The Composition Optimization of Curcumin-Loaded Double Oil-Water-Oil Emulsions and Their Stability Evaluation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2024/005
Tomas Bata University in Zlin
PubMed
39274882
PubMed Central
PMC11396728
DOI
10.3390/molecules29174035
PII: molecules29174035
Knihovny.cz E-zdroje
- Klíčová slova
- curcumin, emulsion stability, encapsulation, multiple emulsion,
- Publikační typ
- časopisecké články MeSH
This study aimed to optimize the preparation of multiple oil-water-oil (O/W/O) emulsions using varying amounts of Tween 20 emulsifier, different homogenization methods, and optimal preparation temperatures as carriers for encapsulated curcumin. Following the optimization process, the optimal preparation temperature was found to be 25 °C, with a homogenization speed of 10,000 RPM and an emulsifier concentration of 0.5% Tween 20. Subsequently, the effects of physicochemical and viscoelastic properties on the different types of oils used in the outer phase, as well as the impact of storage time, were monitored. The novelty of this work lies in its comprehensive analysis of the stability and encapsulation efficiency of multiple emulsions using various oils, an area that has not been extensively explored before. After identifying the optimal preparation procedure, all samples with different edible oils demonstrated excellent stability and encapsulation efficiency, showing minimal variation in results. The most stable multiple emulsion was found to be the one with coconut oil in the outer phase, exhibiting half the particle size compared to other samples and the lowest encapsulation efficiency losses over 50 days of storage. This study provides new insights into the formulation of stable multiple emulsions for the effective delivery of curcumin and similar bioactive compounds.
Zobrazit více v PubMed
Zheng D., Huang C., Huang H., Zhao Y., Khan M.R.U., Zhao H., Huang L. Antibacterial Mechanism of Curcumin: A Review. Chem. Biodivers. 2020;17:e2000171. doi: 10.1002/cbdv.202000171. PubMed DOI
Campelo M.S., Aragão C.B., de Melo D.G., Barbosa M.L.F., de Oliveira R.N.M.P.S., Muniz C.R., Ribeiro W.L.C., Ribeiro M.E.N.P. Curcumin-Loaded Emulsion Improves Its In Vitro Anthelmintic Activity against Benzimidazole-Resistant Haemonchus contortus. Food Biosci. 2024;59:104052. doi: 10.1016/j.fbio.2024.104052. DOI
Trujillo J., Chirino Y.I., Molina-Jijón E., Andérica-Romero A.C., Tapia E., Pedraza-Chaverrí J. Renoprotective Effect of the Antioxidant Curcumin: Recent Findings. Redox Biol. 2013;1:448–456. doi: 10.1016/j.redox.2013.09.003. PubMed DOI PMC
Keramat M., Golmakani M. Antioxidant Potency and Inhibitory Mechanism of Curcumin and Its Derivatives in Oleogel and Emulgel Produced by Linseed Oil. Food Chem. 2024;445:136814. doi: 10.1016/j.foodchem.2024.138754. PubMed DOI
Kaur R. Turmeric: A Golden Herb with Health-Promoting Components. Just Agric. 2024;4:5.
Bradford P.G. Curcumin and Obesity. Biofactors. 2013;39:78–87. doi: 10.1002/biof.1074. PubMed DOI
Stohs S.J., Chen O., Ray S.D., Ji J., Bucci L.R., Preuss H.G. Highly Bioavailable Forms of Curcumin and Promising Avenues for Curcumin-Based Research and Application: A Review. Molecules. 2020;25:1397. doi: 10.3390/molecules25061397. PubMed DOI PMC
Akram M., Shahab-Uddin A.A., Usmanghani K., Hannan A., Mohiuddin E., Asif M. Curcuma Longa and Curcumin: A Review Article. Rom. J. Biol. Plant Biol. 2010;55:65–70.
