The Composition Optimization of Curcumin-Loaded Double Oil-Water-Oil Emulsions and Their Stability Evaluation

. 2024 Aug 26 ; 29 (17) : . [epub] 20240826

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39274882

Grantová podpora
IGA/FT/2024/005 Tomas Bata University in Zlin

This study aimed to optimize the preparation of multiple oil-water-oil (O/W/O) emulsions using varying amounts of Tween 20 emulsifier, different homogenization methods, and optimal preparation temperatures as carriers for encapsulated curcumin. Following the optimization process, the optimal preparation temperature was found to be 25 °C, with a homogenization speed of 10,000 RPM and an emulsifier concentration of 0.5% Tween 20. Subsequently, the effects of physicochemical and viscoelastic properties on the different types of oils used in the outer phase, as well as the impact of storage time, were monitored. The novelty of this work lies in its comprehensive analysis of the stability and encapsulation efficiency of multiple emulsions using various oils, an area that has not been extensively explored before. After identifying the optimal preparation procedure, all samples with different edible oils demonstrated excellent stability and encapsulation efficiency, showing minimal variation in results. The most stable multiple emulsion was found to be the one with coconut oil in the outer phase, exhibiting half the particle size compared to other samples and the lowest encapsulation efficiency losses over 50 days of storage. This study provides new insights into the formulation of stable multiple emulsions for the effective delivery of curcumin and similar bioactive compounds.

Zobrazit více v PubMed

Zheng D., Huang C., Huang H., Zhao Y., Khan M.R.U., Zhao H., Huang L. Antibacterial Mechanism of Curcumin: A Review. Chem. Biodivers. 2020;17:e2000171. doi: 10.1002/cbdv.202000171. PubMed DOI

Campelo M.S., Aragão C.B., de Melo D.G., Barbosa M.L.F., de Oliveira R.N.M.P.S., Muniz C.R., Ribeiro W.L.C., Ribeiro M.E.N.P. Curcumin-Loaded Emulsion Improves Its In Vitro Anthelmintic Activity against Benzimidazole-Resistant Haemonchus contortus. Food Biosci. 2024;59:104052. doi: 10.1016/j.fbio.2024.104052. DOI

Trujillo J., Chirino Y.I., Molina-Jijón E., Andérica-Romero A.C., Tapia E., Pedraza-Chaverrí J. Renoprotective Effect of the Antioxidant Curcumin: Recent Findings. Redox Biol. 2013;1:448–456. doi: 10.1016/j.redox.2013.09.003. PubMed DOI PMC

Keramat M., Golmakani M. Antioxidant Potency and Inhibitory Mechanism of Curcumin and Its Derivatives in Oleogel and Emulgel Produced by Linseed Oil. Food Chem. 2024;445:136814. doi: 10.1016/j.foodchem.2024.138754. PubMed DOI

Kaur R. Turmeric: A Golden Herb with Health-Promoting Components. Just Agric. 2024;4:5.

Bradford P.G. Curcumin and Obesity. Biofactors. 2013;39:78–87. doi: 10.1002/biof.1074. PubMed DOI

Stohs S.J., Chen O., Ray S.D., Ji J., Bucci L.R., Preuss H.G. Highly Bioavailable Forms of Curcumin and Promising Avenues for Curcumin-Based Research and Application: A Review. Molecules. 2020;25:1397. doi: 10.3390/molecules25061397. PubMed DOI PMC

Akram M., Shahab-Uddin A.A., Usmanghani K., Hannan A., Mohiuddin E., Asif M. Curcuma Longa and Curcumin: A Review Article. Rom. J. Biol. Plant Biol. 2010;55:65–70.

