Interleukin-13 maintains the stemness of conjunctival epithelial cell cultures prepared from human limbal explants

. 2019 ; 14 (2) : e0211861. [epub] 20190211

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30742646

To use human limbal explants as an alternative source for generating conjunctival epithelium and to determine the effect of interleukin-13 (IL-13) on goblet cell number, mucin expression, and stemness. Human limbal explants prepared from 17 corneoscleral rims were cultured with or without IL-13 (IL-13+ and IL-13-, respectively) and followed up to passage 2 (primary culture [P0]-P2). Cells were characterized by alcian blue/periodic acid-Schiff (AB/PAS) staining (goblet cells); immunofluorescent staining for p63α (progenitor cells), Ki-67 (proliferation), MUC5AC (mucin, goblet cells), and keratin 7 (K7, conjunctival epithelial and goblet cells); and by quantitative real-time polymerase chain reaction for expression of the p63α (TP63), MUC5AC, MUC4 (conjunctival mucins), K3, K12 (corneal epithelial cells), and K7 genes. Clonogenic ability was determined by colony-forming efficiency (CFE) assay. Using limbal explants, we generated epithelium with conjunctival phenotype and high viability in P0, P1, and P2 cultures under IL-13+ and IL-13- conditions, i.e., epithelium with strong K7 positivity, high K7 and MUC4 expression and the presence of goblet cells (AB/PAS and MUC5AC positivity; MUC5AC expression). p63α positivity was similar in IL-13+ and IL-13- cultures and was decreased in P2 cultures; however, there was increased TP63 expression in the presence of IL-13 (especially in the P1 cultures). Similarly, IL-13 increased proliferative activity in P1 cultures and significantly promoted P0 and P1 culture CFE. IL-13 did not increase goblet cell number in the P0-P2 cultures, nor did it influence MUC5AC and MUC4 expression. By harvesting unattached cells on day 1 of P1 we obtained goblet cell rich subpopulation showing AB/PAS, MUC5AC, and K7 positivity, but with no growth potential. In conclusion, limbal explants were successfully used to develop conjunctival epithelium with the presence of putative stem and goblet cells and with the ability to preserve the stemness of P0 and P1 cultures under IL-13 influence.

Zobrazit více v PubMed

Siebelmann S, Gehlsen U, Huttmann G, Koop N, Bolke T, Gebert A, et al. Development, alteration and real time dynamics of conjunctiva-associated lymphoid tissue. PLoS One. 2013;8(12):e82355 10.1371/journal.pone.0082355 . PubMed DOI PMC

Kessing SV. Mucous gland system of the conjunctiva. A quantitative normal anatomical study. Acta Ophthalmol (Copenh). 1968:Suppl 95:1+ . PubMed

Gipson IK. Goblet cells of the conjunctiva: A review of recent findings. Prog Retin Eye Res. 2016;54:49–63. 10.1016/j.preteyeres.2016.04.005 . PubMed DOI PMC

Dua HS, Gomes JA, Jindal VK, Appa SN, Schwarting R, Eagle RC Jr., et al. Mucosa specific lymphocytes in the human conjunctiva, corneoscleral limbus and lacrimal gland. Curr Eye Res. 1994;13(1):87–93. . PubMed

Gipson IK. Distribution of mucins at the ocular surface. Exp Eye Res. 2004;78(3):379–88. . PubMed

Li W, Hayashida Y, Chen YT, Tseng SC. Niche regulation of corneal epithelial stem cells at the limbus. Cell Res. 2007;17(1):26–36. 10.1038/sj.cr.7310137 . PubMed DOI PMC

Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, et al. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol. 1999;145(4):769–82. . PubMed PMC

Wei ZG, Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells are preferentially located in fornical epithelium: implications on conjunctival epithelial homeostasis. Invest Ophthalmol Vis Sci. 1995;36(1):236–46. . PubMed

Stewart RM, Sheridan CM, Hiscott PS, Czanner G, Kaye SB. Human Conjunctival Stem Cells are Predominantly Located in the Medial Canthal and Inferior Forniceal Areas. Invest Ophthalmol Vis Sci. 2015;56(3):2021–30. 10.1167/iovs.14-16266 . PubMed DOI

Li W, Sun X, Wang Z, Li R, Li L. The effect of nerve growth factor on differentiation of corneal limbal epithelial cells to conjunctival goblet cells in vitro. Mol Vis. 2010;16:2739–44. . PubMed PMC

