Quantification of Analgesic and Anti-Inflammatory Lipid Mediators in Long-Term Cryopreserved and Freeze-Dried Preserved Human Amniotic Membrane
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LM2023033
Ministry of Education, Youth and Sports of the Czech Republic
NV18-08-00106
Ministry of Health of the Czech Republic
PubMed
37370671
PubMed Central
PMC10294941
DOI
10.3390/bioengineering10060740
PII: bioengineering10060740
Knihovny.cz E-resources
- Keywords
- N-acylethanolamines, amniotic membrane allografts, cryopreserved amniotic membrane, freeze-dried amniotic membrane, lyophilization, mass spectrometry, palmitoylethanolamide, tissue banking,
- Publication type
- Journal Article MeSH
The aim of this study was to compare concentrations of endogenous N-acylethanolamine (NAE) lipid mediators-palmitoylethanolamide (PEA), oleoylethanolamide (OEA), and anandamide (AEA)-in fresh, decontaminated, cryopreserved, and freeze-dried amniotic membrane (AM) allografts, thereby determining whether AM's analgesic and anti-inflammatory efficiency related to NAEs persists during storage. The concentrations of NAEs were measured using ultra-high-performance liquid chromatography-tandem mass spectrometry. Indirect fluorescent immunohistochemistry was used to detect the PEA PPAR-α receptor. The concentrations of PEA, OEA, and AEA were significantly higher after decontamination. A significant decrease was found in cryopreserved AM compared to decontaminated tissue for PEA but not for OEA and AEA. However, significantly higher values for all NAEs were detected in cryopreserved samples compared to fresh tissue before decontamination. The freeze-dried AM had similar values to decontaminated AM with no statistically significant difference. The nuclear staining of the PPAR-α receptor was clearly visible in all specimens. The stability of NAEs in AM after cryopreservation was demonstrated under tissue bank storage conditions. However, a significant decrease, but still higher concentration of PEA compared to fresh not decontaminated tissue, was found in cryopreserved, but not freeze-dried, AM. Results indicate that NAEs persist during storage in levels sufficient for the analgesic and anti-inflammatory effects. This means that cryopreserved AM allografts released for transplant purposes before the expected expiration (usually 3-5 years) will still show a strong analgesic effect. The same situation was confirmed for AM lyophilized after one year of storage. This work thus contributed to the clarification of the analgesic effect of NAEs in AM allografts.
See more in PubMed
Nejad A.R., Hamidieh A.A., Amirkhani M.A., Sisakht M.M. Update review on five top clinical applications of human amniotic membrane in regenerative medicine. Placenta. 2021;103:104–119. doi: 10.1016/j.placenta.2020.10.026. PubMed DOI
Liu Q.-W., Huang Q.-M., Wu H.-Y., Zuo G.-S.-L., Gu H.-C., Deng K.-Y., Xin H.-B. Characteristics and Therapeutic Potential of Human Amnion-Derived Stem Cells. Int. J. Mol. Sci. 2021;22:970. doi: 10.3390/ijms22020970. PubMed DOI PMC
Weidinger A., Poženel L., Wolbank S., Banerjee A. Sub-Regional Differences of the Human Amniotic Membrane and Their Potential Impact on Tissue Regeneration Application. Front. Bioeng. Biotechnol. 2021;8:613804. doi: 10.3389/fbioe.2020.613804. PubMed DOI PMC
Malhotra C., Jain A.K. Human amniotic membrane transplantation: Different modalities of its use in ophthalmology. World J. Transplant. 2014;4:111–121. doi: 10.5500/wjt.v4.i2.111. PubMed DOI PMC
Jirsova K., Jones G.L.A. Amniotic membrane in ophthalmology: Properties, preparation, storage and indications for grafting—A review. Cell Tissue Bank. 2017;18:193–204. doi: 10.1007/s10561-017-9618-5. PubMed DOI
