Pickering Stabilisers of Oil-in-Water Emulsions: Responsiveness to PH and Ionic Strength. Food Hydrocoll. 2020;102:105583. doi: 10.1016/j.foodhyd.2019.105583. DOI

Ning F., Ge Z., Qiu L., Wang X., Luo L., Xiong H., Huang Q. Double-Induced Se-Enriched Peanut Protein Nanoparticles Preparation, Characterization and Stabilized Food-Grade Pickering Emulsions. Food Hydrocoll. 2020;99:105308. doi: 10.1016/j.foodhyd.2019.105308. DOI

Qin X.S., Luo Z.G., Peng X.C. Fabrication and Characterization of Quinoa Protein Nanoparticle-Stabilized Food-Grade Pickering Emulsions with Ultrasound Treatment: Interfacial Adsorption/Arrangement Properties. J. Agric. Food Chem. 2018;66:4449–4457. doi: 10.1021/acs.jafc.8b00225. PubMed DOI

Wang Z., Zhang N., Chen C., He R., Ju X. Rapeseed Protein Nanogels As Novel Pickering Stabilizers for Oil-in-Water Emulsions. J. Agric. Food Chem. 2020;68:3607–3614. doi: 10.1021/acs.jafc.0c00128. PubMed DOI

Lu X., Liu H., Huang Q. Fabrication and Characterization of Resistant Starch Stabilized Pickering Emulsions. Food Hydrocoll. 2020;103:105703. doi: 10.1016/j.foodhyd.2020.105703. DOI

Lu X., Xiao J., Huang Q. Pickering Emulsions Stabilized by Media-Milled Starch Particles. Food Res. Int. 2018;105:140–149. doi: 10.1016/j.foodres.2017.11.006. PubMed DOI

Liu F., Ou S.Y., Tang C.H. Ca2+-Induced Soy Protein Nanoparticles as Pickering Stabilizers: Fabrication and Characterization. Food Hydrocoll. 2017;65:175–186. doi: 10.1016/j.foodhyd.2016.11.011. DOI

Ruan Q., Guo J., Wan Z., Ren J., Yang X. PH Switchable Pickering Emulsion Based on Soy Peptides Functionalized Calcium Phosphate Particles. Food Hydrocoll. 2017;70:219–228. doi: 10.1016/j.foodhyd.2017.03.023. DOI

Ren Z., Chen Z., Zhang Y., Lin X., Li B. Novel Food-Grade Pickering Emulsions Stabilized by Tea Water-Insoluble Protein Nanoparticles from Tea Residues. Food Hydrocoll. 2019;96:322–330. doi: 10.1016/j.foodhyd.2019.05.015. DOI

Tong Q., Yi Z., Ran Y., Chen X., Chen G., Li X. Green Tea Polyphenol-Stabilized Gel-Like High Internal Phase Pickering Emulsions. ACS Sustain. Chem. Eng. 2021;9:4076–4090. doi: 10.1021/acssuschemeng.0c08633. DOI

Liu Q., Zhang D.J., Huang Q. Engineering Miscellaneous Particles from Media-Milled Defatted Walnut Flour as Novel Food-Grade Pickering Stabilizers. Food Res. Int. 2021;147:110554. doi: 10.1016/j.foodres.2021.110554. PubMed DOI

Jiang F., Pan Y., Peng D., Huang W., Shen W., Jin W., Huang Q. Tunable Self-Assemblies of Whey Protein Isolate Fibrils for Pickering Emulsions Structure Regulation. Food Hydrocoll. 2022;124:107264. doi: 10.1016/j.foodhyd.2021.107264. DOI

Zhou B., Gao S., Li X., Liang H., Li S. Antioxidant Pickering Emulsions Stabilised by Zein/Tannic Acid Colloidal Particles with Low Concentration. Int. J. Food Sci. Technol. 2020;55:1924–1934. doi: 10.1111/ijfs.14419. DOI

Li W., Huang D., Jiang Y., Liu Y., Li F., Huang Q., Li D. Preparation of Pickering Emulsion Stabilised by Zein/Grape Seed Proanthocyanidins Binary Composite. Int. J. Food Sci. Technol. 2021;56:3763–3772. doi: 10.1111/ijfs.15067. DOI