Junttila IS. Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Front Immunol. 2018;9:888 10.3389/fimmu.2018.00888 . PubMed DOI PMC

Gour N, Wills-Karp M. IL-4 and IL-13 signaling in allergic airway disease. Cytokine. 2015;75(1):68–78. 10.1016/j.cyto.2015.05.014 . PubMed DOI PMC

Garcia-Posadas L, Contreras-Ruiz L, Soriano-Romani L, Dartt DA, Diebold Y. Conjunctival Goblet Cell Function: Effect of Contact Lens Wear and Cytokines. Eye Contact Lens. 2016;42(2):83–90. 10.1097/ICL.0000000000000158 . PubMed DOI PMC

Fukuda K, Kumagai N, Fujitsu Y, Nishida T. Fibroblasts as local immune modulators in ocular allergic disease. Allergol Int. 2006;55(2):121–9. 10.2332/allergolint.55.121 . PubMed DOI

Saw VP, Offiah I, Dart RJ, Galatowicz G, Dart JK, Daniels JT, et al. Conjunctival interleukin-13 expression in mucous membrane pemphigoid and functional effects of interleukin-13 on conjunctival fibroblasts in vitro. Am J Pathol. 2009;175(6):2406–15. 10.2353/ajpath.2009.090579 . PubMed DOI PMC

Leonardi A, Motterle L, Bortolotti M. Allergy and the eye. Clin Exp Immunol. 2008;153 Suppl 1:17–21. 10.1111/j.1365-2249.2008.03716.x . PubMed DOI PMC

De Paiva CS, Raince JK, McClellan AJ, Shanmugam KP, Pangelinan SB, Volpe EA, et al. Homeostatic control of conjunctival mucosal goblet cells by NKT-derived IL-13. Mucosal Immunol. 2011;4(4):397–408. 10.1038/mi.2010.82 . PubMed DOI PMC

Dalessandri T, Crawford G, Hayes M, Castro Seoane R, Strid J. IL-13 from intraepithelial lymphocytes regulates tissue homeostasis and protects against carcinogenesis in the skin. Nat Commun. 2016;7:12080 10.1038/ncomms12080 . PubMed DOI PMC

Tukler Henriksson J, Coursey TG, Corry DB, De Paiva CS, Pflugfelder SC. IL-13 Stimulates Proliferation and Expression of Mucin and Immunomodulatory Genes in Cultured Conjunctival Goblet Cells. Invest Ophthalmol Vis Sci. 2015;56(8):4186–97. 10.1167/iovs.14-15496 . PubMed DOI PMC

Contreras-Ruiz L, Ghosh-Mitra A, Shatos MA, Dartt DA, Masli S. Modulation of conjunctival goblet cell function by inflammatory cytokines. Mediators Inflamm. 2013;2013:636812 10.1155/2013/636812 . PubMed DOI PMC

Garcia-Posadas L, Hodges RR, Diebold Y, Dartt DA. Context-Dependent Regulation of Conjunctival Goblet Cell Function by Allergic Mediators. Sci Rep. 2018;8(1):12162 10.1038/s41598-018-30002-x . PubMed DOI PMC

Garcia-Posadas L, Soriano-Romani L, Lopez-Garcia A, Diebold Y. An engineered human conjunctival-like tissue to study ocular surface inflammatory diseases. PLoS One. 2017;12(3):e0171099 10.1371/journal.pone.0171099 . PubMed DOI PMC

Lavker RM, Tseng SC, Sun TT. Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle. Exp Eye Res. 2004;78(3):433–46. . PubMed

Utheim TP. Limbal epithelial cell therapy: past, present, and future. Methods Mol Biol. 2013;1014:3–43. 10.1007/978-1-62703-432-6_1 . PubMed DOI

Tsai RJ, Tseng SC. Substrate modulation of cultured rabbit conjunctival epithelial cell differentiation and morphology. Invest Ophthalmol Vis Sci. 1988;29(10):1565–76. . PubMed

Eidet JR, Dartt DA, Utheim TP. Concise Review: Comparison of Culture Membranes Used for Tissue Engineered Conjunctival Epithelial Equivalents. J Funct Biomater. 2015;6(4):1064–84. 10.3390/jfb6041064 . PubMed DOI PMC

Schrader S, Notara M, Beaconsfield M, Tuft SJ, Daniels JT, Geerling G. Tissue engineering for conjunctival reconstruction: established methods and future outlooks. Curr Eye Res. 2009;34(11):913–24. 10.3109/02713680903198045 . PubMed DOI

Ang LP, Tan DT, Cajucom-Uy H, Beuerman RW. Autologous cultivated conjunctival transplantation for pterygium surgery. Am J Ophthalmol. 2005;139(4):611–9. 10.1016/j.ajo.2004.10.056 . PubMed DOI

Tanioka H, Kawasaki S, Yamasaki K, Ang LP, Koizumi N, Nakamura T, et al. Establishment of a cultivated human conjunctival epithelium as an alternative tissue source for autologous corneal epithelial transplantation. Invest Ophthalmol Vis Sci. 2006;47(9):3820–7. 10.1167/iovs.06-0293 . PubMed DOI

Ang LP, Tanioka H, Kawasaki S, Ang LP, Yamasaki K, Do TP, et al. Cultivated human conjunctival epithelial transplantation for total limbal stem cell deficiency. Invest Ophthalmol Vis Sci. 2010;51(2):758–64. 10.1167/iovs.09-3379 . PubMed DOI

Di Girolamo N, Bosch M, Zamora K, Coroneo MT, Wakefield D, Watson SL. A contact lens-based technique for expansion and transplantation of autologous epithelial progenitors for ocular surface reconstruction. Transplantation. 2009;87(10):1571–8. 10.1097/TP.0b013e3181a4bbf2 . PubMed DOI

Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147–55. 10.1056/NEJMoa0905955 . PubMed DOI

Myers R. Special Stain Techniques for the Evaluation of Mucins. https://www.leicabiosystems.com/pathologyleaders/special-stain-techniques-for-the-evaluation-of-mucins/.

Jirsova K, Dudakova L, Kalasova S, Vesela V, Merjava S. The OV-TL 12/30 clone of anti-cytokeratin 7 antibody as a new marker of corneal conjunctivalization in patients with limbal stem cell deficiency. Invest Ophthalmol Vis Sci. 2011;52(8):5892–8. 10.1167/iovs.10-6748 . PubMed DOI PMC

Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133(4):1710–5. . PubMed

Parsa R, Yang A, McKeon F, Green H. Association of p63 with proliferative potential in normal and neoplastic human keratinocytes. J Invest Dermatol. 1999;113(6):1099–105. 10.1046/j.1523-1747.1999.00780.x . PubMed DOI

Di Iorio E, Barbaro V, Ruzza A, Ponzin D, Pellegrini G, De Luca M. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci U S A. 2005;102(27):9523–8. 10.1073/pnas.0503437102 . PubMed DOI PMC

Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, et al. p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A. 2001;98(6):3156–61. 10.1073/pnas.061032098 . PubMed DOI PMC

Inatomi T, Spurr-Michaud S, Tisdale AS, Zhan Q, Feldman ST, Gipson IK. Expression of secretory mucin genes by human conjunctival epithelia. Invest Ophthalmol Vis Sci. 1996;37(8):1684–92. . PubMed

Dyrlund TF, Poulsen ET, Scavenius C, Nikolajsen CL, Thogersen IB, Vorum H, et al. Human cornea proteome: identification and quantitation of the proteins of the three main layers including epithelium, stroma, and endothelium. J Proteome Res. 2012;11(8):4231–9. 10.1021/pr300358k . PubMed DOI PMC

Luznik Z, Hawlina M, Malicev E, Bertolin M, Kopitar AN, Ihan A, et al. Effect of Cryopreserved Amniotic Membrane Orientation on the Expression of Limbal Mesenchymal and Epithelial Stem Cell Markers in Prolonged Limbal Explant Cultures. PLoS One. 2016;11(10):e0164408 10.1371/journal.pone.0164408 . PubMed DOI PMC

Madhira SL, Vemuganti G, Bhaduri A, Gaddipati S, Sangwan VS, Ghanekar Y. Culture and characterization of oral mucosal epithelial cells on human amniotic membrane for ocular surface reconstruction. Mol Vis. 2008;14:189–96. . PubMed PMC

Schrader S, Notara M, Tuft SJ, Beaconsfield M, Geerling G, Daniels JT. Simulation of an in vitro niche environment that preserves conjunctival progenitor cells. Regen Med. 2010;5(6):877–89. 10.2217/rme.10.73 . PubMed DOI

Ang LP, Tan DT, Seah CJ, Beuerman RW. The use of human serum in supporting the in vitro and in vivo proliferation of human conjunctival epithelial cells. Br J Ophthalmol. 2005;89(6):748–52. 10.1136/bjo.2004.055046 . PubMed DOI PMC

Curran-Everett D. Explorations in statistics: standard deviations and standard errors. Adv Physiol Educ. 2008;32(3):203–8. 10.1152/advan.90123.2008 . PubMed DOI

Liu CY. Wakayama symposium: role of canonical Notch signaling in conjucntival goblet cell differentiation and dry eye syndrome. BMC Ophthalmol. 2015;15 Suppl 1:152 10.1186/s12886-015-0136-6 . PubMed DOI PMC

Birchenough GM, Johansson ME, Gustafsson JK, Bergstrom JH, Hansson GC. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 2015;8(4):712–9. 10.1038/mi.2015.32 . PubMed DOI PMC

Sasamoto Y, Hayashi R, Park SJ, Saito-Adachi M, Suzuki Y, Kawasaki S, et al. PAX6 Isoforms, along with Reprogramming Factors, Differentially Regulate the Induction of Cornea-specific Genes. Sci Rep. 2016;6:20807 10.1038/srep20807 . PubMed DOI PMC

Kawasaki S, Tanioka H, Yamasaki K, Yokoi N, Komuro A, Kinoshita S. Clusters of corneal epithelial cells reside ectopically in human conjunctival epithelium. Invest Ophthalmol Vis Sci. 2006;47(4):1359–67. 10.1167/iovs.05-1084 . PubMed DOI

Koroma BM, Yang JM, Sundin OH. The Pax-6 homeobox gene is expressed throughout the corneal and conjunctival epithelia. Invest Ophthalmol Vis Sci. 1997;38(1):108–20. . PubMed

Pathak M, Olstad OK, Drolsum L, Moe MC, Smorodinova N, Kalasova S, et al. The effect of culture medium and carrier on explant culture of human limbal epithelium: A comparison of ultrastructure, keratin profile and gene expression. Exp Eye Res. 2016;153:122–32. 10.1016/j.exer.2016.09.012 . PubMed DOI

Lambiase A, Micera A, Pellegrini G, Merlo D, Rama P, De Luca M, et al. In vitro evidence of nerve growth factor effects on human conjunctival epithelial cell differentiation and mucin gene expression. Invest Ophthalmol Vis Sci. 2009;50(10):4622–30. 10.1167/iovs.08-2716 . PubMed DOI

Lambiase A, Bonini S, Bonini S, Micera A, Magrini L, Bracci-Laudiero L, et al. Increased plasma levels of nerve growth factor in vernal keratoconjunctivitis and relationship to conjunctival mast cells. Invest Ophthalmol Vis Sci. 1995;36(10):2127–32. . PubMed

Garcia-Posadas L, Arranz-Valsero I, Lopez-Garcia A, Soriano-Romani L, Diebold Y. A new human primary epithelial cell culture model to study conjunctival inflammation. Invest Ophthalmol Vis Sci. 2013;54(10):7143–52. 10.1167/iovs.13-12866 . PubMed DOI

Lopez-Paniagua M, Nieto-Miguel T, de la Mata A, Dziasko M, Galindo S, Rey E, et al. Comparison of functional limbal epithelial stem cell isolation methods. Exp Eye Res. 2016;146:83–94. 10.1016/j.exer.2015.12.002 . PubMed DOI

Xi X, Schlegel N, Caen JP, Minty A, Fournier S, Caput D, et al. Differential effects of recombinant human interleukin-13 on the in vitro growth of human haemopoietic progenitor cells. Br J Haematol. 1995;90(4):921–7. . PubMed

Jacobsen SE, Okkenhaug C, Veiby OP, Caput D, Ferrara P, Minty A. Interleukin 13: novel role in direct regulation of proliferation and differentiation of primitive hematopoietic progenitor cells. J Exp Med. 1994;180(1):75–82. . PubMed PMC

Gomez-Flores E, Sanchez-Guzman E, Castro-Munozledo F. Asymmetrical cell division and differentiation are not dependent upon stratification in a corneal epithelial cell line. J Cell Physiol. 2011;226(3):700–9. 10.1002/jcp.22380 . PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Interleukin-13 increases the stemness of limbal epithelial stem cells cultures

. 2022 ; 17 (8) : e0272081. [epub] 20220802

Discontinuous transcription of ribosomal DNA in human cells

. 2020 ; 15 (3) : e0223030. [epub] 20200302

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace