The OV-TL 12/30 clone of anti-cytokeratin 7 antibody as a new marker of corneal conjunctivalization in patients with limbal stem cell deficiency
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21693612
PubMed Central
PMC3176045
DOI
10.1167/iovs.10-6748
PII: iovs.10-6748
Knihovny.cz E-zdroje
- MeSH
- biologické markery MeSH
- dospělé kmenové buňky patologie MeSH
- dospělí MeSH
- keratin-19 imunologie metabolismus MeSH
- keratin-7 genetika imunologie metabolismus MeSH
- konjunktiva metabolismus patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- limbus corneae metabolismus patologie MeSH
- mrtvola MeSH
- nemoci rohovky metabolismus patologie MeSH
- protilátky imunologie MeSH
- rohovkový epitel metabolismus patologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- specificita protilátek MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- keratin-19 MeSH
- keratin-7 MeSH
- protilátky MeSH
PURPOSE: To present cytokeratin (CK)7 (OV-TL 12/30 clone) as a newly identified, reliable marker for distinguishing between the conjunctival and corneal surface epithelia, which will contribute to the precise diagnosis of limbal stem cell deficiency (LSCD). METHODS: Corneal and conjunctival epithelial imprints from 12 cadaveric bulbi and from 9 patients with clinically diagnosed LSCD were used for CK7 and CK19 immunocytochemistry. Specimens on nitroacetate cellulose filter papers obtained from the patients were stained with a combination of periodic acid-Schiff (PAS) and Gill's modified Papanicolaou stains, to assess the presence of goblet cells (GCs). RESULTS: CK7 was present in almost all superficial conjunctival epithelial cells from the cadaveric specimens. No immunostaining was observed on the corneal surface. A prominent sharp border of stain was found between the positive conjunctiva and the completely negative epithelium of the central cornea. A more gradual centrifugal decrease in the number of positive cells between the conjunctiva and cornea was observed for CK19. Several CK19-positive cells were detected in the central corneal epithelium. All corneal specimens from affected eyes (unilateral as well as bilateral LSCD patients) revealed strong positivity for CK7, and GCs were present in only 78% of patients. CONCLUSIONS: In cases in which GCs are severely decreased or are absent from the conjunctival surface, the detection of CK7 (OV-TL 12/30 clone) clearly confirms the overgrowth of the conjunctival epithelium over the cornea. Moreover, CK7 is a more reliable marker for distinguishing between the corneal and conjunctival epithelia compared with CK19.
Zobrazit více v PubMed
Sack RA, Nunes I, Beaton A, Morris C. Host-defense mechanism of the ocular surfaces. Biosci Rep. 2001;21:463–480 PubMed
Thoft RA, Friend J, Kenyon KR. Ocular surface response to trauma. Int Ophthalmol Clin. 1979;19:111–131 PubMed
Chang CY, Green CR, McGhee CN, Sherwin T. Acute wound healing in the human central corneal epithelium appears to be independent of limbal stem cell influence. Invest Ophthalmol Vis Sci. 2008;49:5279–5286 PubMed
Dua HS, Miri A, Alomar T, Yeung AM, Said DG. The role of limbal stem cells in corneal epithelial maintenance: testing the dogma. Ophthalmology. 2009;116:856–863 PubMed
Thoft RA, Friend J. The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci. 1983;24:1442–1443 PubMed
Foster CS, Sainz De La Maza M. Ocular cicatricial pemphigoid review. Curr Opin Allergy Clin Immunol. 2004;4:435–439 PubMed
Puangsricharern V, Tseng SC. Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology. 1995;102:1476–1485 PubMed
Solomon A, Espana EM, Tseng SC. Amniotic membrane transplantation for reconstruction of the conjunctival fornices. Ophthalmology. 2003;110:93–100 PubMed
Sridhar MS, Vemuganti GK, Bansal AK, Rao GN. Impression cytology-proven corneal stem cell deficiency in patients after surgeries involving the limbus. Cornea. 2001;20:145–148 PubMed
Shortt AJ, Secker GA, Notara MD, et al. Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol. 2007;52:483–502 PubMed
Tseng SH, Yen JS, Chien HL. Lens epithelium in senile cataract. J Formos Med Assoc. 1994;93:93–98 PubMed
Maskin SL, Heitman KF, Lawton AW, Yee RW. Diagnostic impression cytology for external eye disease. Cornea. 1989;8:270–273 PubMed
