Inter-placental variability is not a major factor affecting the healing efficiency of amniotic membrane when used for treating chronic non-healing wounds
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NV18-08-00106
Ministerstvo Zdravotnictví Ceské Republiky
BBMRI_CZ LM2018125
Ministerstvo Školství, Mládeže a Tělovýchovy
Cooperacio
Univerzita Karlova v Praze
Medical Diagnostics
Univerzita Karlova v Praze
Basic Medical Sciences
Univerzita Karlova v Praze
PubMed
37227562
PubMed Central
PMC10616215
DOI
10.1007/s10561-023-10096-y
PII: 10.1007/s10561-023-10096-y
Knihovny.cz E-zdroje
- Klíčová slova
- Amniotic membrane, Placenta, Wound healing efficiency,
- MeSH
- amnion * transplantace MeSH
- hojení ran MeSH
- kryoprezervace MeSH
- lidé MeSH
- placenta * MeSH
- retrospektivní studie MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
This study aimed to evaluate the efficacy of cryopreserved amniotic membrane (AM) grafts in chronic wound healing, including the mean percentage of wound closure per one AM application, and to determine whether the healing efficiency differs between AM grafts obtained from different placentas. A retrospective study analyzing inter-placental differences in healing capacity and mean wound closure after the application of 96 AM grafts prepared from nine placentas. Only the placentas from which the AM grafts were applied to patients suffering from long-lasting non-healing wounds successfully healed by AM treatment were included. The data from the rapidly progressing wound-closure phase (p-phase) were analyzed. The mean efficiency for each placenta, expressed as an average of wound area reduction (%) seven days after the AM application (baseline, 100%), was calculated from at least 10 applications. No statistical difference between the nine placentas' efficiency was found in the progressive phase of wound healing. The 7-day average wound reduction in particular placentas varied from 5.70 to 20.99% (median from 1.07 to 17.75) of the baseline. The mean percentage of wound surface reduction of all analyzed defects one week after the application of cryopreserved AM graft was 12.17 ± 20.12% (average ± SD). No significant difference in healing capacity was observed between the nine placentas. The data suggest that if there are intra- and inter-placental differences in AM sheets' healing efficacy, they are overridden by the actual health status of the subject or even the status of its individual wounds.
Department of Cardiovascular Surgery Motol University Hospital Prague Czech Republic
Department of Transplantation and Tissue Bank Motol University Hospital Prague Czech Republic
Department of Vascular Surgery Na Homolce Hospital Prague Czech Republic
Zobrazit více v PubMed
Adinolfi M, Akle CA, McColl I, Fensom AH, Tansley L, Connolly P, Hsi BL, Faulk WP, Travers P, Bodmer WF. Expression of HLA antigens, beta 2-microglobulin and enzymes by human amniotic epithelial cells. Nature. 1982;295(5847):325–327. doi: 10.1038/295325a0. PubMed DOI
Allen CL, Clare G, Stewart EA, Branch MJ, McIntosh OD, Dadhwal M, Dua HS, Hopkinson A. Augmented dried versus cryopreserved amniotic membrane as an ocular surface dressing. PLoS ONE. 2013;8(10):e78441. doi: 10.1371/journal.pone.0078441. PubMed DOI PMC
Avila-Gonzalez D, Vega-Hernandez E, Regalado-Hernandez JC, De la Jara-Diaz JF, Garcia-Castro IL, Molina-Hernandez A, Moreno-Verduzco ER, Razo-Aguilera G, Flores-Herrera H, Portillo W, Diaz-Martinez NE, Garcia-Lopez G, Diaz NF. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos. Stem Cell Res. 2015;15(2):322–324. doi: 10.1016/j.scr.2015.07.006. PubMed DOI