Gould J., Garcia-Garcia G., Wolf B. Pickering Particles Prepared from Food Waste. Materials. 2016;9:791. doi: 10.3390/ma9090791. PubMed DOI PMC

Lafarga T., Hayes M. Bioactive Peptides from Meat Muscle and By-Products: Generation, Functionality and Application as Functional Ingredients. Meat Sci. 2014;98:227–239. doi: 10.1016/j.meatsci.2014.05.036. PubMed DOI

Schieber A., Stintzing F.C., Carle R. By-Products of Plant Food Processing as a Source of Functional Compounds—Recent Developments. Trends Food Sci. Technol. 2001;12:401–413. doi: 10.1016/S0924-2244(02)00012-2. DOI

Schröder A., Laguerre M., Sprakel J., Schroën K., Berton-Carabin C.C. Pickering Particles as Interfacial Reservoirs of Antioxidants. J. Colloid Interface Sci. 2020;575:489–498. doi: 10.1016/j.jcis.2020.04.069. PubMed DOI

Gençdağ E., Görgüç A., Yılmaz F.M. Recent Advances in the Recovery Techniques of Plant-Based Proteins from Agro-Industrial By-Products. Food Rev. Int. 2021;37:447–468. doi: 10.1080/87559129.2019.1709203. DOI

Galali Y., Omar Z.A., Sajadi S.M. Biologically Active Components in By-Products of Food Processing. Food Sci. Nutr. 2020;8:3004–3022. doi: 10.1002/fsn3.1665. PubMed DOI PMC

Kumar A., Li S., Cheng C.M., Lee D. Recent Developments in Phase Inversion Emulsification. Ind. Eng. Chem. Res. 2015;54:8375–8396. doi: 10.1021/acs.iecr.5b01122. DOI

Tang J., Quinlan P.J., Tam K.C. Stimuli-Responsive Pickering Emulsions: Recent Advances and Potential Applications. Soft Matter. 2015;11:3512–3529. doi: 10.1039/C5SM00247H. PubMed DOI

Huang X.N., Zhou F.Z., Yang T., Yin S.W., Tang C.H., Yang X.Q. Fabrication and Characterization of Pickering High Internal Phase Emulsions (HIPEs) Stabilized by Chitosan-Caseinophosphopeptides Nanocomplexes as Oral Delivery Vehicles. Food Hydrocoll. 2019;93:34–45. doi: 10.1016/j.foodhyd.2019.02.005. DOI

Albert C., Beladjine M., Tsapis N., Fattal E., Agnely F., Huang N. Pickering Emulsions: Preparation Processes, Key Parameters Governing Their Properties and Potential for Pharmaceutical Applications. J. Control. Release. 2019;309:302–332. doi: 10.1016/j.jconrel.2019.07.003. PubMed DOI

Costa A.L.R., Gomes A., Furtado G.d.F., Tibolla H., Menegalli F.C., Cunha R.L. Modulating in Vitro Digestibility of Pickering Emulsions Stabilized by Food-Grade Polysaccharides Particles. Carbohydr. Polym. 2020;227:115344. doi: 10.1016/j.carbpol.2019.115344. PubMed DOI

Liu W., Liu J., Salt L.J., Ridout M.J., Han J., Wilde P.J. Structural Stability of Liposome-Stabilized Oil-in-Water Pickering Emulsions and Their Fate during: In Vitro Digestion. Food Funct. 2019;10:7262–7274. doi: 10.1039/C9FO00967A. PubMed DOI

Gamot T.D., Bhattacharyya A.R., Sridhar T., Beach F., Tabor R.F., Majumder M. Synthesis and Stability of Water-in-Oil Emulsion Using Partially Reduced Graphene Oxide as a Tailored Surfactant. Langmuir. 2017;33:10311–10321. doi: 10.1021/acs.langmuir.7b02320. PubMed DOI