Anselmo D.S., McGuire J.B., Love E., Vlahovic T. Application of Viable Cryopreserved Human Placental Membrane Grafts in the Treatment of Wounds of Diverse Etiologies: A Case Series. Wounds. 2018;30:57–61. PubMed
Farivar B.S., Toursavadkohi S., Monahan T.S., Sharma J., Ucuzian A.A., Kundi R., Sarkar R., Lal B.K. Prospective study of cryopreserved placental tissue wound matrix in the management of chronic venous leg ulcers. J. Vasc. Surg. Venous Lymphat. Disord. 2019;7:228–233. doi: 10.1016/j.jvsv.2018.09.016. PubMed DOI
Lopez Martinez J.A., Rodriguez Valiente M., Fuente-Mora C., Garcia-Hernandez A.M., Canovas Sanchis S., Fernandez Pascual C.J. Use of cryopreserved human amniotic membrane in the treatment of skin ulcers secondary to calciphylaxis. Dermatol. Ther. 2021;34:e14769. doi: 10.1111/dth.14769. PubMed DOI
Game F., Gray K., Davis D., Sherman R., Chokkalingam K., Connan Z., Fakis A., Jones M. The effectiveness of a new dried human amnion derived membrane in addition to standard care in treating diabetic foot ulcers: A patient and assessor blind, randomised controlled pilot study. Int. Wound J. 2021;18:692–700. doi: 10.1111/iwj.13571. PubMed DOI PMC
Mimouni M., Trinh T., Sorkin N., Cohen E., Santaella G., Rootman D.S., Slomovic A.R., Chan C.C. Sutureless dehydrated amniotic membrane for persistent epithelial defects. Eur. J. Ophthalmol. 2022;32:875–879. doi: 10.1177/11206721211011354. PubMed DOI
Serena T.E., Orgill D.P., Armstrong D.G., Galiano R.D., Glat P.M., Carter M.J., Kaufman J.P., Li W.W., Zelen C.M. A Multicenter, Randomized, Controlled, Clinical Trial Evaluating Dehydrated Human Amniotic Membrane in the Treatment of Venous Leg Ulcers. Plast Reconstr. Surg. 2022;150:1128–1136. doi: 10.1097/PRS.0000000000009650. PubMed DOI PMC
Allen C.L., Clare G., Stewart E.A., Branch M.J., McIntosh O.D., Dadhwal M., Dua H.S., Hopkinson A. Augmented dried versus cryopreserved amniotic membrane as an ocular surface dressing. PLoS ONE. 2013;8:e78441. doi: 10.1371/journal.pone.0078441. PubMed DOI PMC
Morkin M.I., Hamrah P. Efficacy of self-retained cryopreserved amniotic membrane for treatment of neuropathic corneal pain. Ocul. Surf. 2018;16:132–138. doi: 10.1016/j.jtos.2017.10.003. PubMed DOI PMC
Insausti C.L., Alcaraz A., García-Vizcaíno E.M., Mrowiec A., López-Martínez M.C., Blanquer M., Piñero A., Majado M.J., Moraleda J.M., Castellanos G., et al. Amniotic membrane induces epithelialization in massive posttraumatic wounds. Wound Repair. Regen. 2010;18:368–377. doi: 10.1111/j.1524-475X.2010.00604.x. PubMed DOI
Mao Y., Hoffman T., Dhall S., Singal A., Sathyamoorthy M., Danilkovitch A., Kohn J. Endogenous viable cells in lyopreserved amnion retain differentiation potential and anti-fibrotic activity in vitro. Acta Biomater. 2019;94:330–339. doi: 10.1016/j.actbio.2019.06.002. PubMed DOI
Alsina-Gibert M., Pedregosa-Fauste S. Amniotic membrane transplantation in the treatment of chronic lower limb ulcers. Actas Dermosifiliogr. 2012;103:608–613. doi: 10.1016/j.ad.2012.01.010. PubMed DOI
Eskandarlou M., Azimi M., Rabiee S., Seif Rabiee M.A. The Healing Effect of Amniotic Membrane in Burn Patients. World J. Plast. Surg. 2016;5:39–44. PubMed PMC
Navas A., Magaña-Guerrero F.S., Domínguez-López A., Chávez-García C., Partido G., Graue-Hernández E.O., Sánchez-García F.J., Garfias Y. Anti-Inflammatory and Anti-Fibrotic Effects of Human Amniotic Membrane Mesenchymal Stem Cells and Their Potential in Corneal Repair. Stem Cells Transl. Med. 2018;7:906–917. doi: 10.1002/sctm.18-0042. PubMed DOI PMC
King A.E., Paltoo A., Kelly R.W., Sallenave J.M., Bocking A.D., Challis J.R.G. Expression of Natural Antimicrobials by Human Placenta and Fetal Membranes. Placenta. 2007;28:161–169. doi: 10.1016/j.placenta.2006.01.006. PubMed DOI