Aykut V, Celik U, Celik B. The destructive effects of antibiotics on the amniotic membrane ultrastructure. Int Ophthalmol. 2015;35(3):381–385. doi: 10.1007/s10792-014-9959-z. PubMed DOI
Banerjee A, Weidinger A, Hofer M, Steinborn R, Lindenmair A, Hennerbichler-Lugscheider S, Eibl J, Redl H, Kozlov AV, Wolbank S. Different metabolic activity in placental and reflected regions of the human amniotic membrane. Placenta. 2015;36(11):1329–1332. doi: 10.1016/j.placenta.2015.08.015. PubMed DOI
Banerjee A, Lindenmair A, Steinborn R, Dumitrescu SD, Hennerbichler S, Kozlov AV, Redl H, Wolbank S, Weidinger A. Oxygen tension strongly influences metabolic parameters and the release of interleukin-6 of human amniotic mesenchymal stromal cells in vitro. Stem Cells Int. 2018;2018:9502451. doi: 10.1155/2018/9502451. PubMed DOI PMC
Baradaran-Rafii A, Eslani M, Djalillian AR. Complications of keratolimbal allograft surgery. Cornea. 2013;32(5):561–566. doi: 10.1097/ICO.0b013e31826215eb. PubMed DOI
Becerra-Bayona SM, Solarte-David VA, Sossa CL, Mateus LC, Villamil M, Pereira J, Arango-Rodriguez ML. Mesenchymal stem cells derivatives as a novel and potential therapeutic approach to treat diabetic foot ulcers. Endocrinol Diabetes Metab Case Rep. 2020 doi: 10.1530/EDM-19-0164. PubMed DOI PMC
Bomfim Pereira MG, Pereira Gomes JA, Rizzo LV, Cristovam PC, Silveira LC. Cytokine dosage in fresh and preserved human amniotic membrane. Cornea. 2016;35(1):89–94. doi: 10.1097/ICO.0000000000000673. PubMed DOI
Bull RH, Staines KL, Collarte AJ, Bain DS, Ivins NM, Harding KG. Measuring progress to healing: a challenge and an opportunity. Int Wound J. 2022;19(4):734–740. doi: 10.1111/iwj.13669. PubMed DOI PMC
Centurione L, Passaretta F, Centurione MA, Munari S, Vertua E, Silini A, Liberati M, Parolini O, Di Pietro R. Mapping of the human placenta: experimental evidence of amniotic epithelial cell heterogeneity. Cell Transpl. 2018;27(1):12–22. doi: 10.1177/0963689717725078. PubMed DOI PMC
Cognard S, Barnouin L, Bosc J, Gindraux F, Robin MC, Douet JY, Thuret G. New devitalized freeze-dried human umbilical cord amniotic membrane as an innovative treatment of ocular surface defects: preclinical results. J Funct Biomater. 2022 doi: 10.3390/jfb13030150. PubMed DOI PMC
Curtis NE, Ho PW, King RG, Farrugia W, Moses EK, Gillespie MT, Moseley JM, Rice GE, Wlodek ME. The expression of parathyroid hormone-related protein mRNA and immunoreactive protein in human amnion and choriodecidua is increased at term compared with preterm gestation. J Endocrinol. 1997;154(1):103–112. doi: 10.1677/joe.0.1540103. PubMed DOI
Deihim T, Yazdanpanah G, Niknejad H. Different light transmittance of placental and reflected regions of human amniotic membrane that could be crucial for corneal tissue engineering. Cornea. 2016;35(7):997–1003. doi: 10.1097/ICO.0000000000000867. PubMed DOI
Dhall S, Sathyamoorthy M, Kuang JQ, Hoffman T, Moorman M, Lerch A, Jacob V, Sinclair SM, Danilkovitch A. Properties of viable lyopreserved amnion are equivalent to viable cryopreserved amnion with the convenience of ambient storage. PLoS ONE. 2018;13(10):e0204060. doi: 10.1371/journal.pone.0204060. PubMed DOI PMC
DiDomenico LA, Orgill DP, Galiano RD, Serena TE, Carter MJ, Kaufman JP, Young NJ, Zelen CM. Aseptically processed placental membrane improves healing of diabetic foot ulcerations: prospective, randomized clinical trial. Plast Reconstr Surg Glob Open. 2016;4(10):e1095. doi: 10.1097/GOX.0000000000001095. PubMed DOI PMC
Duan-Arnold Y, Gyurdieva A, Johnson A, Jacobstein DA, Danilkovitch A. Soluble Factors released by endogenous viable cells enhance the antioxidant and chemoattractive activities of cryopreserved amniotic membrane. Adv Wound Care (new Rochelle) 2015;4(6):329–338. doi: 10.1089/wound.2015.0637. PubMed DOI PMC
Elkhenany H, El-Derby A, Abd Elkodous M, Salah RA, Lotfy A, El-Badri N. Applications of the amniotic membrane in tissue engineering and regeneration: the hundred-year challenge. Stem Cell Res Ther. 2022;13(1):8. doi: 10.1186/s13287-021-02684-0. PubMed DOI PMC
Farrugia W, Ho PW, Rice GE, Moseley JM, Permezel M, Wlodek ME. Parathyroid hormone-related protein(1–34) in gestational fluids and release from human gestational tissues. J Endocrinol. 2000;165(3):657–662. doi: 10.1677/joe.0.1650657. PubMed DOI
Fenelon M, Catros S, Meyer C, Fricain JC, Obert L, Auber F, Louvrier A, Gindraux F. Applications of human amniotic membrane for tissue engineering. Membranes (basel) 2021 doi: 10.3390/membranes11060387. PubMed DOI PMC
Fuchsluger TA, Steuhl KP, Meller D. Neurotrophic keratopathy–a post-LASIK case report. Klin Monbl Augenheilkd. 2005;222(11):901–904. doi: 10.1055/s-2005-858800. PubMed DOI
Garcia-Lopez G, Avila-Gonzalez D, Garcia-Castro IL, Flores-Herrera H, Molina-Hernandez A, Portillo W, Diaz-Martinez NE, Sanchez-Flores A, Verleyen J, Merchant-Larios H, Diaz NF. Pluripotency markers in tissue and cultivated cells in vitro of different regions of human amniotic epithelium. Exp Cell Res. 2019;375(1):31–41. doi: 10.1016/j.yexcr.2018.12.007. PubMed DOI
Germain AM, Attaroglu H, MacDonald PC, Casey ML. Parathyroid hormone-related protein mRNA in avascular human amnion. J Clin Endocrinol Metab. 1992;75(4):1173–1175. doi: 10.1210/jcem.75.4.1400890. PubMed DOI
Gicquel JJ, Dua HS, Brodie A, Mohammed I, Suleman H, Lazutina E, James DK, Hopkinson A. Epidermal growth factor variations in amniotic membrane used for ex vivo tissue constructs. Tissue Eng Part A. 2009;15(8):1919–1927. doi: 10.1089/ten.tea.2008.0432. PubMed DOI
Han YM, Romero R, Kim JS, Tarca AL, Kim SK, Draghici S, Kusanovic JP, Gotsch F, Mittal P, Hassan SS, Kim CJ. Region-specific gene expression profiling: novel evidence for biological heterogeneity of the human amnion. Biol Reprod. 2008;79(5):954–961. doi: 10.1095/biolreprod.108.069260. PubMed DOI PMC
Herbin M, Bon FX, Venot A, Jeanlouis F, Dubertret ML, Dubertret L, Strauch G. Assessment of healing kinetics through true color image processing. IEEE Trans Med Imaging. 1993;12(1):39–43. doi: 10.1109/42.222664. PubMed DOI
Hopkinson A, McIntosh RS, Shanmuganathan V, Tighe PJ, Dua HS. Proteomic analysis of amniotic membrane prepared for human transplantation: characterization of proteins and clinical implications. J Proteome Res. 2006;5(9):2226–2235. doi: 10.1021/pr050425q. PubMed DOI
Hopkinson A, McIntosh RS, Tighe PJ, James DK, Dua HS. Amniotic membrane for ocular surface reconstruction: donor variations and the effect of handling on TGF-beta content. Invest Ophthalmol vis Sci. 2006;47(10):4316–4322. doi: 10.1167/iovs.05-1415. PubMed DOI
Hori J, Wang M, Kamiya K, Takahashi H, Sakuragawa N. Immunological characteristics of amniotic epithelium. Cornea. 2006;25(10 Suppl 1):S53–58. doi: 10.1097/01.ico.0000247214.31757.5c. PubMed DOI
Jirsova K, Jones GLA. Amniotic membrane in ophthalmology: properties, preparation, storage and indications for grafting-a review. Cell Tissue Bank. 2017;18(2):193–204. doi: 10.1007/s10561-017-9618-5. PubMed DOI
Johnson EL, Saunders M, Thote T, Danilkovitch A. Cryopreserved placental membranes containing viable cells result in high closure rate of nonhealing upper and lower extremity wounds of non-diabetic and non-venous pathophysiology. Wounds. 2021;33(2):34–40. PubMed
Kim SY, Romero R, Tarca AL, Bhatti G, Lee J, Chaiworapongsa T, Hassan SS, Kim CJ. miR-143 regulation of prostaglandin-endoperoxidase synthase 2 in the amnion: implications for human parturition at term. PLoS ONE. 2011;6(9):e24131. doi: 10.1371/journal.pone.0024131. PubMed DOI PMC
Koizumi N, Inatomi T, Quantock AJ, Fullwood NJ, Dota A, Kinoshita S. Amniotic membrane as a substrate for cultivating limbal corneal epithelial cells for autologous transplantation in rabbits. Cornea. 2000;19(1):65–71. doi: 10.1097/00003226-200001000-00013. PubMed DOI
Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res. 2000;20(3):173–177. doi: 10.1076/0271-3683(200003)2031-9FT173. PubMed DOI
Krabcova I, Jirsova K, Bednar J. Rapid cooling of the amniotic membrane as a model system for the vitrification of posterior corneal lamellae. Cell Tissue Bank. 2014;15(1):165–173. doi: 10.1007/s10561-013-9388-7. PubMed DOI
Lee DC, Romero R, Kim JS, Yoo W, Lee J, Mittal P, Kusanovic JP, Hassan SS, Yoon BH, Kim CJ. Evidence for a spatial and temporal regulation of prostaglandin-endoperoxide synthase 2 expression in human amnion in term and preterm parturition. J Clin Endocrinol Metab. 2010;95(9):E86–91. doi: 10.1210/jc.2010-0203. PubMed DOI PMC
Lemke A, Castillo-Sanchez JC, Prodinger F, Ceranic A, Hennerbichler-Lugscheider S, Perez-Gil J, Redl H, Wolbank S. Human amniotic membrane as newly identified source of amniotic fluid pulmonary surfactant. Sci Rep. 2017;7(1):6406. doi: 10.1038/s41598-017-06402-w. PubMed DOI PMC
Litwiniuk M, Radowicka M, Krejner A, Sladowska A, Grzela T. Amount and distribution of selected biologically active factors in amniotic membrane depends on the part of amnion and mode of childbirth. Can we predict properties of amnion dressing? A-proof-of concept study. Cent Eur J Imunol. 2018;43(1):97–102. doi: 10.5114/ceji.2017.69632. PubMed DOI PMC
Meller D, Pauklin M, Thomasen H, Westekemper H, Steuhl KP. Amniotic membrane transplantation in the human eye. Dtsch Arztebl Int. 2011;108(14):243–248. doi: 10.3238/arztebl.2011.0243. PubMed DOI PMC
Memmi B, Leveziel L, Knoeri J, Leclere A, Ribes O, Despiaux MC, Bouheraoua N, Nordmann JP, Baudouin C, Borderie V. Freeze-dried versus cryopreserved amniotic membranes in corneal ulcers treated by overlay transplantation: a case-control study. Cornea. 2022;41(3):280–285. doi: 10.1097/ICO.0000000000002794. PubMed DOI
Moraes J, Costa MM, Alves PCS, Sant'Anna LB. Effects of preservation methods in the composition of the placental and reflected regions of the human amniotic membrane. Cells Tissues Organs. 2021;210(1):66–76. doi: 10.1159/000515448. PubMed DOI
Nejad AR, Hamidieh AA, Amirkhani MA, Sisakht MM. Update review on five top clinical applications of human amniotic membrane in regenerative medicine. Placenta. 2021;103:104–119. doi: 10.1016/j.placenta.2020.10.026. PubMed DOI
Paolin A, Trojan D, Leonardi A, Mellone S, Volpe A, Orlandi A, Cogliati E. Cytokine expression and ultrastructural alterations in fresh-frozen, freeze-dried and gamma-irradiated human amniotic membranes. Cell Tissue Bank. 2016;17(3):399–406. doi: 10.1007/s10561-016-9553-x. PubMed DOI PMC
RStudio (2020) RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL: http://www.rstudio.com/