He Y., Wu F., Sun X., Li R., Guo Y., Li C., Zhang L., Xing F., Wang W., Gao J. Factors That Affect Pickering Emulsions Stabilized by Graphene Oxide. ACS Appl. Mater. Interfaces. 2013;5:4843–4855. doi: 10.1021/am400582n. PubMed DOI

Nonomura Y., Kobayashi N., Nakagawa N. Multiple Pickering Emulsions Stabilized by Microbowls. Langmuir. 2011;27:4557–4562. doi: 10.1021/la2003707. PubMed DOI

Shi A., Feng X., Wang Q., Adhikari B. Pickering and High Internal Phase Pickering Emulsions Stabilized by Protein-Based Particles: A Review of Synthesis, Application and Prospective. Food Hydrocoll. 2020;109:106117. doi: 10.1016/j.foodhyd.2020.106117. DOI

Liu Z., Geng S., Jiang Z., Liu B. Fabrication and Characterization of Food-Grade Pickering High Internal Emulsions Stabilized with β-Cyclodextrin. LWT. 2020;134:110134. doi: 10.1016/j.lwt.2020.110134. DOI

Marefati A., Sjöö M., Timgren A., Dejmek P., Rayner M. Fabrication of Encapsulated Oil Powders from Starch Granule Stabilized W/O/W Pickering Emulsions by Freeze-Drying. Food Hydrocoll. 2015;51:261–271. doi: 10.1016/j.foodhyd.2015.04.022. DOI

Stasse M., Laurichesse E., Ribaut T., Anthony O., Héroguez V., Schmitt V. Formulation of Concentrated Oil-in-Water-in-Oil Double Emulsions for Fragrance Encapsulation. Colloids Surf. A Physicochem. Eng. Asp. 2020;592:124564. doi: 10.1016/j.colsurfa.2020.124564. DOI

Low L.E., Siva S.P., Ho Y.K., Chan E.S., Tey B.T. Recent Advances of Characterization Techniques for the Formation, Physical Properties and Stability of Pickering Emulsion. Adv. Colloid Interface Sci. 2020;277:102117. doi: 10.1016/j.cis.2020.102117. PubMed DOI

Li G., Lee W.J., Liu N., Lu X., Tan C.P., Lai O.M., Qiu C., Wang Y. Stabilization Mechanism of Water-in-Oil Emulsions by Medium- and Long-Chain Diacylglycerol: Post-Crystallization vs. Pre-Crystallization. LWT. 2021;146:111649. doi: 10.1016/j.lwt.2021.111649. DOI

Gonzalez Ortiz D., Pochat-Bohatier C., Cambedouzou J., Bechelany M., Miele P. Current Trends in Pickering Emulsions: Particle Morphology and Applications. Engineering. 2020;6:468–482. doi: 10.1016/j.eng.2019.08.017. DOI

Tambe D., Paulis J., Sharma M.M. Factors Controlling the Stability of Colloid-Stabilized Emulsions. J. Colloid Interface Sci. 1995;171:244–253. doi: 10.1006/jcis.1995.1202. DOI

Abend S., Bonnke N., Gutschner U., Lagaly G. Stabilization of Emulsions by Heterocoagulation of Clay Minerals and Layered Double Hydroxides. Colloid Polym. Sci. 1998;276:730–737. doi: 10.1007/s003960050303. DOI

Destribats M., Rouvet M., Gehin-Delval C., Schmitt C., Binks B.P. Emulsions Stabilised by Whey Protein Microgel Particles: Towards Food-Grade Pickering Emulsions. Soft Matter. 2014;10:6941–6954. doi: 10.1039/C4SM00179F. PubMed DOI

Binks B.P., Desforges A., Duff D.G. Synergistic Stabilization of Emulsions by a Mixture of Surface-Active Nanoparticles and Surfactant. Langmuir. 2007;23:1098–1106. doi: 10.1021/la062510y. PubMed DOI

Chung C., Sher A., Rousset P., McClements D.J. Impact of electrostatic interactions on lecithin-stabilized model O/W emulsions. Food Biophys. 2018;13:292–303. doi: 10.1007/s11483-018-9535-6. DOI