Franco G.R., de Carvalho A.F., Kroon E.G., Lovagie S., Werenne J., Golgher R.R., Ferreira P.C.P., Bonjardim C.A. Biological Activities of a Human Amniotic Membrane Interferon. Placenta. 1999;20:189–196. doi: 10.1053/plac.1998.0364. PubMed DOI
Koob T.J., Lim J.J., Massee M., Zabek N., Rennert R., Gurtner G., Li W.W. Angiogenic properties of dehydrated human amnion/chorion allografts: Therapeutic potential for soft tissue repair and regeneration. Vasc. Cell. 2014;6:1–10. doi: 10.1186/2045-824X-6-10. PubMed DOI PMC
Duan-Arnold Y., Uveges T.E., Gyurdieva A., Johnson A., Danilkovitch A. Angiogenic Potential of Cryopreserved Amniotic Membrane Is Enhanced Through Retention of All Tissue Components in Their Native State. Adv. Wound Care. 2015;4:513–522. doi: 10.1089/wound.2015.0638. PubMed DOI PMC
Shao C., Sima J., Zhang S.X., Jin J., Reinach P., Wang Z., Ma J.-X. Suppression of Corneal Neovascularization by PEDF Release from Human Amniotic Membranes. Investig. Ophthalmol. Vis. Sci. 2004;45:1758–1762. doi: 10.1167/iovs.03-0882. PubMed DOI
Yin L., Pi Y.L. Effect of amnion membrane transplantation on corneal neovascularization in 10 patients with alkali burn. Int. J. Ophthalmol. 2011;4:110–111. doi: 10.3980/j.issn.2222-3959.2011.01.25. PubMed DOI PMC
Kim J.C., Tseng S.C.G. The effects on inhibition of corneal neovascularization after human amniotic membrane transplantation in severely damaged rabbit corneas. Korean J. Ophthalmol. 1995;9:32–46. doi: 10.3341/kjo.1995.9.1.32. PubMed DOI
Lee S.H., Tseng S.C. Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am. J. Ophthalmol. 1997;123:303–312. doi: 10.1016/S0002-9394(14)70125-4. PubMed DOI
Wang W. Lyophilization and development of solid protein pharmaceuticals. Int. J. Pharm. 2000;203:1–60. doi: 10.1016/S0378-5173(00)00423-3. PubMed DOI
Lim L.S., Poh R.W., Riau A.K., Beuerman R.W., Tan D., Mehta J.S. Biological and ultrastructural properties of acelagraft, a freeze-dried gamma-irradiated human amniotic membrane. Arch. Ophthalmol. 2010;128:1303–1310. doi: 10.1001/archophthalmol.2010.222. PubMed DOI
Paolin A., Trojan D., Leonardi A., Mellone S., Volpe A., Orlandi A., Cogliati E. Cytokine expression and ultrastructural alterations in fresh-frozen, freeze-dried and γ-irradiated human amniotic membranes. Cell Tissue Bank. 2016;17:399–406. doi: 10.1007/s10561-016-9553-x. PubMed DOI PMC
McQuilling J.P., Vines J.B., Kimmerling K.A., Mowry K.C. Proteomic Comparison of Amnion and Chorion and Evaluation of the Effects of Processing on Placental Membranes. Wounds. 2017;29:E36–E40. PubMed PMC
Johnson A., Gyurdieva A., Dhall S., Danilkovitch A., Duan-Arnold Y. Understanding the Impact of Preservation Methods on the Integrity and Functionality of Placental Allografts. Ann. Plast. Surg. 2017;79:203–213. doi: 10.1097/SAP.0000000000001101. PubMed DOI
DiDomenico L.A., Orgill D.P., Galiano R.D., Serena T.E., Carter M.J., Kaufman J.P., Young N.J., Jacobs A.M., Zelen C.M. Use of an aseptically processed, dehydrated human amnion and chorion membrane improves likelihood and rate of healing in chronic diabetic foot ulcers: A prospective, randomised, multi-centre clinical trial in 80 patients. Int. Wound J. 2018;15:950–957. doi: 10.1111/iwj.12954. PubMed DOI PMC
Kadkhoda Z., Tavakoli A., Chokami Rafiei S., Zolfaghari F., Akbari S. Effect of Amniotic Membrane Dressing on Pain and Healing of Palatal Donor Site: A Randomized Controlled Trial. Int. J. Organ Transplant. Med. 2020;11:55–62. PubMed PMC
Vaheb M., Kohestani B.M., Karrabi M., Khosrojerdi M., Khajeh M., Shahrestanaki E., Sahebkar M. Evaluation of Dried Amniotic Membrane on Wound Healing at Split-Thickness Skin Graft Donor Sites: A Randomized, Placebo-Controlled, Double-blind Trial. Adv. Ski. Wound Care. 2020;33:636–641. doi: 10.1097/01.ASW.0000695752.52235.e3. PubMed DOI
