Interleukin-13 increases the stemness of limbal epithelial stem cells cultures

. 2022 ; 17 (8) : e0272081. [epub] 20220802

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35917378

This study aimed to determine the effect of interleukin-13 (IL13) on the stemness, differentiation, proliferation, clonogenicity, and morphology of cultured limbal epithelial cells (LECs). Human limbal explants were used to culture LECs up to the second passage (P0-P2) with or without IL13 (IL13+ and IL13-, respectively). Cells were analyzed by qPCR (for the expression of ΔNp63α, BMI-1, keratin (K) 3, K7, K12, K14, K17, mucin 4, and MKI67) and immunofluorescence staining for p63α. The clonogenic ability was determined by colony-forming assay (CFA), and their metabolic activity was measured by WST-1 assay. The results of the CFA showed a significantly increased clonogenic ability in P1 and P2 cultures when LECs were cultured with IL13. In addition, the expression of putative stem cell markers (ΔNp63α, K14, and K17) was significantly higher in all IL13+ cultures compared to IL13-. Similarly, immunofluorescence analysis showed a significantly higher percentage of p63α positive cells in P2 cultures with IL13 than without it. LECs cultures without IL13 lost their cuboidal morphology with a high nucleocytoplasmic ratio after P1. The use of IL13 also led to significantly higher proliferation in P2, which can be reflected by a higher ability to reach confluence in P2 cultures. On the other hand, IL13 had no effect on corneal epithelial cell differentiation (K3 and K12 expression), and the expression of the conjunctival marker K7 significantly increased in all IL13+ cultures compared to the respective cell culture without IL13. This study showed that IL13 enhanced the stemness of LECs by increasing the clonogenicity and the expression of putative stem cell markers of LECs while maintaining their stem cell morphology. We established IL13 as a culture supplement for LESCs, which increases their stemness potential in culture, even after the second passage, and may lead to the greater success of LESCs transplantation in patients with LSCD.

Zobrazit více v PubMed

Ebato B, Friend J, Thoft RA. Comparison of limbal and peripheral human corneal epithelium in tissue culture. Invest Ophthalmol Vis Sci. 1988. Oct;29(10):1533–1537. PubMed

Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986. Jul;103(1):49–62. doi: 10.1083/jcb.103.1.49 PubMed DOI PMC

Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell. 1989. Apr 21;57(2):201–209. doi: 10.1016/0092-8674(89)90958-6 PubMed DOI

Castro-Muñozledo F, Gómez-Flores E. Challenges to the study of asymmetric cell division in corneal and limbal epithelia. Exp Eye Res. 2011. Jan;92(1):4–9. doi: 10.1016/j.exer.2010.11.002 PubMed DOI

Van Buskirk EM. The anatomy of the limbus. Eye (Lond). 1989. Jan 1;3 (Pt 2):101–108. doi: 10.1038/eye.1989.16 PubMed DOI

Meyer PA. The circulation of the human limbus. Eye (Lond). 1989;3 (Pt 2):121–127. doi: 10.1038/eye.1989.19 PubMed DOI

Zhang Y, Sun H, Liu Y, Chen S, Cai S, Zhu Y, et al.. The limbal epithelial progenitors in the limbal niche environment. Int J Med Sci. 2016. Oct 18;13(11):835–840. doi: 10.7150/ijms.16563 PubMed DOI PMC

Gospodarowicz D, Mescher AL, Brown KD, Birdwell CR. The role of fibroblast growth factor and epidermal growth factorin the proliferative response of the corneal and lens epithelium. Exp Eye Res. 1977. Dec;25(6):631–649. doi: 10.1016/0014-4835(77)90142-7 PubMed DOI

Daniels JT, Limb GA, Saarialho-Kere U, Murphy G, Khaw PT. Human corneal epithelial cells require MMP-1 for HGF-mediated migration on collagen I. Invest Ophthalmol Vis Sci. 2003. Mar;44(3):1048–1055. doi: 10.1167/iovs.02-0442 PubMed DOI

Sotozono C, Inatomi T, Nakamura M, Kinoshita S. Keratinocyte growth factor accelerates corneal epithelial wound healing in vivo. Invest Ophthalmol Vis Sci. 1995. Jul;36(8):1524–1529. PubMed

Lee HK, Lee JH, Kim M, Kariya Y, Miyazaki K, Kim EK. Insulin-like growth factor-1 induces migration and expression of laminin-5 in cultured human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2006. Mar;47(3):873–882. doi: 10.1167/iovs.05-0826 PubMed DOI