Zou S., Wang C., Gao Q., Tong Z. Surfactant-Free Multiple Pickering Emulsions Stabilized by Combining Hydrophobic and Hydrophilic Nanoparticles. J. Dispers. Sci. Technol. 2013;34:173–181. doi: 10.1080/01932691.2012.657947. DOI

Vladisavljević G.T., Williams R.A. Recent Developments in Manufacturing Emulsions and Particulate Products Using Membranes. Adv. Colloid Interface Sci. 2005;113:1–20. doi: 10.1016/j.cis.2004.10.002. PubMed DOI

Vladisavljević G.T., Kobayashi I., Nakajima M. Production of Uniform Droplets Using Membrane, Microchannel and Microfluidic Emulsification Devices. Microfluid. Nanofluid. 2012;13:151–178. doi: 10.1007/s10404-012-0948-0. DOI

Krstić D.M., Höflinger W., Koris A.K., Vatai G.N. Energy-Saving Potential of Cross-Flow Ultrafiltration with Inserted Static Mixer: Application to an Oil-in-Water Emulsion. Sep. Purif. Technol. 2007;57:134–139. doi: 10.1016/j.seppur.2007.03.023. DOI

Scott K., Mahmood A.J., Jachuck R.J., Hu B. Intensified Membrane Filtration with Corrugated Membranes. J. Membr. Sci. 2000;173:1–16. doi: 10.1016/S0376-7388(00)00327-6. DOI

Manga M.S., Cayre O.J., Williams R.A., Biggs S., York D.W. Production of Solid-Stabilised Emulsions through Rotational Membrane Emulsification: Influence of Particle Adsorption Kinetics. Soft Matter. 2012;8:1532–1538. doi: 10.1039/C1SM06547E. DOI

Yuan Q., Cayre O.J., Manga M., Williams R.A., Biggs S. Preparation of Particle-Stabilized Emulsions Using Membrane Emulsification. Soft Matter. 2010;6:1580–1588. doi: 10.1039/b921372d. DOI

Huang Z., Jurewicz I., Muñoz E., Garriga R., Keddie J.L. Pickering Emulsions Stabilized by Carboxylated Nanodiamonds over a Broad PH Range. J. Colloid Interface Sci. 2022;608:2025–2038. doi: 10.1016/j.jcis.2021.10.130. PubMed DOI

Arkoumanis P.G., Norton I.T., Spyropoulos F. Pickering Particle and Emulsifier Co-Stabilised Emulsions Produced via Rotating Membrane Emulsification. Colloids Surf. A Physicochem. Eng. Asp. 2019;568:481–492. doi: 10.1016/j.colsurfa.2019.02.036. DOI

Zhao H., Yang Y., Chen Y., Li J., Wang L., Li C. A Review of Multiple Pickering Emulsions: Solid Stabilization, Preparation, Particle Effect, and Application. Chem. Eng. Sci. 2022;248:117085. doi: 10.1016/j.ces.2021.117085. DOI

Sabri F., Raphael W., Berthomier K., Fradette L., Tavares J.R., Virgilio N. One-Step Processing of Highly Viscous Multiple Pickering Emulsions. J. Colloid Interface Sci. 2020;560:536–545. doi: 10.1016/j.jcis.2019.10.098. PubMed DOI

Ma L., Zou L., McClements D.J., Liu W. One-Step Preparation of High Internal Phase Emulsions Using Natural Edible Pickering Stabilizers: Gliadin Nanoparticles/Gum Arabic. Food Hydrocoll. 2020;100:105381. doi: 10.1016/j.foodhyd.2019.105381. DOI

Ruan Q., Zeng L., Ren J., Yang X. One-Step Formation of a Double Pickering Emulsion via Modulation of the Oil Phase Composition. Food Funct. 2018;9:4508–4517. doi: 10.1039/C8FO00937F. PubMed DOI

Vladisavljević G.T., al Nuumani R., Nabavi S.A. Microfluidic Production of Multiple Emulsions. Micromachines. 2017;8:75. doi: 10.3390/mi8030075. DOI