Tseng S.C. HC-HA/PTX3 Purified From Amniotic Membrane as Novel Regenerative Matrix: Insight Into Relationship Between Inflammation and Regeneration. Investig. Ophthalmol. Vis. Sci. 2016;57:ORSFh1–ORSFh8. doi: 10.1167/iovs.15-17637. PubMed DOI PMC
Talmi Y.P., Finkelstein Y., Zohar Y. Use of human amniotic membrane as a biologic dressing. Eur. J. Plast. Surg. 1990;13:160–162. doi: 10.1007/BF00236370. DOI
Kesting M.R., Wolff K.D., Hohlweg-Majert B., Steinstraesser L. The role of allogenic amniotic membrane in burn treatment. J. Burn Care Res. 2008;29:907–916. doi: 10.1097/BCR.0b013e31818b9e40. PubMed DOI
Liu J., Sheha H., Fu Y., Liang L., Tseng S.C. Update on amniotic membrane transplantation. Expert Rev. Ophthalmol. 2010;5:645–661. doi: 10.1586/eop.10.63. PubMed DOI PMC
ElHeneidy H., Omran E., Hieneedy H., Halwagy A., Al-Inany H., Al-Ansary M., Gad A. Amniotic membrane can be a valid source for wound healing. Int. J. Women’s Health. 2016;8:225–231. doi: 10.2147/ijwh.S96636. PubMed DOI PMC
Svobodova A., Vrkoslav V., Smeringaiova I., Jirsova K. Distribution of an analgesic palmitoylethanolamide and other N-acylethanolamines in human placental membranes. PLoS ONE. 2023;18:e0279863. doi: 10.1371/journal.pone.0279863. PubMed DOI PMC
Esposito E., Cuzzocrea S. Palmitoylethanolamide is a new possible pharmacological treatment for the inflammation associated with trauma. Mini Rev. Med. Chem. 2013;13:237–255. PubMed
Lo Verme J., Fu J., Astarita G., La Rana G., Russo R., Calignano A., Piomelli D. The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol. Pharmacol. 2005;67:15–19. doi: 10.1124/mol.104.006353. PubMed DOI
Esposito E., Cuzzocrea S. Palmitoylethanolamide in Homeostatic and Traumatic Central Nervous System Injuries. CNS Neurol. Disord. Drug Targets. 2013;12:55–61. doi: 10.2174/1871527311312010010. PubMed DOI
Keppel Hesselink J.M. Professor Rita Levi-Montalcini on Nerve Growth Factor, Mast Cells and Palmitoylethanolamide, an Endogenous Anti-Inflammatory and Analgesic Compound. J. Pain Relief. 2013;2:1000114. doi: 10.4172/2167-0846.1000114. DOI
Suardiaz M., Estivill-Torrus G., Goicoechea C., Bilbao A., Rodriguez de Fonseca F. Analgesic properties of oleoylethanolamide (OEA) in visceral and inflammatory pain. Pain. 2007;133:99–110. doi: 10.1016/j.pain.2007.03.008. PubMed DOI
Gatti A., Lazzari M., Gianfelice V., Di Paolo A., Sabato E., Sabato A.F. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Med. 2012;13:1121–1130. doi: 10.1111/j.1526-4637.2012.01432.x. PubMed DOI
Di Paola R., Impellizzeri D., Fusco R., Cordaro M., Siracusa R., Crupi R., Esposito E., Cuzzocrea S. Ultramicronized palmitoylethanolamide (PEA-um((R))) in the treatment of idiopathic pulmonary fibrosis. Pharmacol. Res. 2016;111:405–412. doi: 10.1016/j.phrs.2016.07.010. PubMed DOI
Paladini A., Fusco M., Cenacchi T., Schievano C., Piroli A., Varrassi G. Palmitoylethanolamide, a Special Food for Medical Purposes, in the Treatment of Chronic Pain: A Pooled Data Meta-analysis. Pain Physician. 2016;19:11–24. PubMed
Di Marzo V. ’Endocannabinoids’ and other fatty acid derivatives with cannabimimetic properties: Biochemistry and possible physiopathological relevance. Biochim. Biophys. Acta. 1998;1392:153–175. doi: 10.1016/S0005-2760(98)00042-3. PubMed DOI
Correia-Sa I.B., Carvalho C.M., Serrao P.V., Loureiro A.I., Fernandes-Lopes C., Marques M., Vieira-Coelho M.A. A new role for anandamide: Defective link between the systemic and skin endocannabinoid systems in hypertrophic human wound healing. Sci. Rep. 2020;10:11134. doi: 10.1038/s41598-020-68058-3. PubMed DOI PMC