Kim K., Kim J.-J., Jung Y., Noh J.-Y., Syed A.S., Kim C.Y., Lee M.-Y., Lim K.-M., Bae O.-N., Chung J.-H. Cyclocurcumin, an antivasoconstrictive constituent of Curcuma longa (Turmeric) J. Nat. Prod. 2017;80:196–200. doi: 10.1021/acs.jnatprod.6b00331. PubMed DOI

Yang D., Wang L., Zhang L., Wang M., Li D., Liu N., Liu D., Zhao M., Yao X. Construction, Characterization, and Bioactivity Evaluation of Curcumin Nanocrystals with Extremely High Solubility and Dispersion Prepared by Ultrasound-Assisted Method. Ultrason. Sonochem. 2024;104:106835. doi: 10.1016/j.ultsonch.2024.106835. PubMed DOI PMC

Lu J., Wang Y., Cao W., Yan Y., Guo F., Li J., Li W. Stability and Gastrointestinal Behavior of Curcumin-Loaded Emulsion Stabilized by Multi-Conformation Soy Proteins: Influence of Oil Volume Fraction. Food Chem. 2024;440:138215. doi: 10.1016/j.foodchem.2023.138215. PubMed DOI

Bako H.K., Ibeogu H.I., Bassey A.P., Yar M.S., Zhou T., Li C. Optimization and Characterization of Double Emulsion Derived from Rice Starch, Rice Protein Isolates, and Rice Bran Oil. Int. J. Biol. Macromol. 2024;258:128966. doi: 10.1016/j.ijbiomac.2023.128966. PubMed DOI

Alouk I., Xu D., Cao Y. Encapsulation of Natural Pigments by Double Emulsion: A Review. Food Biosci. 2023;56:103411. doi: 10.1016/j.fbio.2023.103411. DOI

Leister N., Karbstein H.P. Evaluating the Stability of Double Emulsions—A Review of the Measurement Techniques for the Systematic Investigation of Instability Mechanisms. Colloids Interfaces. 2020;4:8. doi: 10.3390/colloids4010008. DOI

Zhao J., Bhandari B., Gaiani C., Prakash S. Fermentation of Almond-Based Gel Incorporated with Double Emulsion (W1/O/W2): A Study on Gel Properties and Effectiveness of Double Emulsion as a Fat Replacer. Food Struct. 2023;36:100322. doi: 10.1016/j.foostr.2023.100322. DOI

Zhi Z., Li H., Geurs I., Lewille B., Liu R., Van der Meeren P., Dewettinck K., van Bockstaele F. Dual Stabilization of O/W/O Double Emulsions by Proteins: An Interfacial Perspective. Food Hydrocoll. 2024;148:109488. doi: 10.1016/j.foodhyd.2023.109488. DOI

Heidari F., Jafari S.M., Ziaiifar A.M., Malekjani N. Stability and Release Mechanisms of Double Emulsions Loaded with Bioactive Compounds: A Critical Review. Adv. Colloid Interface Sci. 2022;299:102567. doi: 10.1016/j.cis.2021.102567. PubMed DOI

Eslami P., Forootan K., Davarpanah L., Vahabzadeh F. Incorporation of Lactobacillus Casei into the Inner Phase of the Water-in-Oil-in-Water (W1/O/W2) Emulsion Prepared with Β-Cyclodextrin and Bacterial Survival in a Model Gastric Environment. Appl. Food Biotechnol. 2020;7:171–182. doi: 10.22037/afb.v7i3.28877. DOI

Klojdová I., Stathopoulos C. The Potential Application of Pickering Multiple Emulsions in Food. Foods. 2022;11:1558. doi: 10.3390/foods11111558. PubMed DOI PMC

Gu Y., Li H., Liu L., Li J., Zhang B., Ma H. Constructing CNTs-Based Composite Membranes for Oil/Water Emulsion Separation via Radiation-Induced “Grafting to” Strategy. Carbon. 2021;178:678–687. doi: 10.1016/j.carbon.2021.03.051. DOI

Elaine E., Bhandari B., Tan C.P., Nyam K.L. Recent Advances in the Formation, Stability, and Emerging Food Application of Water-in-Oil-in-Water Double Emulsion Carriers. Food Bioprocess Technol. 2024:1–21. doi: 10.1007/s11947-024-03350-y. DOI

Bhattacharya S. Central Composite Design for Response Surface Methodology and Its Application in PharmacyIn Response Surface Methodology in Engineering Science. IntechOpen; London, UK: 2021.

Izadiyan P., Hemmateenejad B. Multi-Response Optimization of Factors Affecting Ultrasonic-Assisted Extraction from Iranian Basil Using Central Composite Design. Food Chem. 2016;190:864–870. doi: 10.1016/j.foodchem.2015.06.036. PubMed DOI

Rajmohan T., Palanikumar K. Application of the Central Composite Design in Optimization of Machining Parameters in Drilling Hybrid Metal Matrix Composites. Measurement. 2013;46:1470–1481. doi: 10.1016/j.measurement.2012.11.034. DOI

Gautam S., Lapcik L., Lapcikova B., Repka D., Szyk-Warszyńska L. Physicochemical Characterisation of Polysaccharide Films with Embedded Bioactive Substances. Foods. 2023;12:4454. doi: 10.3390/foods12244454. PubMed DOI PMC

Zhou L., Zhang W., Wang J., Zhang R., Zhang J. Comparison of oil-in-water emulsions prepared by ultrasound, high-pressure homogenization and high-speed homogenization. Ultrason. Sonochem. 2022;82:105885. doi: 10.1016/j.ultsonch.2021.105885. PubMed DOI PMC

Hsieh I., Chang J., Chou T. The impact of the surfactant type on physicochemical properties, encapsulation, and in vitro biocompatibility of coconut oil nanoemulsions. J. Taiwan Inst. Chem. Eng. 2022;137:104217. doi: 10.1016/j.jtice.2022.104217. DOI

Aditya N.P., Aditya S., Yang H., Kim H.W., Park S.O., Ko S. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food Chem. 2015;173:7–13. doi: 10.1016/j.foodchem.2014.09.131. PubMed DOI

Beegum P.P.S., Ramesh S.V., Pandiselvam R., Neema M., Daliyamol M.R., Manikantan H., Hebbar K.B. Perspectives on the cardioprotective, neuroprotective and anti-obesity functions of coconut (Cocos nucifera L.) Food Biosci. 2024;58:103756. doi: 10.1016/j.fbio.2024.103756. DOI

Saha D., Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010;47:587–597. doi: 10.1007/s13197-010-0162-6. PubMed DOI PMC

Joyner H.S. Explaining food texture through rheology. Curr. Opin. Food Sci. 2018;21:7–14. doi: 10.1016/j.cofs.2018.04.003. DOI

Pal R. Rheology of double emulsions. J. Colloid Interface Sci. 2007;307:509–515. doi: 10.1016/j.jcis.2006.12.024. PubMed DOI

Janmey P.A., Georges P.C., Hvidt S. Basic rheology for biologists. Methods Cell Biol. 2007;83:3–27. doi: 10.1016/S0091-679X(07)83001-9. PubMed DOI

McClements D.J. Critical review of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr. 2007;47:611–649. doi: 10.1080/10408390701289292. PubMed DOI

Nikzade V., Tehrani M.M., Saadatmand-Tarzjan M. Optimization of low-cholesterol–low-fat mayonnaise formulation: Effect of using soy milk and some stabilizer by a mixture design approach. Food Hydrocoll. 2012;28:344–352. doi: 10.1016/j.foodhyd.2011.12.023. DOI

Prieto C., Lagaron J.M. Nanodroplets of docosahexaenoic acid-enriched algae oil encapsulated within microparticles of hydrocolloids by emulsion electrospraying assisted by pressurized gas. Nanomaterials. 2020;10:270. doi: 10.3390/nano10020270. PubMed DOI PMC

Kůrová V., Salek R.N., Vašina M., Vinklárková K., Zálešáková L., Gál R., Adámek R., Buňka F. The effect of homogenization and addition of polysaccharides on the viscoelastic properties of processed cheese sauce. J. Dairy Sci. 2022;105:6563–6577. doi: 10.3168/jds.2021-21520. PubMed DOI

Dalmazzone C., Noïk C., Clausse D. Application of DSC for emulsified system characterization. Oil Gas Sci. Technol. 2009;64:543–555. doi: 10.2516/ogst:2008041. DOI

Tylewicz U., Aganovic K., Vannini M., Toepfl S., Bortolotti V., Dalla Rosa M., Oey I., Heinz V. Effect of pulsed electric field treatment on water distribution of freeze-dried apple tissue evaluated with DSC and TD-NMR techniques. Innov. Food Sci. Emerg. Technol. 2016;37:352–358. doi: 10.1016/j.ifset.2016.06.012. DOI

Granato D., de Araújo Calado V.M., Jarvis B. Observations on the use of statistical methods in food science and technology. Food Res. Int. 2014;55:137–149. doi: 10.1016/j.foodres.2013.10.024. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...