Vladisavljević G.T. Recent Advances in the Production of Controllable Multiple Emulsions Using Microfabricated Devices. Particuology. 2016;24:1–17. doi: 10.1016/j.partic.2015.10.001. DOI

Chu L.Y., Utada A.S., Shah R.K., Kim J.W., Weitz D.A. Controllable Monodisperse Multiple Emulsions. Angew. Chem. Int. Ed. 2007;46:9128–9132. doi: 10.1002/ange.200701358. PubMed DOI

Shah R.K., Kim J.W., Agresti J.J., Weitz D.A., Chu L.Y. Fabrication of Monodisperse Thermosensitive Microgels and Gel Capsules in Microfluidic Devices. Soft Matter. 2008;4:2303–2309. doi: 10.1039/b808653m. DOI

Al Nuumani R., Vladisavljević G.T., Kasprzak M., Wolf B. In-Vitro Oral Digestion of Microfluidically Produced Monodispersed W/O/W Food Emulsions Loaded with Concentrated Sucrose Solution Designed to Enhance Sweetness Perception. J. Food Eng. 2020;267:109701. doi: 10.1016/j.jfoodeng.2019.109701. DOI

Thorsen T., Roberts R.W., Arnold F.H., Quake S.R. Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Phys. Rev. Lett. 2001;86:4163. doi: 10.1103/PhysRevLett.86.4163. PubMed DOI

Xu Q.Y., Nakajima M., Binks B.P. Preparation of Particle-Stabilized Oil-in-Water Emulsions with the Microchannel Emulsification Method. Colloids Surf. A Physicochem. Eng. Asp. 2005;262:94–100. doi: 10.1016/j.colsurfa.2005.04.019. DOI

Mackie A.R., Rafiee H., Malcolm P., Salt L., van Aken G. Specific Food Structures Supress Appetite through Reduced Gastric Emptying Rate. Am. J. Physiol. Gastrointest. Liver Physiol. 2013;304:G1038–G1043. doi: 10.1152/ajpgi.00060.2013. PubMed DOI PMC

Wang Y., Wang W., Jia H., Gao G., Wang X., Zhang X., Wang Y. Using Cellulose Nanofibers and Its Palm Oil Pickering Emulsion as Fat Substitutes in Emulsified Sausage. J. Food Sci. 2018;83:1740–1747. doi: 10.1111/1750-3841.14164. PubMed DOI

Xie Y., Lei Y., Rong J., Zhang X., Li J., Chen Y., Liang H., Li Y., Li B., Fang Z., et al. Physico-Chemical Properties of Reduced-Fat Biscuits Prepared Using O/W Cellulose-Based Pickering Emulsion. LWT. 2021;148:111745. doi: 10.1016/j.lwt.2021.111745. DOI

Feng X., Sun Y., Yang Y., Zhou X., Cen K., Yu C., Xu T., Tang X. Zein Nanoparticle Stabilized Pickering Emulsion Enriched with Cinnamon Oil and Its Effects on Pound Cakes. LWT. 2020;122:109025. doi: 10.1016/j.lwt.2020.109025. DOI

Aserin A. Multiple Emulsions: Technology and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2007.

Matos M., Timgren A., Sjöö M., Dejmek P., Rayner M. Preparation and Encapsulation Properties of Double Pickering Emulsions Stabilized by Quinoa Starch Granules. Colloids Surf. A Physicochem. Eng. Asp. 2013;423:147–153. doi: 10.1016/j.colsurfa.2013.01.060. DOI

Boostani S., Riazi M., Marefati A., Rayner M., Hosseini S.M.H. Development and Characterization of Medium and High Internal Phase Novel Multiple Pickering Emulsions Stabilized by Hordein Nanoparticles. Food Chem. 2022;372:131354. doi: 10.1016/j.foodchem.2021.131354. PubMed DOI

Jiang H., Zhang T., Smits J., Huang X., Maas M., Yin S., Ngai T. Edible High Internal Phase Pickering Emulsion with Double-Emulsion Morphology. Food Hydrocoll. 2021;111:106405. doi: 10.1016/j.foodhyd.2020.106405. DOI

