Distribution of an analgesic palmitoylethanolamide and other N-acylethanolamines in human placental membranes

. 2023 ; 18 (1) : e0279863. [epub] 20230113

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36638082

BACKGROUND: Human amniotic and amniochorionic membranes (AM, ACM) represent the most often used grafts accelerating wound healing. Palmitoylethanolamide, oleoylethanolamide and anandamide are endogenous bioactive lipid molecules, generally referred as N-acylethanolamines. They express analgesic, nociceptive, neuroprotective and anti-inflammatory properties. We assessed the distribution of these lipid mediators in placental tissues, as they could participate on analgesic and wound healing effect of AM/ACM grafts. METHODS: Seven placentas were collected after caesarean delivery and fresh samples of AM, ACM, placental disc, umbilical cord, umbilical serum and vernix caseosa, and decontaminated samples (antibiotic solution BASE 128) of AM and ACM have been prepared. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used for N-acylethanolamines analysis. RESULTS: N-acylethanolamines were present in all studied tissues, palmitoylethanolamide being the most abundant and the anandamide the least. For palmitoylethanolamide the maximum average concentration was detected in AM (350.33 ± 239.26 ng/g), while oleoylethanolamide and anandamide were most abundant in placenta (219.08 ± 79.42 ng/g and 30.06 ± 7.77 ng/g, respectively). Low levels of N-acylethanolamines were found in serum and vernix. A significant increase in the levels of N-acylethanolamines (3.1-3.6-fold, P < 0.001) was observed in AM when the tissues were decontaminated using antibiotic solution. The increase in decontaminated ACM was not statistically significant. CONCLUSIONS: The presence of N-acylethanolamines, particularly palmitoylethanolamide in AM and ACM allows us to propose these lipid mediators as the likely factors responsible for the anti-hyperalgesic, but also anti-inflammatory and neuroprotective, effects of AM/ACM grafts in wound healing treatment. The increase of N-acylethanolamines levels in AM and ACM after tissue decontamination indicates that tissue processing is an important factor in maintaining the analgesic effect.

Zobrazit více v PubMed

Malhotra C, Jain AK. Human amniotic membrane transplantation: Different modalities of its use in ophthalmology. World J Transplant. 2014;4(2):111–21. doi: 10.5500/wjt.v4.i2.111 PubMed DOI PMC

Tighe S, Mead OG, Lee A, Tseng SCG. Basic science review of birth tissue uses in ophthalmology. Taiwan J Ophthalmol. 2020;10(1):3–12. doi: 10.4103/tjo.tjo_4_20 PubMed DOI PMC

Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res. 2000;20(3):173–7. PubMed

Pogozhykh O, Hofmann N, Gryshkov O, von Kaisenberg C, Mueller M, Glasmacher B, et al.. Repeated Freezing Procedures Preserve Structural and Functional Properties of Amniotic Membrane for Application in Ophthalmology. Int J Mol Sci. 2020;21(11). doi: 10.3390/ijms21114029 PubMed DOI PMC

McQuilling JP, Vines JB, Kimmerling KA, Mowry KC. Proteomic Comparison of Amnion and Chorion and Evaluation of the Effects of Processing on Placental Membranes. Wounds. 2017;29(6):E36–E40. doi: 10.1111/iwj.12748 PubMed DOI PMC

Jirsova K, Jones GLA. Amniotic membrane in ophthalmology: properties, preparation, storage and indications for grafting-a review. Cell Tissue Bank. 2017;18(2):193–204. doi: 10.1007/s10561-017-9618-5 PubMed DOI

Tabatabaei SA, Soleimani M, Behrouz MJ, Torkashvand A, Anvari P, Yaseri M. A randomized clinical trial to evaluate the usefulness of amniotic membrane transplantation in bacterial keratitis healing. Ocul Surf. 2017;15(2):218–26. doi: 10.1016/j.jtos.2017.01.004 PubMed DOI

Kogan S, Sood A, Granick MS. Amniotic Membrane Adjuncts and Clinical Applications in Wound Healing: A Review of the Literature. Wounds. 2018;30(6):168–73. PubMed

Valiente MR, Nicolas FJ, Garcia-Hernandez AM, Fuente Mora C, Blanquer M, Alcaraz PJ, et al.. Cryopreserved amniotic membrane in the treatment of diabetic foot ulcers: a case series. J Wound Care. 2018;27(12):806–15. doi: 10.12968/jowc.2018.27.12.806 PubMed DOI

