Physicochemical Characterisation of Polysaccharide Films with Embedded Bioactive Substances
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2023/007
Tomas Bata University in Zlín
IGA_PRF_2023_024
Palacký University, Olomouc
PubMed
38137258
PubMed Central
PMC10743232
DOI
10.3390/foods12244454
PII: foods12244454
Knihovny.cz E-zdroje
- Klíčová slova
- carboxymethylcellulose, citric acid, crosslinking, edible films, encapsulation,
- Publikační typ
- časopisecké články MeSH
In this study, sodium carboxymethyl cellulose (CMCNa) bioactive films, crosslinked with citric acid (CA), were prepared and comprehensively examined for their suitability in various applications, focusing on food packaging. The films displayed favourable properties, including appropriate thickness, transparency, and moisture content, essential for packaging purposes. Moreover, the films exhibited excellent moisture absorption rate and barrier properties, attributed to the high concentration of CMCNa and the inclusion of a CA. These films presented no significant effect of crosslinking and bioactive components on their mechanical strength, as evidenced by tensile strength and elongation at break values. Thermal stability was demonstrated in the distinct weight loss events at different temperature ranges, with crosslinking contributing to slightly enhanced thermal performance. Furthermore, the films showed varying antioxidant activity levels, influenced by temperature and the solubility of the films in different media, indicating their potential for diverse applications. Overall, these bioactive films showed promise as versatile materials with desirable properties for food packaging and related applications, where the controlled release of bioactive components is advantageous for enhancing the shelf life and safety of food products. These findings contribute to the growing research in biodegradable and functional food packaging materials.
Zobrazit více v PubMed
Gautam S., Lapčík L., Lapčíková B., Gál R. Emulsion-Based Coatings for Preservation of Meat and Related Products. Foods. 2023;12:832. doi: 10.3390/foods12040832. PubMed DOI PMC
Dos Santos V.S., Lorevice M.V., Baccarin G.S., da Costa F.M., Fernandes R.d.S., Aouada F.A., de Moura M.R. Combining Chitosan Nanoparticles and Garlic Essential Oil as Additive Fillers to Produce Pectin-Based Nanocomposite Edible Films. Polymers. 2023;15:2244. doi: 10.3390/polym15102244. PubMed DOI PMC
Mei L., Shi L., Song X., Liu S., Cheng Q., Zhu K., Zhuge R. Characterization of Carboxymethyl Cellulose Films Incorporated with Chinese Fir Essential Oil and Their Application to Quality Improvement of Shine Muscat Grape. Coatings. 2021;11:97. doi: 10.3390/coatings11010097. DOI
Sun J., Wang L., Chen H., Yin G. Preparation and Application of Edible Film Based on Sodium Carboxymethylcellulose-Sodium Alginate Composite Soybean Oil Body. Coatings. 2023;13:1716. doi: 10.3390/coatings13101716. DOI
Murtaja Y., Lapčík L., Lapčíková B., Gautam S., Vašina M., Spanhel L., Vlček J. Intelligent high-tech coating of natural biopolymer layers. Adv. Colloid Interface Sci. 2022;304:102681. doi: 10.1016/j.cis.2022.102681. PubMed DOI
Hu B. Lightweight Materials from Biopolymers and Biofibers. ACS Publications; Washington, DC, USA: 2014. Biopolymer-Based Lightweight Materials for Packaging Applications; pp. 239–255.