Kim K., Kim J.-J., Jung Y., Noh J.-Y., Syed A.S., Kim C.Y., Lee M.-Y., Lim K.-M., Bae O.-N., Chung J.-H. Cyclocurcumin, an antivasoconstrictive constituent of Curcuma longa (Turmeric) J. Nat. Prod. 2017;80:196–200. doi: 10.1021/acs.jnatprod.6b00331. PubMed DOI
Yang D., Wang L., Zhang L., Wang M., Li D., Liu N., Liu D., Zhao M., Yao X. Construction, Characterization, and Bioactivity Evaluation of Curcumin Nanocrystals with Extremely High Solubility and Dispersion Prepared by Ultrasound-Assisted Method. Ultrason. Sonochem. 2024;104:106835. doi: 10.1016/j.ultsonch.2024.106835. PubMed DOI PMC
Lu J., Wang Y., Cao W., Yan Y., Guo F., Li J., Li W. Stability and Gastrointestinal Behavior of Curcumin-Loaded Emulsion Stabilized by Multi-Conformation Soy Proteins: Influence of Oil Volume Fraction. Food Chem. 2024;440:138215. doi: 10.1016/j.foodchem.2023.138215. PubMed DOI
Bako H.K., Ibeogu H.I., Bassey A.P., Yar M.S., Zhou T., Li C. Optimization and Characterization of Double Emulsion Derived from Rice Starch, Rice Protein Isolates, and Rice Bran Oil. Int. J. Biol. Macromol. 2024;258:128966. doi: 10.1016/j.ijbiomac.2023.128966. PubMed DOI
Alouk I., Xu D., Cao Y. Encapsulation of Natural Pigments by Double Emulsion: A Review. Food Biosci. 2023;56:103411. doi: 10.1016/j.fbio.2023.103411. DOI
Leister N., Karbstein H.P. Evaluating the Stability of Double Emulsions—A Review of the Measurement Techniques for the Systematic Investigation of Instability Mechanisms. Colloids Interfaces. 2020;4:8. doi: 10.3390/colloids4010008. DOI
Zhao J., Bhandari B., Gaiani C., Prakash S. Fermentation of Almond-Based Gel Incorporated with Double Emulsion (W1/O/W2): A Study on Gel Properties and Effectiveness of Double Emulsion as a Fat Replacer. Food Struct. 2023;36:100322. doi: 10.1016/j.foostr.2023.100322. DOI
Zhi Z., Li H., Geurs I., Lewille B., Liu R., Van der Meeren P., Dewettinck K., van Bockstaele F. Dual Stabilization of O/W/O Double Emulsions by Proteins: An Interfacial Perspective. Food Hydrocoll. 2024;148:109488. doi: 10.1016/j.foodhyd.2023.109488. DOI
Heidari F., Jafari S.M., Ziaiifar A.M., Malekjani N. Stability and Release Mechanisms of Double Emulsions Loaded with Bioactive Compounds: A Critical Review. Adv. Colloid Interface Sci. 2022;299:102567. doi: 10.1016/j.cis.2021.102567. PubMed DOI
Eslami P., Forootan K., Davarpanah L., Vahabzadeh F. Incorporation of Lactobacillus Casei into the Inner Phase of the Water-in-Oil-in-Water (W1/O/W2) Emulsion Prepared with Β-Cyclodextrin and Bacterial Survival in a Model Gastric Environment. Appl. Food Biotechnol. 2020;7:171–182. doi: 10.22037/afb.v7i3.28877. DOI
Klojdová I., Stathopoulos C. The Potential Application of Pickering Multiple Emulsions in Food. Foods. 2022;11:1558. doi: 10.3390/foods11111558. PubMed DOI PMC
Gu Y., Li H., Liu L., Li J., Zhang B., Ma H. Constructing CNTs-Based Composite Membranes for Oil/Water Emulsion Separation via Radiation-Induced “Grafting to” Strategy. Carbon. 2021;178:678–687. doi: 10.1016/j.carbon.2021.03.051. DOI
Elaine E., Bhandari B., Tan C.P., Nyam K.L. Recent Advances in the Formation, Stability, and Emerging Food Application of Water-in-Oil-in-Water Double Emulsion Carriers. Food Bioprocess Technol. 2024:1–21. doi: 10.1007/s11947-024-03350-y. DOI
Bhattacharya S. Central Composite Design for Response Surface Methodology and Its Application in PharmacyIn Response Surface Methodology in Engineering Science. IntechOpen; London, UK: 2021.