Alsina-Gibert M, Pedregosa-Fauste S. Amniotic membrane transplantation in the treatment of chronic lower limb ulcers. Actas Dermosifiliogr. 2012;103(7):608–13. doi: 10.1016/j.ad.2012.01.010 PubMed DOI

Hanselman AE, Tidwell JE, Santrock RD. Cryopreserved human amniotic membrane injection for plantar fasciitis: a randomized, controlled, double-blind pilot study. Foot Ankle Int. 2015;36(2):151–8. doi: 10.1177/1071100714552824 PubMed DOI

Zidan SM, Eleowa SA, Nasef MA, Abd-Almoktader MA, Elbatawy AM, Borhamy AG, et al.. Maximizing the safety of glycerol preserved human amniotic membrane as a biological dressing. Burns. 2015;41(7):1498–503. doi: 10.1016/j.burns.2015.03.009 PubMed DOI

Liu J, Sheha H, Fu Y, Liang L, Tseng SC. Update on amniotic membrane transplantation. Expert Rev Ophthalmol. 2010;5(5):645–61. doi: 10.1586/eop.10.63 PubMed DOI PMC

ElHeneidy H, Omran E, Halwagy A, Al-Inany H, Al-Ansary M, Gad A. Amniotic membrane can be a valid source for wound healing. Int J Womens Health. 2016;8:225–31. doi: 10.2147/IJWH.S96636 PubMed DOI PMC

Tseng SC. HC-HA/PTX3 Purified From Amniotic Membrane as Novel Regenerative Matrix: Insight Into Relationship Between Inflammation and Regeneration. Invest Ophthalmol Vis Sci. 2016;57(5):ORSFh1-8. doi: 10.1167/iovs.15-17637 PubMed DOI PMC

Keppel Hesselink JM. Professor Rita Levi-Montalcini on Nerve Growth Factor, Mast Cells and Palmitoylethanolamide, an Endogenous Anti-Inflammatory and Analgesic Compound. Journal of Pain & Relief. 2013;02(01). doi: 10.4172/2167-0846.1000114 DOI

Gabrielsson L, Mattsson S, Fowler CJ. Palmitoylethanolamide for the treatment of pain: pharmacokinetics, safety and efficacy. Br J Clin Pharmacol. 2016;82(4):932–42. doi: 10.1111/bcp.13020 PubMed DOI PMC

Kuehl FA, Jacob TA, Ganley OH, Ormond RE, Meisinger MAP. The Identification of N-(2-Hydroxyethyl)-Palmitamide as a Naturally Occurring Anti-Inflammatory Agent. Journal of the American Chemical Society. 1957;79(20):5577–8. doi: 10.1021/ja01577a066 DOI

Ganley OH, Robinson HJ. Antianaphylactic and antiserotonin activity of a compound obtained from eggyolk, peanut oil and soybean lecithin. J Allergy. 1959;30:415–9. doi: 10.1016/0021-8707(59)90019-x PubMed DOI

Aloe L, Leon A, Levi-Montalcini R. A proposed autacoid mechanism controlling mastocyte behaviour. Agents Actions. 1993;39 Spec No:C145-7. doi: 10.1007/BF01972748 PubMed DOI

Calignano A, La Rana G, Giuffrida A, Piomelli D. Control of pain initiation by endogenous cannabinoids. Nature. 1998;394(6690):277–81. doi: 10.1038/28393 PubMed DOI

Esposito E, Cuzzocrea S. Palmitoylethanolamide is a new possible pharmacological treatment for the inflammation associated with trauma. Mini Rev Med Chem. 2013;13(2):237–55. PubMed

Schuel H, Burkman LJ, Lippes J, Crickard K, Forester E, Piomelli D, et al.. N-Acylethanolamines in human reproductive fluids. Chem Phys Lipids. 2002;121(1–2):211–27. doi: 10.1016/s0009-3084(02)00158-5 PubMed DOI

Thabuis C, Tissot-Favre D, Bezelgues JB, Martin JC, Cruz-Hernandez C, Dionisi F, et al.. Biological functions and metabolism of oleoylethanolamide. Lipids. 2008;43(10):887–94. doi: 10.1007/s11745-008-3217-y PubMed DOI