Ruhl T., Corsten C., Beier J.P., Kim B.S. The immunosuppressive effect of the endocannabinoid system on the inflammatory phenotypes of macrophages and mesenchymal stromal cells: A comparative study. Pharmacol. Rep. 2021;73:143–153. doi: 10.1007/s43440-020-00166-3. PubMed DOI
Fu J., Gaetani S., Oveisi F., Lo Verme J., Serrano A., Rodriguez De Fonseca F., Rosengarth A., Luecke H., Di Giacomo B., Tarzia G., et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature. 2003;425:90–93. doi: 10.1038/nature01921. PubMed DOI
Svobodova A., Horvath V., Smeringaiova I., Cabral J.V., Zemlickova M., Fiala R., Burkert J., Nemetova D., Stadler P., Lindner J., et al. The healing dynamics of non-healing wounds using cryo-preserved amniotic membrane. Int. Wound J. 2022;19:1243–1252. doi: 10.1111/iwj.13719. PubMed DOI PMC
Thomasen H., Pauklin M., Noelle B., Geerling G., Vetter J., Steven P., Steuhl K.P., Meller D. The effect of long-term storage on the biological and histological properties of cryopreserved amniotic membrane. Curr. Eye Res. 2011;36:247–255. doi: 10.3109/02713683.2010.542267. PubMed DOI
Dhall S., Sathyamoorthy M., Kuang J.Q., Hoffman T., Moorman M., Lerch A., Jacob V., Sinclair S.M., Danilkovitch A. Properties of viable lyopreserved amnion are equivalent to viable cryopreserved amnion with the convenience of ambient storage. PLoS ONE. 2018;13:e0204060. doi: 10.1371/journal.pone.0204060. PubMed DOI PMC
Merjava S., Neuwirth A., Tanzerova M., Jirsova K. The spectrum of cytokeratins expressed in the adult human cornea, limbus and perilimbal conjunctiva. Histol. Histopathol. 2011;26:323–331. doi: 10.14670/HH-26.323. PubMed DOI
Trosan P., Cabral J.V., Smeringaiova I., Studeny P., Jirsova K. Interleukin-13 increases the stemness of limbal epithelial stem cells cultures. PLoS ONE. 2022;17:e0272081. doi: 10.1371/journal.pone.0272081. PubMed DOI PMC
Trivedi N.R., Cong Z., Nelson A.M., Albert A.J., Rosamilia L.L., Sivarajah S., Gilliland K.L., Liu W., Mauger D.T., Gabbay R.A., et al. Peroxisome proliferator-activated receptors increase human sebum production. J. Investig. Dermatol. 2006;126:2002–2009. doi: 10.1038/sj.jid.5700336. PubMed DOI
Lam P.M., Marczylo T.H., Konje J.C. Simultaneous measurement of three N-acylethanolamides in human bio-matrices using ultra performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2010;398:2089–2097. doi: 10.1007/s00216-010-4103-z. PubMed DOI
Georgiadis N.S., Ziakas N.G., Boboridis K.G., Terzidou C., Mikropoulos D.G. Cryopreserved amniotic membrane transplantation for the management of symptomatic bullous keratopathy. Clin. Exp. Ophthalmol. 2008;36:130–135. doi: 10.1111/j.1442-9071.2008.01696.x. PubMed DOI
Sharma N., Singh D., Maharana P.K., Kriplani A., Velpandian T., Pandey R.M., Vajpayee R.B. Comparison of Amniotic Membrane Transplantation and Umbilical Cord Serum in Acute Ocular Chemical Burns: A Randomized Controlled Trial. Am. J. Ophthalmol. 2016;168:157–163. doi: 10.1016/j.ajo.2016.05.010. PubMed DOI
Loeffelbein D.J., Rohleder N.H., Eddicks M., Baumann C.M., Stoeckelhuber M., Wolff K.D., Drecoll E., Steinstraesser L., Hennerbichler S., Kesting M.R. Evaluation of human amniotic membrane as a wound dressing for split-thickness skin-graft donor sites. Biomed. Res. Int. 2014;2014:572183. doi: 10.1155/2014/572183. PubMed DOI PMC
Zidan S.M., Eleowa S.A., Nasef M.A., Abd-Almoktader M.A., Elbatawy A.M., Borhamy A.G., Aboliela M.A., Ali A.M., Algamal M.R. Maximizing the safety of glycerol preserved human amniotic membrane as a biological dressing. Burns. 2015;41:1498–1503. doi: 10.1016/j.burns.2015.03.009. PubMed DOI
Rankin L., Fowler C.J. The Basal Pharmacology of Palmitoylethanolamide. Int. J. Mol. Sci. 2020;21:7942. doi: 10.3390/ijms21217942. PubMed DOI PMC