Low L.E., Tan L.T.H., Goh B.H., Tey B.T., Ong B.H., Tang S.Y. Magnetic Cellulose Nanocrystal Stabilized Pickering Emulsions for Enhanced Bioactive Release and Human Colon Cancer Therapy. Int. J. Biol. Macromol. 2019;127:76–84. doi: 10.1016/j.ijbiomac.2019.01.037. PubMed DOI

Hu J., Zhou S., Sun Y., Fang X., Wu L. Fabrication, Properties and Applications of Janus Particles. Chem. Soc. Rev. 2012;41:4356–4378. doi: 10.1039/c2cs35032g. PubMed DOI

Walther A., Müller A.H.E. Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chem. Rev. 2013;113:5194–5261. doi: 10.1021/cr300089t. PubMed DOI

Kierulf A., Azizi M., Eskandarloo H., Whaley J., Liu W., Perez-Herrera M., You Z., Abbaspourrad A. Starch-Based Janus Particles: Proof-of-Concept Heterogeneous Design via a Spin-Coating Spray Approach. Food Hydrocoll. 2019;91:301–310. doi: 10.1016/j.foodhyd.2019.01.037. DOI

Jia R., Jiang H., Jin M., Wang X., Huang J. Silver/Chitosan-Based Janus Particles: Synthesis, Characterization, and Assessment of Antimicrobial Activity in Vivo and Vitro. Food Res. Int. 2015;78:433–441. doi: 10.1016/j.foodres.2015.08.035. PubMed DOI

Tu F., Lee D. One-Step Encapsulation and Triggered Release Based on Janus Particle-Stabilized Multiple Emulsions. Chem. Commun. 2014;50:15549–15552. doi: 10.1039/C4CC07854C. PubMed DOI

Zhang Q., Savagatrup S., Kaplonek P., Seeberger P.H., Swager T.M. Janus Emulsions for the Detection of Bacteria. ACS Cent. Sci. 2017;3:309–313. doi: 10.1021/acscentsci.7b00021. PubMed DOI PMC

Liao D.H., Zhao J.B., Gregersen H. Gastrointestinal Tract Modelling in Health and Disease. World J. Gastroenterol. 2009;15:169–176. doi: 10.3748/wjg.15.169. PubMed DOI PMC

Kitazawa H., Toba T., Itoh T., Kumano N., Adachi S., Yamaguchi T. Antitumoral Activity of Slime-Forming, Encapsulated Lctococcus Lactis Subsp. Cremoris Isol. Scand. Ropy Sour Milk Viili Nihon Chikusan Gakkaiho. 1991;62:277–283. doi: 10.2508/chikusan.62.277. DOI

Charteris W.P., Kelly P.M., Morelli L., Collins J.K. Development and Application of an in Vitro Methodology to Determine the Transit Tolerance of Potentially Probiotic Lactobacillus and Bifidobacterium Species in the Upper Human Gastrointestinal Tract. J. Appl. Microbiol. 1998;84:759–768. doi: 10.1046/j.1365-2672.1998.00407.x. PubMed DOI

Sumeri I., Arike L., Adamberg K., Paalme T. Single Bioreactor Gastrointestinal Tract Simulator for Study of Survival of Probiotic Bacteria. Appl. Microbiol. Biotechnol. 2008;80:317–324. doi: 10.1007/s00253-008-1553-8. PubMed DOI

Li C., Yu W., Wu P., Chen X.D. Current in Vitro Digestion Systems for Understanding Food Digestion in Human Upper Gastrointestinal Tract. Trends Food Sci. Technol. 2020;96:114–126. doi: 10.1016/j.tifs.2019.12.015. DOI

Mulet-Cabero A.I., Egger L., Portmann R., Ménard O., Marze S., Minekus M., le Feunteun S., Sarkar A., Grundy M.M.L., Carrière F., et al. A Standardised Semi-Dynamic: In Vitro Digestion Method Suitable for Food-an International Consensus. Food Funct. 2020;11:1702–1720. doi: 10.1039/C9FO01293A. PubMed DOI