Ruiz-Canada C, Bernabe-Garcia A, Liarte S, Rodriguez-Valiente M, Nicolas FJ. Chronic wound healing by amniotic membrane: TGF-beta and EGF signaling modulation in re-epithelialization. Front Bioeng Biotechnol. 2021;9:689328. doi: 10.3389/fbioe.2021.689328. PubMed DOI PMC
Singh R, Gupta P, Purohit S, Kumar P, Vaijapurkar SG, Chacharkar MP. Radiation resistance of the microflora associated with amniotic membranes. World J Microbiol Biotechnol. 2006;22(1):23–27. doi: 10.1007/s11274-005-2890-8. DOI
Skinner SJ, Campos GA, Liggins GC. Collagen content of human amniotic membranes: effect of gestation length and premature rupture. Obstet Gynecol. 1981;57(4):487–489. PubMed
Smeringaiova I, Trosan P, Mrstinova MB, Matecha J, Burkert J, Bednar J, Jirsova K. Comparison of impact of two decontamination solutions on the viability of the cells in human amnion. Cell Tissue Bank. 2017;18(3):413–423. doi: 10.1007/s10561-017-9636-3. PubMed DOI
Svobodova A, Horvath V, Smeringaiova I, Cabral JV, Zemlickova M, Fiala R, Burkert J, Nemetova D, Stadler P, Lindner J, Bednar J, Jirsova K. The healing dynamics of non-healing wounds using cryo-preserved amniotic membrane. Int Wound J. 2022;19(5):1243–1252. doi: 10.1111/iwj.13719. PubMed DOI PMC
Svobodova A, Vrkoslav V, Smeringaiova I, Jirsova K. Distribution of an analgesic palmitoylethanolamide and other N-acylethanolamines in human placental membranes. PLoS ONE. 2023 doi: 10.1371/journal.pone.0279863. PubMed DOI PMC
Tabatabaei SA, Soleimani M, Behrouz MJ, Torkashvand A, Anvari P, Yaseri M. A randomized clinical trial to evaluate the usefulness of amniotic membrane transplantation in bacterial keratitis healing. Ocul Surf. 2017;15(2):218–226. doi: 10.1016/j.jtos.2017.01.004. PubMed DOI
Tossetta G, Paolinelli F, Avellini C, Salvolini E, Ciarmela P, Lorenzi T, Emanuelli M, Toti P, Giuliante R, Gesuita R, Crescimanno C, Voltolini C, Di Primio R, Petraglia F, Castellucci M, Marzioni D. IL-1beta and TGF-beta weaken the placental barrier through destruction of tight junctions: an in vivo and in vitro study. Placenta. 2014;35(7):509–516. doi: 10.1016/j.placenta.2014.03.016. PubMed DOI
Tsubota K, Satake Y, Ohyama M, Toda I, Takano Y, Ono M, Shinozaki N, Shimazaki JUN. Surgical reconstruction of the ocular surface in advanced ocular cicatricial pemphigoid and stevens-johnson syndrome. Am J Ophthalmol. 1996;122(1):38–52. doi: 10.1016/s0002-9394(14)71962-2. PubMed DOI
Valiente MR, Nicolas FJ, Garcia-Hernandez AM, Fuente Mora C, Blanquer M, Alcaraz PJ, Almansa S, Merino GR, Lucas MDL, Alguero MC, Insausti CL, Pinero A, Moraleda JM, Castellanos G. Cryopreserved amniotic membrane in the treatment of diabetic foot ulcers: a case series. J Wound Care. 2018;27(12):806–815. doi: 10.12968/jowc.2018.27.12.806. PubMed DOI
Venault A, Bai YW, Dizon GV, Chou HE, Chiang HC, Lo CT, Zheng J, Aimar P, Chang Y. Healing kinetics of diabetic wounds controlled with charge-biased hydrogel dressings. J Mater Chem B. 2019;7(45):7184–7194. doi: 10.1039/c9tb01662g. PubMed DOI
Walkden A. Amniotic membrane transplantation in ophthalmology: an updated perspective. Clin Ophthalmol. 2020;14:2057–2072. doi: 10.2147/OPTH.S208008. PubMed DOI PMC
Wassmer CH, Berishvili E. Immunomodulatory properties of amniotic membrane derivatives and their potential in regenerative medicine. Curr Diab Rep. 2020;20(8):31. doi: 10.1007/s11892-020-01316-w. PubMed DOI PMC
Weidinger A, Pozenel L, Wolbank S, Banerjee A. Sub-regional differences of the human amniotic membrane and their potential impact on tissue regeneration application. Front Bioeng Biotechnol. 2020;8:613804. doi: 10.3389/fbioe.2020.613804. PubMed DOI PMC