Shapiro MS, Friend J, Thoft RA. Corneal re-epithelialization from the conjunctiva. Invest Ophthalmol Vis Sci. 1981;21:135–142 PubMed
Egbert PR, Lauber S, Maurice DM. A simple conjunctival biopsy. Am J Ophthalmol. 1977;84:798–801 PubMed
Donisi PM, Rama P, Fasolo A, Ponzin D. Analysis of limbal stem cell deficiency by corneal impression cytology. Cornea. 2003;22:533–538 PubMed
Elder MJ, Hiscott P, Dart JK. Intermediate filament expression by normal and diseased human corneal epithelium. Hum Pathol. 1997;28:1348–1354 PubMed
Jirsova K, Neuwirth A, Kalasova S, Vesela V, Merjava S. Mesothelial proteins are expressed in the human cornea. Exp Eye Res. PubMed
Pitz S, Moll R. Intermediate-filament expression in ocular tissue. Prog Retin Eye Res. 2002;21:241–262 PubMed
Kasper M, Moll R, Stosiek P, Karsten U. Patterns of cytokeratin and vimentin expression in the human eye. Histochemistry. 1988;89:369–377 PubMed
Kivela T, Uusitalo M. Structure, development and function of cytoskeletal elements in non-neuronal cells of the human eye. Prog Retin Eye Res. 1998;17:385–428 PubMed
Chen WY, Mui MM, Kao WW, Liu CY, Tseng SC. Conjunctival epithelial cells do not transdifferentiate in organotypic cultures: expression of K12 keratin is restricted to corneal epithelium. Curr Eye Res. 1994;13:765–778 PubMed
Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982;31:11–24 PubMed
Lauweryns B, van den Oord JJ, De Vos R, Missotten L. A new epithelial cell type in the human cornea. Invest Ophthalmol Vis Sci. 1993;34:1983–1990 PubMed
Chen Z, de Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, Li DQ. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells. 2004;22:355–366 PubMed PMC
Yoshida S, Shimmura S, Kawakita T, et al. Cytokeratin 15 can be used to identify the limbal phenotype in normal and diseased ocular surfaces. Invest Ophthalmol Vis Sci. 2006;47:4780–4786 PubMed
Leube RE, Bosch FX, Romano V, Zimbelmann R, Hofler H, Franke WW. Cytokeratin expression in simple epithelia. III. Detection of mRNAs encoding human cytokeratins nos. 8 and 18 in normal and tumor cells by hybridization with cDNA sequences in vitro and in situ. Differentiation. 1986;33:69–85 PubMed
Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129:705–733 PubMed PMC
Ramaekers F, Huysmans A, Schaart G, Moesker O, Vooijs P. Tissue distribution of keratin 7 as monitored by a monoclonal antibody. Exp Cell Res. 1987;170:235–249 PubMed
Krenzer KL, Freddo TF. Cytokeratin expression in normal human bulbar conjunctiva obtained by impression cytology. Invest Ophthalmol Vis Sci. 1997;38:142–152 PubMed
Moroi SE, Gokhale PA, Schteingart MT, et al. Clinicopathologic correlation and genetic analysis in a case of posterior polymorphous corneal dystrophy. Am J Ophthalmol. 2003;135:461–470 PubMed
Merjava S, Neuwirth A, Mandys V, Jirsova K. Cytokeratins 8 and 18 in adult human corneal endothelium. Exp Eye Res. 2009;89:426–431 PubMed
Gill GW, Frost JK, Miller KA. A new formula for a half-oxidized hematoxylin solution that neither overstains nor requires differentiation. Acta Cytol. 1974;18:300–311 PubMed
Martinez AJ, Mills MB, Jaceldo KB, et al. Standardization of conjunctival impression cytology. Cornea. 1995;14:515–522 PubMed
Tseng SC. Staging of conjunctival squamous metaplasia by impression cytology. Ophthalmology. 1985;92:728–733 PubMed
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685 PubMed
Kasper M, Stosiek P, Lane B. Cytokeratin and vimentin heterogeneity in human cornea. Acta Histochem. 1992;93:371–381 PubMed
Di Iorio E, Barbaro V, Ruzza A, Ponzin D, Pellegrini G, De Luca M. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci U S A. 2005;102:9523–9528 PubMed PMC
Mygind H, Nielsen B, Moe D, Clausen H, Dabelsteen E, Clausen PP. Antikeratin antibodies in routine diagnostic pathology: a comparison of 10 different commercial antikeratins. Apmis. 1988;96:1009–1022 PubMed
van Niekerk CC, Jap PHK, Thomas CMG, et al. Marker profile of mesothelial cells versus ovarian carcinoma cells. Int J Cancer. 1989;43:1065–1071 PubMed
Ramaekers F, van Niekerk C, Poels L, et al. Use of monoclonal antibodies to keratin 7 in the differential diagnosis of adenocarcinomas. Am J Pathol. 1990;136:641–655 PubMed PMC
Interleukin-13 increases the stemness of limbal epithelial stem cells cultures
Familial Limbal Stem Cell Deficiency: Clinical, Cytological and Genetic Characterization