Brodkorb A., Egger L., Alminger M., Alvito P., Assunção R., Ballance S., Bohn T., Bourlieu-Lacanal C., Boutrou R., Carrière F., et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019;14:991–1014. doi: 10.1038/s41596-018-0119-1. PubMed DOI

Sjöö M., Emek S.C., Hall T., Rayner M., Wahlgren M. Barrier Properties of Heat Treated Starch Pickering Emulsions. J. Colloid Interface Sci. 2015;450:182–188. doi: 10.1016/j.jcis.2015.03.004. PubMed DOI

Sarkar A., Goh K.K.T., Singh R.P., Singh H. Behaviour of an Oil-in-Water Emulsion Stabilized by β-Lactoglobulin in an in Vitro Gastric Model. Food Hydrocoll. 2009;23:1563–1569. doi: 10.1016/j.foodhyd.2008.10.014. DOI

Sarkar A., Goh K.K.T., Singh H. Properties of Oil-in-Water Emulsions Stabilized by β-Lactoglobulin in Simulated Gastric Fluid as Influenced by Ionic Strength and Presence of Mucin. Food Hydrocoll. 2010;24:534–541. doi: 10.1016/j.foodhyd.2009.12.005. DOI

Mao L., Miao S. Structuring Food Emulsions to Improve Nutrient Delivery During Digestion. Food Eng. Rev. 2015;7:439–451. doi: 10.1007/s12393-015-9108-0. DOI

Maldonado-Valderrama J., Woodward N.C., Patrick Gunning A., Ridout M.J., Husband F.A., Mackie A.R., Morris V.J., Wilde P.J. Interfacial Characterization of β-Lactoglobulin Networks: Displacement by Bile Salts. Langmuir. 2008;24:6759–6767. doi: 10.1021/la800551u. PubMed DOI

Patel V., Andrade J., Rousseau D. Fat Crystal-Stabilized Water-in-Oil Emulsion Breakdown and Marker Release during in Vitro Digestion. LWT. 2021;149:111802. doi: 10.1016/j.lwt.2021.111802. DOI

Lee Y.K., Chang Y.H. Structural and in Vitro Digestibility Properties of Esterified Maca Starch with Citric Acid and Its Application as an Oil-in-Water (O/W) Pickering Emulsion Stabilizer. Int. J. Biol. Macromol. 2019;134:798–806. doi: 10.1016/j.ijbiomac.2019.05.081. PubMed DOI

Li X., Kuang Y., Jiang Y., Dong H., Han W., Ding Q., Lou J., Wang Y., Cao T., Li J., et al. In Vitro Gastrointestinal Digestibility of Corn Oil-in-Water Pickering Emulsions Stabilized by Three Types of Nanocellulose. Carbohydr. Polym. 2022;277:118835. doi: 10.1016/j.carbpol.2021.118835. PubMed DOI

Marefati A., Wiege B., Abdul Hadi N., Dejmek P., Rayner M. In Vitro Intestinal Lipolysis of Emulsions Based on Starch Granule Pickering Stabilization. Food Hydrocoll. 2019;95:468–475. doi: 10.1016/j.foodhyd.2019.04.051. DOI

Xiao Y., Chen C., Wang B., Mao Z., Xu H., Zhong Y., Zhang L., Sui X., Qu S. In Vitro Digestion of Oil-in-Water Emulsions Stabilized by Regenerated Chitin. J. Agric. Food Chem. 2018;66:12344–12352. doi: 10.1021/acs.jafc.8b03873. PubMed DOI

Xiao J., Lu X., Huang Q. Double Emulsion Derived from Kafirin Nanoparticles Stabilized Pickering Emulsion: Fabrication, Microstructure, Stability and in Vitro Digestion Profile. Food Hydrocoll. 2017;62:230–238. doi: 10.1016/j.foodhyd.2016.08.014. DOI

Cai L., Cao M., Regenstein J. Slow-Release and Nontoxic Pickering Emulsion Platform for Antimicrobial Peptide. J. Agric. Food Chem. 2020;68:7453–7466. doi: 10.1021/acs.jafc.0c00874. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...