Lam PM, Marczylo TH, Konje JC. Simultaneous measurement of three N-acylethanolamides in human bio-matrices using ultra performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2010;398(5):2089–97. doi: 10.1007/s00216-010-4103-z PubMed DOI

Lo Verme J, Fu J, Astarita G, La Rana G, Russo R, Calignano A, et al.. The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol Pharmacol. 2005;67(1):15–9. doi: 10.1124/mol.104.006353 PubMed DOI

Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, et al.. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol. 2007;152(7):1092–101. doi: 10.1038/sj.bjp.0707460 PubMed DOI PMC

Overton HA, Fyfe MC, Reynet C. GPR119, a novel G protein-coupled receptor target for the treatment of type 2 diabetes and obesity. Br J Pharmacol. 2008;153 Suppl 1:S76–81. doi: 10.1038/sj.bjp.0707529 PubMed DOI PMC

Godlewski G, Offertaler L, Wagner JA, Kunos G. Receptors for acylethanolamides-GPR55 and GPR119. Prostaglandins Other Lipid Mediat. 2009;89(3–4):105–11. doi: 10.1016/j.prostaglandins.2009.07.001 PubMed DOI PMC

Ambrosino P, Soldovieri MV, Russo C, Taglialatela M. Activation and desensitization of TRPV1 channels in sensory neurons by the PPARalpha agonist palmitoylethanolamide. Br J Pharmacol. 2013;168(6):1430–44. doi: 10.1111/bph.12029 PubMed DOI PMC

Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, et al.. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):1946–9. doi: 10.1126/science.1470919 PubMed DOI

Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, et al.. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature. 1999;400(6743):452–7. doi: 10.1038/22761 PubMed DOI

O’Sullivan SE, Kendall DA. Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology. 2010;215(8):611–6. doi: 10.1016/j.imbio.2009.09.007 PubMed DOI

Piomelli D, Sasso O. Peripheral gating of pain signals by endogenous lipid mediators. Nat Neurosci. 2014;17(2):164–74. doi: 10.1038/nn.3612 PubMed DOI PMC

Salzet M, Breton C, Bisogno T, Di Marzo V. Comparative biology of the endocannabinoid system possible role in the immune response. Eur J Biochem. 2000;267(16):4917–27. doi: 10.1046/j.1432-1327.2000.01550.x PubMed DOI

Masek K, Perlik F. Letter: Slow encephalopathies, inflammatory responses, and arachis oil. Lancet. 1975;2(7934):558. doi: 10.1016/s0140-6736(75)90939-3 PubMed DOI

Lambert DM, Vandevoorde S, Diependaele G, Govaerts SJ, Robert AR. Anticonvulsant activity of N-palmitoylethanolamide, a putative endocannabinoid, in mice. Epilepsia. 2001;42(3):321–7. doi: 10.1046/j.1528-1157.2001.41499.x PubMed DOI

Di Paola R, Impellizzeri D, Fusco R, Cordaro M, Siracusa R, Crupi R, et al.. Ultramicronized palmitoylethanolamide (PEA-um((R))) in the treatment of idiopathic pulmonary fibrosis. Pharmacol Res. 2016;111:405–12. doi: 10.1016/j.phrs.2016.07.010 PubMed DOI

Ye S, Chen Q, Jiang N, Liang X, Li J, Zong R, et al.. PPARalpha-Dependent Effects of Palmitoylethanolamide Against Retinal Neovascularization and Fibrosis. Invest Ophthalmol Vis Sci. 2020;61(4):15. doi: 10.1167/iovs.61.4.15 PubMed DOI PMC

Gatti A, Lazzari M, Gianfelice V, Di Paolo A, Sabato E, Sabato AF. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Med. 2012;13(9):1121–30. doi: 10.1111/j.1526-4637.2012.01432.x PubMed DOI

Davis MP, Behm B, Mehta Z, Fernandez C. The Potential Benefits of Palmitoylethanolamide in Palliation: A Qualitative Systematic Review. Am J Hosp Palliat Care. 2019;36(12):1134–54. doi: 10.1177/1049909119850807 PubMed DOI

Paladini A, Fusco M, Cenacchi T, Schievano C, Piroli A, Varrassi G. Palmitoylethanolamide, a Special Food for Medical Purposes, in the Treatment of Chronic Pain: A Pooled Data Meta-analysis. Pain Physician. 2016;19(2):11–24. PubMed