Huang M., Wang H., Xu X., Lu X., Song X., Zhou G. Effects of nanoemulsion-based edible coatings with composite mixture of rosemary extract and ε-poly-l-lysine on the shelf life of ready-to-eat carbonado chicken. Food Hydrocoll. 2019;102:105576. doi: 10.1016/j.foodhyd.2019.105576. DOI
Sun R., Song G., Zhang H., Zhang H., Chi Y., Ma Y., Li H., Bai S., Zhang X. Effect of basil essential oil and beeswax incorporation on the physical, structural, and antibacterial properties of chitosan emulsion based coating for eggs preservation. LWT. 2021;150:112020. doi: 10.1016/j.lwt.2021.112020. DOI
Bourbonnais R., Marchessault R.H. Application of Polyhydroxyalkanoate Granules for Sizing of Paper. Biomacromolecules. 2010;11:989–993. doi: 10.1021/bm9014667. PubMed DOI
Panou A., Karabagias I.K. Biodegradable Packaging Materials for Foods Preservation: Sources, Advantages, Limitations, and Future Perspectives. Coatings. 2023;13:1176. doi: 10.3390/coatings13071176. DOI
Shen Z., Kamdem D.P. Development and characterization of biodegradable chitosan films containing two essential oils. Int. J. Biol. Macromol. 2015;74:289–296. doi: 10.1016/j.ijbiomac.2014.11.046. PubMed DOI
Wu R., Bao A. Preparation of cellulose carbon material from cow dung and its CO2 adsorption performance. J. CO2 Util. 2023;68:102377. doi: 10.1016/j.jcou.2022.102377. DOI
Hasheminya S.-M., Mokarram R.R., Ghanbarzadeh B., Hamishekar H., Kafil H.S., Dehghannya J. Development and characterization of biocomposite films made from kefiran, carboxymethyl cellulose and Satureja Khuzestanica essential oil. Food Chem. 2019;289:443–452. doi: 10.1016/j.foodchem.2019.03.076. PubMed DOI
Batista M.J., Marques M.B.F., Franca A.S., Oliveira L.S. Development of Films from Spent Coffee Grounds’ Polysaccharides Crosslinked with Calcium Ions and 1, 4-Phenylenediboronic Acid: A Comparative Analysis of Film Properties and Biodegradability. Foods. 2023;12:2520. doi: 10.3390/foods12132520. PubMed DOI PMC
Ayouch I., Kassem I., Kassab Z., Barrak I., Barhoun A., Jacquemin J., Draoui K., El Achaby M. Crosslinked carboxymethyl cellulose-hydroxyethyl cellulose hydrogel films for adsorption of cadmium and methylene blue from aqueous solutions. Surf. Interfaces. 2021;24:101124. doi: 10.1016/j.surfin.2021.101124. DOI
Djumaev A., Tashmukhamedova S. Physical and chemical properties of PVA-CMC based hydrogel carrier loaded with herbal hemostatic agent for application as wound dressings. Natl. J. Physiol. Pharm. Pharmacol. 2020;10:905.
Maleki A., Kjøniksen A.-L., Nyström B. Effect of Shear on Intramolecular and Intermolecular Association during Cross-Linking of Hydroxyethylcellulose in Dilute Aqueous Solutions. J. Phys. Chem. B. 2005;109:12329–12336. doi: 10.1021/jp0514271. PubMed DOI
Drnovska H., Lapcik L., Jr. Hyaluronate derivatives and their applications. Plasty Kauc. 1999;36:291–294.
Lapčík L. Gel Form of Matter as a Foundation of Material-Engineering Elements. VUTIUM; Brno, Czech Republic: 2002. pp. 1–20.
Nasution H., Harahap H., Dalimunthe N.F., Ginting M.H.S., Jaafar M., Tan O.O.H., Aruan H.K., Herfananda A.L. Hydrogel and Effects of Crosslinking Agent on Cellulose-Based Hydrogels: A Review. Gels. 2022;8:568. doi: 10.3390/gels8090568. PubMed DOI PMC
Phoothong F., Boonmahitthisud A., Tanpichai S. Using borax as a cross-linking agent in cellulose-based hydrogels. IOP Conf. Ser. Mater. Sci. Eng. 2019;600:12013. doi: 10.1088/1757-899X/600/1/012013. DOI
Chen P., Liu X., Jin R., Nie W., Zhou Y. Dye adsorption and photo-induced recycling of hydroxypropyl cellulose/molybdenum disulfide composite hydrogels. Carbohydr. Polym. 2017;167:36–43. doi: 10.1016/j.carbpol.2017.02.094. PubMed DOI
Gorgieva S., Kokol V. Synthesis and application of new temperature-responsive hydrogels based on carboxymethyl and hydroxyethyl cellulose derivatives for the functional finishing of cotton knitwear. Carbohydr. Polym. 2011;85:664–673. doi: 10.1016/j.carbpol.2011.03.037. DOI
Lewis S., Richard J. Hazardous Chemicals Desk Reference. John Wiley & Sons; Hoboken, NJ, USA: 2008.
Demitri C., Del Sole R., Scalera F., Sannino A., Vasapollo G., Maffezzoli A., Ambrosio L., Nicolais L. Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J. Appl. Polym. Sci. 2008;110:2453–2460. doi: 10.1002/app.28660. DOI
Kassem I., Kassab Z., Khouloud M., Sehaqui H., Bouhfid R., Jacquemin J., Qaiss A.E.K., El Achaby M. Phosphoric acid-mediated green preparation of regenerated cellulose spheres and their use for all-cellulose cross-linked superabsorbent hydrogels. Int. J. Biol. Macromol. 2020;162:136–149. doi: 10.1016/j.ijbiomac.2020.06.136. PubMed DOI
Erceg T., Stupar A., Cvetinov M., Vasić V., Ristić I. Investigation the correlation between chemical structure and swelling, thermal and flocculation properties of carboxymethylcellulose hydrogels. J. Appl. Polym. Sci. 2021;138:50240. doi: 10.1002/app.50240. DOI
Ghorpade V.S., Dias R.J., Mali K.K., Mulla S.I. Citric acid crosslinked carboxymethylcellulose-polyvinyl alcohol hydrogel films for extended release of water soluble basic drugs. J. Drug Deliv. Sci. Technol. 2019;52:421–430. doi: 10.1016/j.jddst.2019.05.013. DOI
Muppalla S.R., Kanatt S.R., Chawla S., Sharma A. Carboxymethyl cellulose–polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Packag. Shelf Life. 2014;2:51–58. doi: 10.1016/j.fpsl.2014.07.002. DOI
Khezrian A., Shahbazi Y. Application of nanocompostie chitosan and carboxymethyl cellulose films containing natural preservative compounds in minced camel’s meat. Int. J. Biol. Macromol. 2018;106:1146–1158. doi: 10.1016/j.ijbiomac.2017.08.117. PubMed DOI
Reis C.A., Gomes A., Sobral P.J.D.A. Films Based on Biopolymers Incorporated with Active Compounds Encapsulated in Emulsions: Properties and Potential Applications—A Review. Foods. 2023;12:3602. doi: 10.3390/foods12193602. PubMed DOI PMC
Bharathi S.S., Ravindran D., Arul Marcel Moshi A., Rajeshkumar R., Palanikumar R. Multi objective optimization of CNC turning process parameters with Acrylonitrile Butadiene Styrene material. Mater. Today Proc. 2020;27:2042–2047. doi: 10.1016/j.matpr.2019.09.055. DOI
Maran J.P., Manikandan S., Thirugnanasambandham K., Nivetha C.V., Dinesh R. Box–Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide. Carbohydr. Polym. 2013;92:604–611. doi: 10.1016/j.carbpol.2012.09.020. PubMed DOI
Wang C., Chang T., Dong S., Zhang D., Ma C., Chen S., Li H. Biopolymer films based on chitosan/potato protein/linseed oil/ZnO NPs to maintain the storage quality of raw meat. Food Chem. 2020;332:127375. doi: 10.1016/j.foodchem.2020.127375. PubMed DOI
Standard Test Methods for Water Vapor Transmission of Materials. ASTM International; West Conshohocken, PA, USA: 2013.
Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International; West Conshohocken, PA, USA: 2009.
Melting Point by DSC Testing Services. ASTM International; West Conshohocken, PA, USA: 2003.
Muriel-Galet V., Cran M.J., Bigger S.W., Hernández-Muñoz P., Gavara R. Antioxidant and antimicrobial properties of ethylene vinyl alcohol copolymer films based on the release of oregano essential oil and green tea extract components. J. Food Eng. 2015;149:9–16. doi: 10.1016/j.jfoodeng.2014.10.007. DOI
Commission Regulation (EU) Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food. EU; Luxembourg: 2016.
Tee Y.B., Wong J., Tan M.C., Talib R.A. Development of Edible Film from Flaxseed Mucilage. BioResources. 2016;11:10286–10295. doi: 10.15376/biores.11.4.10286-10295. DOI
Dashipour A., Razavilar V., Hosseini H., Shojaee-Aliabadi S., German J.B., Ghanati K., Khakpour M., Khaksar R. Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. Int. J. Biol. Macromol. 2015;72:606–613. doi: 10.1016/j.ijbiomac.2014.09.006. PubMed DOI
Cai L., Wang Y., Cao A. The physiochemical and preservation properties of fish sarcoplasmic protein/chitosan composite films containing ginger essential oil emulsions. J. Food Process. Eng. 2020;43:13495. doi: 10.1111/jfpe.13495. DOI
Lapcik L., Raab M. Materials Science II. Textbook Zlin. Tomas Bata University in Zlin; Zlin, Czech Republic: 2004. p. 132.
Strobl G. The Physics of Polymers. Volume XIV. Springer; Berlin/Heidelber, Germany: 2007. p. 518. DOI
Hamal E.K., Alfassi G., Khalfin R., Rein D.M., Cohen Y. Structural Insights into Cellulose-Coated Oil in Water Emulsions. Langmuir. 2022;38:11171–11179. doi: 10.1021/acs.langmuir.2c00947. PubMed DOI PMC
Ghanbarzadeh B., Almasi H. Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. Int. J. Biol. Macromol. 2011;48:44–49. doi: 10.1016/j.ijbiomac.2010.09.014. PubMed DOI
Bazzaz A.E., Hakimzadeh V., Shahidi Noghabi M. Preparation and study of carboxymethyl cellulose biodegradable films properties containing Mentha pulegium essential oil. J. Thermoplast. Compos. Mater. 2021;34:1213–1233. doi: 10.1177/0892705719864148. DOI
Simsek M., Eke B., Demir H. Characterization of carboxymethyl cellulose-based antimicrobial films incorporated with plant essential oils. Int. J. Biol. Macromol. 2020;163:2172–2179. doi: 10.1016/j.ijbiomac.2020.09.075. PubMed DOI
Danish M., Mumtaz M.W., Fakhar M., Rashid U. Response surface methodology based optimized purification of the residual glycerol from biodiesel production process. Chiang Mai J. Sci. 2017;44:1570–1582.
Wen X., Bao D., Chen M., Zhang A., Liu C., Sun R. Preparation of CMC/HEC crosslinked hydrogels for drug delivery. BioResources. 2015;10:8339–8351.
Nowak A., Kalemba D., Piotrowska M., Czyżowska A. Effects of thyme (Thymus vulgaris L.) and rosemary (Rosmarinus officinalis L.) essential oils on growth of Brochothrix thermosphacta. Afr. J. Microbiol. Res. 2013;7:3396–3404. PubMed
Catauro M., Bollino F., Tranquillo E., Sapio L., Illiano M., Caiafa I., Naviglio S. Chemical analysis and anti-proliferative activity of Campania Thymus Vulgaris essential oil. J. Essent. Oil Res. 2017;29:461–470. doi: 10.1080/10412905.2017.1351405. DOI
Valderrama A.C.S., Rojas De G.C. Traceability of active compounds of essential oils in antimicrobial food packaging using a chemometric method by ATR-FTIR. Am. J. Anal. Chem. 2017;8:726. doi: 10.4236/ajac.2017.811053. DOI
Raphaël K.J., Meimandipour A. Antimicrobial activity of chitosan film forming solution enriched with essential oils; an in vitro assay. Iran. J. Biotechnol. 2017;15:111. PubMed PMC
Rojas J., Cabrera S., Benavides J., Lopera Y., Yarce C.J. Lipidic Matrixes Containing Clove Essential Oil: Biological Activity, Microstructural and Textural Studies. Molecules. 2021;26:2425. doi: 10.3390/molecules26092425. PubMed DOI PMC
Suria P. Formulation and physical characterization of microemulsions based carboxymethyl cellulose as vitamin c carrier. Malays. J. Anal. Sci. 2015;19:275–283.
Azarifar M., Ghanbarzadeh B., Khiabani M.S., Basti A.A., Abdulkhani A. The effects of gelatin-CMC films incorporated with chitin nanofiber and Trachyspennum ammi essential oil on the shelf life characteristics of refrigerated raw beef. Int. J. Food Microbiol. 2020;318:108493. doi: 10.1016/j.ijfoodmicro.2019.108493. PubMed DOI
Sotolářová J., Vinter Š., Filip J. Cellulose derivatives crosslinked by citric acid on electrode surface as a heavy metal absorption/sensing matrix. Colloids Surf. Physicochem. Eng. Aspects. 2021;628:127242. doi: 10.1016/j.colsurfa.2021.127242. DOI
Badry R., Ezzat H.A., El-Khodary S., Morsy M., Elhaes H., Nada N., Ibrahim M. Spectroscopic and thermal analyses for the effect of acetic acid on the plasticized sodium carboxymethyl cellulose. J. Mol. Struct. 2021;1224:129013. doi: 10.1016/j.molstruc.2020.129013. DOI