Kakazu A, Chandrasekher G, Bazan HEP. HGF protects corneal epithelial cells from apoptosis by the PI-3K/Akt-1/Bad- but not the ERK1/2-mediated signaling pathway. Invest Ophthalmol Vis Sci. 2004. Oct;45(10):3485–3492. doi: 10.1167/iovs.04-0372 PubMed DOI

Trosan P, Svobodova E, Chudickova M, Krulova M, Zajicova A, Holan V. The key role of insulin-like growth factor I in limbal stem cell differentiation and the corneal wound-healing process. Stem Cells Dev. 2012. Dec 10;21(18):3341–3350. doi: 10.1089/scd.2012.0180 PubMed DOI PMC

Kolli S, Bojic S, Ghareeb AE, Kurzawa-Akanbi M, Figueiredo FC, Lako M. The Role of Nerve Growth Factor in Maintaining Proliferative Capacity, Colony-Forming Efficiency, and the Limbal Stem Cell Phenotype. Stem Cells. 2019;37(1):139–149. doi: 10.1002/stem.2921 PubMed DOI PMC

Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, et al.. p63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA. 2001. Mar 13;98(6):3156–3161. doi: 10.1073/pnas.061032098 PubMed DOI PMC

Di Iorio E, Barbaro V, Ruzza A, Ponzin D, Pellegrini G, De Luca M. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci USA. 2005. Jul 5;102(27):9523–9528. doi: 10.1073/pnas.0503437102 PubMed DOI PMC

Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010. Jul 8;363(2):147–155. doi: 10.1056/NEJMoa0905955 PubMed DOI

Stadnikova A, Trosan P, Skalicka P, Utheim TP, Jirsova K. Interleukin-13 maintains the stemness of conjunctival epithelial cell cultures prepared from human limbal explants. PLoS One. 2019. Feb 11;14(2):e0211861. doi: 10.1371/journal.pone.0211861 PubMed DOI PMC

Junttila IS. Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Front Immunol. 2018. Jun 7;9:888. doi: 10.3389/fimmu.2018.00888 PubMed DOI PMC

Jacobsen SE, Okkenhaug C, Veiby OP, Caput D, Ferrara P, Minty A. Interleukin 13: novel role in direct regulation of proliferation and differentiation of primitive hematopoietic progenitor cells. J Exp Med. 1994. Jul 1;180(1):75–82. doi: 10.1084/jem.180.1.75 PubMed DOI PMC

Nappo G, Handle F, Santer FR, McNeill RV, Seed RI, Collins AT, et al.. The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling. Oncogenesis. 2017. May 29;6(5):e342. doi: 10.1038/oncsis.2017.23 PubMed DOI PMC

Zhu P, Zhu X, Wu J, He L, Lu T, Wang Y, et al.. IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3. Nat Immunol. 2019. Jan 14;20(2):183–194. doi: 10.1038/s41590-018-0297-6 PubMed DOI

Trosan P, Javorkova E, Zajicova A, Hajkova M, Hermankova B, Kossl J, et al.. The Supportive Role of Insulin-like Growth Factor-I in the Differentiation of Murine Mesenchymal Stem Cells into Corneal-like Cells. Stem Cells Dev. 2016. Apr 6;25(11):874–881. doi: 10.1089/scd.2016.0030 PubMed DOI

López-Paniagua M, Nieto-Miguel T, de la Mata A, Dziasko M, Galindo S, Rey E, et al.. Comparison of functional limbal epithelial stem cell isolation methods. Exp Eye Res. 2016. May;146:83–94. doi: 10.1016/j.exer.2015.12.002 PubMed DOI

Barbaro V, Testa A, Di Iorio E, Mavilio F, Pellegrini G, De Luca M. C/EBPdelta regulates cell cycle and self-renewal of human limbal stem cells. J Cell Biol. 2007. Jun 18;177(6):1037–1049. doi: 10.1083/jcb.200703003 PubMed DOI PMC

Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, et al.. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol. 1999. May 17;145(4):769–782. doi: 10.1083/jcb.145.4.769 PubMed DOI PMC

Majo F, Rochat A, Nicolas M, Jaoudé GA, Barrandon Y. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature. 2008. Nov 13;456(7219):250–254. doi: 10.1038/nature07406 PubMed DOI

Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–2319. doi: 10.1038/nprot.2006.339 PubMed DOI