Artukoglu BB, Beyer C, Zuloff-Shani A, Brener E, Bloch MH. Efficacy of Palmitoylethanolamide for Pain: A Meta-Analysis. Pain Physician. 2017;20(5):353–62. PubMed

Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodriguez De Fonseca F, et al.. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature. 2003;425(6953):90–3. doi: 10.1038/nature01921 PubMed DOI

Suardiaz M, Estivill-Torrus G, Goicoechea C, Bilbao A, Rodriguez de Fonseca F. Analgesic properties of oleoylethanolamide (OEA) in visceral and inflammatory pain. Pain. 2007;133(1–3):99–110. doi: 10.1016/j.pain.2007.03.008 PubMed DOI

Lama A, Provensi G, Amoriello R, Pirozzi C, Rani B, Mollica MP, et al.. The anti-inflammatory and immune-modulatory effects of OEA limit DSS-induced colitis in mice. Biomed Pharmacother. 2020;129:110368. doi: 10.1016/j.biopha.2020.110368 PubMed DOI

Di Marzo V. ’Endocannabinoids’ and other fatty acid derivatives with cannabimimetic properties: biochemistry and possible physiopathological relevance. Biochim Biophys Acta. 1998;1392(2–3):153–75. doi: 10.1016/s0005-2760(98)00042-3 PubMed DOI

Correia-Sa IB, Carvalho CM, Serrao PV, Loureiro AI, Fernandes-Lopes C, Marques M, et al.. A new role for anandamide: defective link between the systemic and skin endocannabinoid systems in hypertrophic human wound healing. Sci Rep. 2020;10(1):11134. doi: 10.1038/s41598-020-68058-3 PubMed DOI PMC

Ruhl T, Corsten C, Beier JP, Kim BS. The immunosuppressive effect of the endocannabinoid system on the inflammatory phenotypes of macrophages and mesenchymal stromal cells: a comparative study. Pharmacol Rep. 2021;73(1):143–53. doi: 10.1007/s43440-020-00166-3 PubMed DOI

LoVerme J, Russo R, La Rana G, Fu J, Farthing J, Mattace-Raso G, et al.. Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor-alpha. J Pharmacol Exp Ther. 2006;319(3):1051–61. doi: 10.1124/jpet.106.111385 PubMed DOI

Di Cesare Mannelli L, D’Agostino G, Pacini A, Russo R, Zanardelli M, Ghelardini C, et al.. Palmitoylethanolamide is a disease-modifying agent in peripheral neuropathy: pain relief and neuroprotection share a PPAR-alpha-mediated mechanism. Mediators Inflamm. 2013;2013:328797. doi: 10.1155/2013/328797 PubMed DOI PMC

Avraham O, Deng PY, Jones S, Kuruvilla R, Semenkovich CF, Klyachko VA, et al.. Satellite glial cells promote regenerative growth in sensory neurons. Nat Commun. 2020;11(1):4891. doi: 10.1038/s41467-020-18642-y PubMed DOI PMC

Impellizzeri D, Cordaro M, Bruschetta G, Siracusa R, Crupi R, Esposito E, et al.. N-Palmitoylethanolamine-Oxazoline as a New Therapeutic Strategy to Control Neuroinflammation: Neuroprotective Effects in Experimental Models of Spinal Cord and Brain Injury. J Neurotrauma. 2017;34(18):2609–23. doi: 10.1089/neu.2016.4808 PubMed DOI

Accialini P, Etcheverry T, Malbran MN, Leguizamon G, Mate S, Farina M. Anandamide regulates oxytocin/oxytocin receptor system in human placenta at term. Placenta. 2020;93:23–5. doi: 10.1016/j.placenta.2020.02.012 PubMed DOI

Marczylo TH, Lam PM, Nallendran V, Taylor AH, Konje JC. A solid-phase method for the extraction and measurement of anandamide from multiple human biomatrices. Anal Biochem. 2009;384(1):106–13. doi: 10.1016/j.ab.2008.08.040 PubMed DOI

Smeringaiova I, Trosan P, Mrstinova MB, Matecha J, Burkert J, Bednar J, et al.. Comparison of impact of two decontamination solutions on the viability of the cells in human amnion. Cell Tissue Bank. 2017;18(3):413–23. doi: 10.1007/s10561-017-9636-3 PubMed DOI

Litwiniuk M, Radowicka M, Krejner A, Grzela T. The influence of amniotic membrane extracts on cell growth depends on the part of membrane and childbirth mode selected: a proof-of-concept study. J Wound Care. 2017;26(8):498–503. doi: 10.12968/jowc.2017.26.8.498 PubMed DOI

Centurione L, Passaretta F, Centurione MA, Munari S, Vertua E, Silini A, et al.. Mapping of the Human Placenta: Experimental Evidence of Amniotic Epithelial Cell Heterogeneity. Cell Transplant. 2018;27(1):12–22. doi: 10.1177/0963689717725078 PubMed DOI PMC

Weidinger A, Pozenel L, Wolbank S, Banerjee A. Sub-Regional Differences of the Human Amniotic Membrane and Their Potential Impact on Tissue Regeneration Application. Front Bioeng Biotechnol. 2020;8:613804. doi: 10.3389/fbioe.2020.613804 PubMed DOI PMC

Liput DJ, Tsakalozou E, Hammell DC, Paudel KS, Nixon K, Stinchcomb AL. Quantification of anandamide, oleoylethanolamide and palmitoylethanolamide in rodent brain tissue using high performance liquid chromatography-electrospray mass spectroscopy. J Pharm Anal. 2014;4(4):234–41. doi: 10.1016/j.jpha.2013.11.004 PubMed DOI PMC

RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA: URL http://www.rstudio.com/.

Hoeger PH, Schreiner V, Klaassen IA, Enzmann CC, Friedrichs K, Bleck O. Epidermal barrier lipids in human vernix caseosa: corresponding ceramide pattern in vernix and fetal skin. The British journal of dermatology. 2002;146(2):194–201. doi: 10.1046/j.1365-2133.2002.04584.x PubMed DOI

Rankin L, Fowler CJ. The Basal Pharmacology of Palmitoylethanolamide. Int J Mol Sci. 2020;21(21). doi: 10.3390/ijms21217942 PubMed DOI PMC

Evans MA, Lim R, Kim HA, Chu HX, Gardiner-Mann CV, Taylor KWE, et al.. Acute or Delayed Systemic Administration of Human Amnion Epithelial Cells Improves Outcomes in Experimental Stroke. Stroke. 2018;49(3):700–9. doi: 10.1161/STROKEAHA.117.019136 PubMed DOI

Renthal W, Tochitsky I, Yang L, Cheng YC, Li E, Kawaguchi R, et al.. Transcriptional Reprogramming of Distinct Peripheral Sensory Neuron Subtypes after Axonal Injury. Neuron. 2020;108(1):128–44 e9. doi: 10.1016/j.neuron.2020.07.026 PubMed DOI PMC

Hanley K, Jiang Y, He SS, Friedman M, Elias PM, Bikle DD, et al.. Keratinocyte differentiation is stimulated by activators of the nuclear hormone receptor PPARalpha. J Invest Dermatol. 1998;110(4):368–75. doi: 10.1046/j.1523-1747.1998.00139.x PubMed DOI

Jorgensen E, Pirone A, Jacobsen S, Miragliotta V. Epithelial-to-mesenchymal transition and keratinocyte differentiation in equine experimental body and limb wounds healing by second intention. Vet Dermatol. 2019;30(5):417–e126. doi: 10.1111/vde.12774 PubMed DOI

Michalik L, Desvergne B, Tan NS, Basu-Modak S, Escher P, Rieusset J, et al.. Impaired skin wound healing in peroxisome proliferator-activated receptor (PPAR)alpha and PPARbeta mutant mice. J Cell Biol. 2001;154(4):799–814. doi: 10.1083/jcb.200011148 PubMed DOI PMC

D’Agostino G, La Rana G, Russo R, Sasso O, Iacono A, Esposito E, et al.. Central administration of palmitoylethanolamide reduces hyperalgesia in mice via inhibition of NF-kappaB nuclear signalling in dorsal root ganglia. Eur J Pharmacol. 2009;613(1–3):54–9. doi: 10.1016/j.ejphar.2009.04.022 PubMed DOI

Bauer D, Hennig M, Wasmuth S, Baehler H, Busch M, Steuhl KP, et al.. Amniotic membrane induces peroxisome proliferator-activated receptor-γ positive alternatively activated macrophages. Invest Ophthalmol Vis Sci. 2012;53(2):799–810. doi: 10.1167/iovs.11-7617 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...