Izadiyan P., Hemmateenejad B. Multi-Response Optimization of Factors Affecting Ultrasonic-Assisted Extraction from Iranian Basil Using Central Composite Design. Food Chem. 2016;190:864–870. doi: 10.1016/j.foodchem.2015.06.036. PubMed DOI
Rajmohan T., Palanikumar K. Application of the Central Composite Design in Optimization of Machining Parameters in Drilling Hybrid Metal Matrix Composites. Measurement. 2013;46:1470–1481. doi: 10.1016/j.measurement.2012.11.034. DOI
Gautam S., Lapcik L., Lapcikova B., Repka D., Szyk-Warszyńska L. Physicochemical Characterisation of Polysaccharide Films with Embedded Bioactive Substances. Foods. 2023;12:4454. doi: 10.3390/foods12244454. PubMed DOI PMC
Zhou L., Zhang W., Wang J., Zhang R., Zhang J. Comparison of oil-in-water emulsions prepared by ultrasound, high-pressure homogenization and high-speed homogenization. Ultrason. Sonochem. 2022;82:105885. doi: 10.1016/j.ultsonch.2021.105885. PubMed DOI PMC
Hsieh I., Chang J., Chou T. The impact of the surfactant type on physicochemical properties, encapsulation, and in vitro biocompatibility of coconut oil nanoemulsions. J. Taiwan Inst. Chem. Eng. 2022;137:104217. doi: 10.1016/j.jtice.2022.104217. DOI
Aditya N.P., Aditya S., Yang H., Kim H.W., Park S.O., Ko S. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food Chem. 2015;173:7–13. doi: 10.1016/j.foodchem.2014.09.131. PubMed DOI
Beegum P.P.S., Ramesh S.V., Pandiselvam R., Neema M., Daliyamol M.R., Manikantan H., Hebbar K.B. Perspectives on the cardioprotective, neuroprotective and anti-obesity functions of coconut (Cocos nucifera L.) Food Biosci. 2024;58:103756. doi: 10.1016/j.fbio.2024.103756. DOI
Saha D., Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010;47:587–597. doi: 10.1007/s13197-010-0162-6. PubMed DOI PMC
Joyner H.S. Explaining food texture through rheology. Curr. Opin. Food Sci. 2018;21:7–14. doi: 10.1016/j.cofs.2018.04.003. DOI
Pal R. Rheology of double emulsions. J. Colloid Interface Sci. 2007;307:509–515. doi: 10.1016/j.jcis.2006.12.024. PubMed DOI
Janmey P.A., Georges P.C., Hvidt S. Basic rheology for biologists. Methods Cell Biol. 2007;83:3–27. doi: 10.1016/S0091-679X(07)83001-9. PubMed DOI
McClements D.J. Critical review of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr. 2007;47:611–649. doi: 10.1080/10408390701289292. PubMed DOI
Nikzade V., Tehrani M.M., Saadatmand-Tarzjan M. Optimization of low-cholesterol–low-fat mayonnaise formulation: Effect of using soy milk and some stabilizer by a mixture design approach. Food Hydrocoll. 2012;28:344–352. doi: 10.1016/j.foodhyd.2011.12.023. DOI
Prieto C., Lagaron J.M. Nanodroplets of docosahexaenoic acid-enriched algae oil encapsulated within microparticles of hydrocolloids by emulsion electrospraying assisted by pressurized gas. Nanomaterials. 2020;10:270. doi: 10.3390/nano10020270. PubMed DOI PMC
Kůrová V., Salek R.N., Vašina M., Vinklárková K., Zálešáková L., Gál R., Adámek R., Buňka F. The effect of homogenization and addition of polysaccharides on the viscoelastic properties of processed cheese sauce. J. Dairy Sci. 2022;105:6563–6577. doi: 10.3168/jds.2021-21520. PubMed DOI
Dalmazzone C., Noïk C., Clausse D. Application of DSC for emulsified system characterization. Oil Gas Sci. Technol. 2009;64:543–555. doi: 10.2516/ogst:2008041. DOI
Tylewicz U., Aganovic K., Vannini M., Toepfl S., Bortolotti V., Dalla Rosa M., Oey I., Heinz V. Effect of pulsed electric field treatment on water distribution of freeze-dried apple tissue evaluated with DSC and TD-NMR techniques. Innov. Food Sci. Emerg. Technol. 2016;37:352–358. doi: 10.1016/j.ifset.2016.06.012. DOI
Granato D., de Araújo Calado V.M., Jarvis B. Observations on the use of statistical methods in food science and technology. Food Res. Int. 2014;55:137–149. doi: 10.1016/j.foodres.2013.10.024. DOI