Joseph A, Powell-Richards AOR, Shanmuganathan VA, Dua HS. Epithelial cell characteristics of cultured human limbal explants. Br J Ophthalmol. 2004. Mar;88(3):393–398. doi: 10.1136/bjo.2003.018481 PubMed DOI PMC

Kramerov AA, Saghizadeh M, Maguen E, Rabinowitz YS, Ljubimov AV. Persistence of reduced expression of putative stem cell markers and slow wound healing in cultured diabetic limbal epithelial cells. Mol Vis. 2015. Dec 30;21:1357–1367. PubMed PMC

Utheim O, Islam R, Lyberg T, Roald B, Eidet JR, de la Paz MF, et al.. Serum-free and xenobiotic-free preservation of cultured human limbal epithelial cells. PLoS One. 2015. Mar 3;10(3):e0118517. doi: 10.1371/journal.pone.0118517 PubMed DOI PMC

Zhao B, Allinson SL, Ma A, Bentley AJ, Martin FL, Fullwood NJ. Targeted cornea limbal stem/progenitor cell transfection in an organ culture model. Invest Ophthalmol Vis Sci. 2008. Aug;49(8):3395–3401. doi: 10.1167/iovs.07-1263 PubMed DOI

Saghizadeh M, Dib CM, Brunken WJ, Ljubimov AV. Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells. Exp Eye Res. 2014. Dec;129:66–73. doi: 10.1016/j.exer.2014.10.022 PubMed DOI PMC

López-Paniagua M, Nieto-Miguel T, de la Mata A, Galindo S, Herreras JM, Corrales RM, et al.. Consecutive expansion of limbal epithelial stem cells from a single limbal biopsy. Curr Eye Res. 2013. May;38(5):537–549. doi: 10.3109/02713683.2013.767350 PubMed DOI

Brejchova K, Trosan P, Studeny P, Skalicka P, Utheim TP, Bednar J, et al.. Characterization and comparison of human limbal explant cultures grown under defined and xeno-free conditions. Exp Eye Res. 2018. Jun 19;176:20–28. doi: 10.1016/j.exer.2018.06.019 PubMed DOI

Lehrer MS, Sun TT, Lavker RM. Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J Cell Sci. 1998. Oct;111 (Pt 19):2867–2875. doi: 10.1242/jcs.111.19.2867 PubMed DOI

Joyce NC, Navon SE, Roy S, Zieske JD. Expression of cell cycle-associated proteins in human and rabbit corneal endothelium in situ. Invest Ophthalmol Vis Sci. 1996. Jul;37(8):1566–1575. PubMed

Li Y, Yang Y, Yang L, Zeng Y, Gao X, Xu H. Poly(ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model. Stem Cell Res Ther. 2017. Nov 7;8(1):256. doi: 10.1186/s13287-017-0707-y PubMed DOI PMC

Calonge M, Nieto-Miguel T, de la Mata A, Galindo S, Herreras JM, López-Paniagua M. Goals and Challenges of Stem Cell-Based Therapy for Corneal Blindness Due to Limbal Deficiency. Pharmaceutics. 2021. Sep 16;13(9). doi: 10.3390/pharmaceutics13091483 PubMed DOI PMC

Jirsova K, Dudakova L, Kalasova S, Vesela V, Merjava S. The OV-TL 12/30 clone of anti-cytokeratin 7 antibody as a new marker of corneal conjunctivalization in patients with limbal stem cell deficiency. Invest Ophthalmol Vis Sci. 2011. Jul 29;52(8):5892–5898. doi: 10.1167/iovs.10-6748 PubMed DOI PMC

Ang LPK, Tanioka H, Kawasaki S, Ang LPS, Yamasaki K, Do TP, et al.. Cultivated human conjunctival epithelial transplantation for total limbal stem cell deficiency. Invest Ophthalmol Vis Sci. 2010. Feb;51(2):758–764. doi: 10.1167/iovs.09-3379 PubMed DOI

Kakizaki I, Itano N, Kimata K, Hanada K, Kon A, Yamaguchi M, et al.. Up-regulation of hyaluronan synthase genes in cultured human epidermal keratinocytes by UVB irradiation. Arch Biochem Biophys. 2008. Mar 1;471(1):85–93. doi: 10.1016/j.abb.2007.12.004 PubMed DOI

Ueta M, Sotozono C, Kinoshita S. Expression of interleukin-4 receptor α in human corneal epithelial cells. Jpn J Ophthalmol. 2011. Jul;55(4):405–410. doi: 10.1007/s10384-011-0030-6 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace