• This record comes from PubMed

Emulsion-Based Coatings for Preservation of Meat and Related Products

. 2023 Feb 15 ; 12 (4) : . [epub] 20230215

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
IGA/FT/2023/007 Tomas Bata University in Zlín

One of the biggest challenges faced by the meat industry is maintaining the freshness of meat while extending its shelf life. Advanced packaging systems and food preservation techniques are highly beneficial in this regard. However, the energy crisis and environmental pollution demand an economically feasible and environmentally sustainable preservation method. Emulsion coatings (ECs) are highly trending in the food packaging industry. Efficiently developed coatings can preserve food, increase nutritional composition, and control antioxidants' release simultaneously. However, their construction has many challenges, especially for meat. Therefore, the following review focuses on the essential aspects of developing ECs for meat. The study begins by classifying emulsions based on composition and particle size, followed by a discussion on the physical properties, such as ingredient separation, rheology, and thermal characteristics. Furthermore, it discusses the lipid and protein oxidation and antimicrobial characteristics of ECs, which are necessary for other aspects to be relevant. Lastly, the review presents the limitations of the literature while discussing the future trends. ECs fabricated with antimicrobial/antioxidant properties present promising results in increasing the shelf life of meat while preserving its sensory aspects. In general, ECs are highly sustainable and effective packaging systems for meat industries.

See more in PubMed

Zhou G.H., Xu X.L., Liu Y. Preservation technologies for fresh meat—A review. Meat Sci. 2010;86:119–128. doi: 10.1016/j.meatsci.2010.04.033. PubMed DOI

Heinz G., Hautzinger P. Meat Processing Technology for Small to Medium Scale Producers. FAO; Rome, Italy: 2007.

Sainsbury J., Schönfeldt H.C., Van Heerden S.M. The nutrient composition of South African mutton. J. Food Compos. Anal. 2011;24:720–726. doi: 10.1016/j.jfca.2011.01.001. DOI

Soren N.M., Biswas A.K. Methods for Nutritional Quality Analysis of Meat. Elsevier; Amsterdam, The Netherlands: 2020. pp. 21–36.

Naveena B.M., Kiran M., Reddy K.S., Ramakrishna C., Vaithiyanathan S., Devatkal S.K. Effect of ammonium hydroxide on ultrastructure and tenderness of buffalo meat. Meat Sci. 2011;88:727–732. doi: 10.1016/j.meatsci.2011.03.005. PubMed DOI

Tauro P., Kapoor K.K., Yadav K.S. An Introduction to Microbiology. New Age International; New Delhi, India: 1986. pp. 1–412.

Cheng L.N., Sun D.W., Zhu Z.W., Zhang Z. Emerging techniques for assisting and accelerating food freezing processes: A review of recent research progresses. Crit. Rev. Food Sci. Nutr. 2017;57:769–781. doi: 10.1080/10408398.2015.1004569. PubMed DOI

Chivandi E., Dangarembizi R., Nyakudya T.T., Erlwanger K.H. Chapter 8—Use of Essential Oils as a Preservative of Meat. Academic Press; San Diego, CA, USA: 2016. pp. 85–91. DOI

Murtaja Y., Lapčík L., Lapčíková B., Gautam S., Vašina M., Spanhel L., Vlček J. Intelligent high-tech coating of natural biopolymer layers. Adv.Colloid Interface Sci. 2022;304:102681. doi: 10.1016/j.cis.2022.102681. PubMed DOI

Eroglu E., Torun M., Dincer C., Topuz A. Influence of Pullulan-Based Edible Coating on Some Quality Properties of Strawberry During Cold Storage. Packag. Technol.Sci. 2014;27:831–838. doi: 10.1002/pts.2077. DOI

Gennadios A., Hanna M.A., Kurth L.B. Application of edible coatings on meats, poultry and seafoods: A review. Food Sci. Technol. 1997;30:337–350. doi: 10.1006/fstl.1996.0202. DOI

Dehghani S., Hosseini S.V., Regenstein J.M. Edible films and coatings in seafood preservation: A review. Food Chem. 2018;240:505–513. doi: 10.1016/j.foodchem.2017.07.034. PubMed DOI

Dong J., Kou X., Liu L., Hou L., Li R., Wang S. Effect of water, fat, and salt contents on heating uniformity and color of ground beef subjected to radio frequency thawing process. Innov. Food Sci. Emerg. Technol. 2021;68:102604. doi: 10.1016/j.ifset.2021.102604. DOI

Sanchez-Ortega I., Garica-Almendarez B.E., Santos-Lopez E.M., Amaro-Reyes A., Barboza-Corona J.E., Regalado C. Antimicrobial Edible Films and Coatings for Meat and Meat Products Preservation. Sci. World J. 2014;2014:248935. doi: 10.1155/2014/248935. PubMed DOI PMC

Fernández-Pan I., Carrión-Granda X., Maté J.I. Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets. Food Control. 2014;36:69–75. doi: 10.1016/j.foodcont.2013.07.032. DOI

Catarino M.D., Alves-Silva J.M., Fernandes R.P., Gonçalves M.J., Salgueiro L.R., Henriques M.F., Cardoso S.M. Development and performance of whey protein active coatings with Origanum virens essential oils in the quality and shelf life improvement of processed meat products. Food Control. 2017;80:273–280. doi: 10.1016/j.foodcont.2017.03.054. DOI

Schmid M., Krimmel B., Grupa U., Noller K. Effects of thermally induced denaturation on technological-functional properties of whey protein isolate-based films. J. Dairy Sci. 2014;97:5315–5327. doi: 10.3168/jds.2013-7852. PubMed DOI

Guckian S., Dwyer C., O’Sullivan M., O’Riordan E.D., Monahan F.J. Properties of and mechanisms of protein interactions in films formed from different proportions of heated and unheated whey protein solutions. Eur. Food Res. Technol. 2006;223:91–95. doi: 10.1007/s00217-005-0140-9. DOI

Cutter C.N. Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods. Meat Sci. 2006;74:131–142. doi: 10.1016/j.meatsci.2006.04.023. PubMed DOI

Liu B., Hu X. Hollow Micro-and Nanomaterials: Synthesis and Applications. Elsevier; Amsterdam, The Netherlands: 2020. pp. 1–38.

Lu W., Kelly A.L., Miao S. Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci.Technol. 2016;47:1–9. doi: 10.1016/j.tifs.2015.10.015. DOI

Donsì F., Sessa M., Mediouni H., Mgaidi A., Ferrari G. Encapsulation of bioactive compounds in nanoemulsion-based delivery systems. Procedia Food Sci. 2011;1:1666–1671. doi: 10.1016/j.profoo.2011.09.246. DOI

McClements D.J. Food Emulsions: Principles, Practices, and Techniques. CRC Press; Boca Raton, FL, USA: 2004.

Chanamai R., Horn G., McClements D.J. Influence of oil polarity on droplet growth in oil-in-water emulsions stabilized by a weakly adsorbing biopolymer or a nonionic surfactant. J. Colloid Interface Sci. 2002;247:167–176. doi: 10.1006/jcis.2001.8110. PubMed DOI

Christenson H.K., Per M. Claesson. Direct measurements of the force between hydrophobic surfaces in water. Adv. Colloid Interface Sci. 2001;91:391–436. doi: 10.1016/S0001-8686(00)00036-1. DOI

Norde W. Colloids and Interfaces in Life Sciences and Bionanotechnology. CRC Press; Boca Raton, FL, USA: 2011.

Dickinson E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 2003;17:25–39. doi: 10.1016/S0268-005X(01)00120-5. DOI

Hiemenz P.C., Rajagopalan R. Principles of Colloid and Surface Chemistry, Revised and Expanded. CRC Press; Boca Raton, FL, USA: 2016.

Keykhosravy K., Khanzadi S., Hashemi M., Azizzadeh M. Chitosan-loaded nanoemulsion containing Zataria Multiflora Boiss and Bunium persicum Boiss essential oils as edible coatings: Its impact on microbial quality of turkey meat and fate of inoculated pathogens. Int. J. Biol. Macromol. 2020;150:904–913. doi: 10.1016/j.ijbiomac.2020.02.092. PubMed DOI

Noori S., Zeynali F., Almasi H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control. 2018;84:312–320. doi: 10.1016/j.foodcont.2017.08.015. DOI

Xiong Y., Li S., Warner R.D., Fang Z. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control. 2020;114:107226. doi: 10.1016/j.foodcont.2020.107226. DOI

Majdinasab M., Niakousari M., Shaghaghian S., Dehghani H. Antimicrobial and antioxidant coating based on basil seed gum incorporated with Shirazi thyme and summer savory essential oils emulsions for shelf-life extension of refrigerated chicken fillets. Food Hydrocoll. 2020;108:106011. doi: 10.1016/j.foodhyd.2020.106011. DOI

Jemil N., Ouerfelli M., Almajano M.P., Elloumi-Mseddi J., Nasri M., Hmidet N. The conservative effects of lipopeptides from Bacillus methylotrophicus DCS1 on sunflower oil-in-water emulsion and raw beef patties quality. Food Chem. 2020;303:125364. doi: 10.1016/j.foodchem.2019.125364. PubMed DOI

Aboutorab M., Ahari H., Allahyaribeik S., Yousefi S., Motalebi A. Nano-emulsion of saffron essential oil by spontaneous emulsification and ultrasonic homogenization extend the shelf life of shrimp (Crocus sativus L.) J. Food Process. Preserv. 2021;45:e15224. doi: 10.1111/jfpp.15224. DOI

Yuan D., Hao X., Liu G., Yue Y., Duan J. A novel composite edible film fabricated by incorporating W/O/W emulsion into a chitosan film to improve the protection of fresh fish meat. Food Chem. 2022;385:132647. doi: 10.1016/j.foodchem.2022.132647. PubMed DOI

Liu W., Mei J., Xie J. Effect of locust bean gum-sodium alginate coatings incorporated with daphnetin emulsions on the quality of Scophthalmus maximus at refrigerated condition. Int. J. Biol. Macromol. 2021;170:129–139. doi: 10.1016/j.ijbiomac.2020.12.089. PubMed DOI

Kowalska M., Babut M., Woźniak M., Żbikowska A. Formulation of oil-in-water emulsions containing enzymatically modified rabbit fat with pumpkin seed oil. J. Food Process. Preserv. 2019;43:e13987. doi: 10.1111/jfpp.13987. DOI

Qiu L., Zhang M., Chitrakar B., Adhikari B., Yang C. Effects of nanoemulsion-based chicken bone gelatin-chitosan coatings with cinnamon essential oil and rosemary extract on the storage quality of ready-to-eat chicken patties. Food Packag. Shelf Life. 2022;34:100933. doi: 10.1016/j.fpsl.2022.100933. DOI

Seekkuarachchi I.N., Tanaka K., Kumazawa H. Formation and charaterization of submicrometer oil-in-water (O/W) emulsions, using high-energy emulsification. Ind. Eng. Chem. Res. 2006;45:372–390. doi: 10.1021/ie050323+. DOI

Walstra P. Principles of emulsion formation. Chem. Eng. Sci. 1993;48:333–349. doi: 10.1016/0009-2509(93)80021-H. DOI

Fischer P., Erni P. Emulsion drops in external flow fields—The role of liquid interfaces. Current Opin. Colloid Interface Sci. 2007;12:196–205. doi: 10.1016/j.cocis.2007.07.014. DOI

Williams A., Janssen J., Prins A. Behaviour of droplets in simple shear flow in the presence of a protein emulsifier. Colloids Surf. Physicochem. Eng. Aspects. 1997;125:189–200. doi: 10.1016/S0927-7757(96)03972-6. DOI

Huang M., Wang H., Xu X., Lu X., Song X., Zhou G. Effects of nanoemulsion-based edible coatings with composite mixture of rosemary extract and ε-poly-L-lysine on the shelf life of ready-to-eat carbonado chicken. Food Hydrocoll. 2020;102:105576. doi: 10.1016/j.foodhyd.2019.105576. DOI

Sun R., Song G., Zhang H., Zhang H., Chi Y., Ma Y., Li H., Bai S., Zhang X. Effect of basil essential oil and beeswax incorporation on the physical, structural, and antibacterial properties of chitosan emulsion based coating for eggs preservation. LWT. 2021;150:112020. doi: 10.1016/j.lwt.2021.112020. DOI

Syed I., Banerjee P., Sarkar P. Oil-in-water emulsions of geraniol and carvacrol improve the antibacterial activity of these compounds on raw goat meat surface during extended storage at 4 C. Food Control. 2020;107:106757. doi: 10.1016/j.foodcont.2019.106757. DOI

Santana R.C., Perrechil F.A., Cunha R.L. High-and low-energy emulsifications for food applications: A focus on process parameters. Food Eng. Rev. 2013;5:107–122. doi: 10.1007/s12393-013-9065-4. DOI

Saberi A.H., Fang Y., McClements D.J. Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification. J.Colloid Interface Sci. 2013;411:105–113. doi: 10.1016/j.jcis.2013.08.041. PubMed DOI

Cai L., Wang Y., Cao A. The physiochemical and preservation properties of fish sarcoplasmic protein/chitosan composite films containing ginger essential oil emulsions. J. Food Process. Eng. 2020;43:e13495. doi: 10.1111/jfpe.13495. DOI

Wan J., Pei Y., Hu Y., Ai T., Sheng F., Li J., Li B. Microencapsulation of eugenol through gelatin-based emulgel for preservation of refrigerated meat. Food Bioprocess Technol. 2020;13:1621–1632. doi: 10.1007/s11947-020-02502-0. DOI

Zhou X., Zong X., Zhang M., Ge Q., Qi J., Liang J., Xu X., Xiong G. Effect of konjac glucomannan/carrageenan-based edible emulsion coatings with camellia oil on quality and shelf-life of chicken meat. Int. J. Biol. Macromol. 2021;183:331–339. doi: 10.1016/j.ijbiomac.2021.04.165. PubMed DOI

Kazemeini H., Azizian A., Adib H. Inhibition of Listeria monocytogenes growth in turkey fillets by alginate edible coating with Trachyspermum ammi essential oil nano-emulsion. Int. J. Food Microbiol. 2021;344:109104. doi: 10.1016/j.ijfoodmicro.2021.109104. PubMed DOI

Gedikoğlu A. The effect of Thymus vulgaris and Thymbra spicata essential oils and/or extracts in pectin edible coating on the preservation of sliced bolognas. Meat Sci. 2022;184:108697. doi: 10.1016/j.meatsci.2021.108697. PubMed DOI

Wang L., Liu T., Liu L., Liu Y., Wu X. Impacts of chitosan nanoemulsions with thymol or thyme essential oil on volatile compounds and microbial diversity of refrigerated pork meat. Meat Sci. 2022;185:108706. doi: 10.1016/j.meatsci.2021.108706. PubMed DOI

Çoban M.Z. Effectiveness of chitosan/propolis extract emulsion coating on refrigerated storage quality of crayfish meat (Astacus leptodactylus) CyTA-J. Food. 2021;19:212–219. doi: 10.1080/19476337.2021.1882580. DOI

Shin D., Kim Y.-J., Yune J.-H., Kim D.H., Kwon H.C., Sohn H., Han S.G., Han J.H., Lim S.J., Han S.G. Effects of Chitosan and Duck Fat-Based Emulsion Coatings on the Quality Characteristics of Chicken Meat during Storage. Foods. 2022;11:245. doi: 10.3390/foods11020245. PubMed DOI PMC

Zhang H., Li X., Kang H., Peng X. Antimicrobial and antioxidant effects of edible nanoemulsion coating based on chitosan and Schizonepeta tenuifolia essential oil in fresh pork. J. Food Process. Preserv. 2021;45:e15909. doi: 10.1111/jfpp.15909. DOI

Zhao R., Zhang Y., Chen H., Song R., Li Y. Performance of eugenol emulsion/chitosan edible coating and application in fresh meat preservation. J. Food Process. Preserv. 2022;46:e16407. doi: 10.1111/jfpp.16407. DOI

Alirezalu K., Moazami-Goodarzi A.H., Roufegarinejad L., Yaghoubi M., Lorenzo J.M. Combined effects of calcium-alginate coating and Artemisia fragrance essential oil on chicken breast meat quality. Food Sci. Nutr. 2022;10:2505–2515. doi: 10.1002/fsn3.2856. PubMed DOI PMC

Rezaei F., Shahbazi Y. Shelf-life extension and quality attributes of sauced silver carp fillet: A comparison among direct addition, edible coating and biodegradable film. LWT. 2018;87:122–133. doi: 10.1016/j.lwt.2017.08.068. DOI

Bazargani-Gilani B., Aliakbarlu J., Tajik H. Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2015;29:280–287. doi: 10.1016/j.ifset.2015.04.007. DOI

Shahbazi Y., Shavisi N. Chitosan coatings containing Mentha spicata essential oil and zinc oxide nanoparticle for shelf life extension of rainbow trout fillets. J. Aquat. Food Prod. Technol. 2018;27:986–997. doi: 10.1080/10498850.2018.1518945. DOI

Ariaii P., Tavakolipour H., Rezaei M., Rad A.H.E., Bahram S. Effect of methylcellulose coating enriched with Pimpinella affinis oil on the quality of silver carp fillet during refrigerator storage condition. J. Food Process. Preserv. 2015;39:1647–1655. doi: 10.1111/jfpp.12394. DOI

Heydari R., Bavandi S., Javadian S.R. Effect of sodium alginate coating enriched with horsemint (Mentha longifolia) essential oil on the quality of bighead carp fillets during storage at 4 °C. Food Sci. Nutr. 2015;3:188–194. doi: 10.1002/fsn3.202. PubMed DOI PMC

Hosseini S.F., Rezaei M., Zandi M., Ghavi F.F. Effect of fish gelatin coating enriched with oregano essential oil on the quality of refrigerated rainbow trout fillet. J. Aquat. Food Prod. Technol. 2016;25:835–842. doi: 10.1080/10498850.2014.943917. DOI

Aşik E., Candoğan K. Effects of chitosan coatings incorporated with garlic oil on quality characteristics of shrimp. J. Food Qual. 2014;37:237–246. doi: 10.1111/jfq.12088. DOI

Pabast M., Shariatifar N., Beikzadeh S., Jahed G. Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control. 2018;91:185–192. doi: 10.1016/j.foodcont.2018.03.047. DOI

Raeisi M., Tajik H., Aliakbarlu J., Mirhosseini S.H., Hosseini S.M.H. Effect of carboxymethyl cellulose-based coatings incorporated with Zataria multiflora Boiss. essential oil and grape seed extract on the shelf life of rainbow trout fillets. LWT-Food Sci. Technol. 2015;64:898–904. doi: 10.1016/j.lwt.2015.06.010. DOI

Song Y., Liu L., Shen H., You J., Luo Y. Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala) Food Control. 2011;22:608–615. doi: 10.1016/j.foodcont.2010.10.012. DOI

Volpe M.G., Siano F., Paolucci M., Sacco A., Sorrentino A., Malinconico M., Varricchio E. Active edible coating effectiveness in shelf-life enhancement of trout (Oncorhynchusmykiss) fillets. LWT-Food Sci. Technol. 2015;60:615–622. doi: 10.1016/j.lwt.2014.08.048. DOI

Clausse D. Differential thermal analysis, differential scanning calorimetry, and emulsions. J. Therm. Anal. Calorim. 2010;101:1071–1077. doi: 10.1007/s10973-010-0712-1. DOI

Derkach S.R. Rheology of emulsions. Adv.Colloid Interface Sci. 2009;151:1–23. doi: 10.1016/j.cis.2009.07.001. PubMed DOI

Karbaschi M., Lotfi M., Krägel J., Javadi A., Bastani D., Miller R. Rheology of interfacial layers. Current Opin. Colloid Interface Sci. 2014;19:514–519. doi: 10.1016/j.cocis.2014.08.003. DOI

Murray B.S., Dickinson E. Interfacial rheology and the dynamic properties of adsorbed films of food proteins and surfactants. Food Sci. Technol. Int. Tokyo. 1996;2:131–145. doi: 10.3136/fsti9596t9798.2.131. DOI

Bos M.A., Van Vliet T. Interfacial rheological properties of adsorbed protein layers and surfactants: A review. Adv.Colloid Interface Sci. 2001;91:437–471. doi: 10.1016/S0001-8686(00)00077-4. PubMed DOI

Benjamins J., Lucassen-Reynders E.H. In: Interfacial Rheology of Adsorbed Protein Layers. Miller R., Liggieri L., editors. Brill; Leiden, The Netherlands: 2009. pp. 253–302.

Javadi A., Mucic N., Karbaschi M., Won J.Y., Lotfi M., Dan A., Ulaganathan V., Gochev G., Makievski A.V., Kovalchuk V.I., et al. Characterization methods for liquid interfacial layers. Eur. Phys. J. Special Topics. 2013;222:7–29. doi: 10.1140/epjst/e2013-01822-3. DOI

Sagis L.M., Scholten E. Complex interfaces in food: Structure and mechanical properties. Trends Food Sci. Technol. 2014;37:59–71. doi: 10.1016/j.tifs.2014.02.009. DOI

Atkins P., Atkins P.W., de Paula J. Atkins’ Physical Chemistry. Oxford University Press; Oxford, UK: 2014.

Kousksou T., Jamil A., Gibout S., Zeraouli Y. Thermal analysis of phase change emulsion. J. Therm. Anal. Calorim. 2009;96:841–852. doi: 10.1007/s10973-009-0058-8. DOI

López-de-Dicastillo C., Gómez-Estaca J., Catalá R., Gavara R., Hernández-Muñoz P. Active antioxidant packaging films: Development and effect on lipid stability of brined sardines. Food Chem. 2012;131:1376–1384. doi: 10.1016/j.foodchem.2011.10.002. DOI

Hsieh R.J., Kinsella J.E. Oxidation of polyunsaturated fatty acids: Mechanisms, products, and inhibition with emphasis on fish. Adv. Food Nutr. Res. 1989;33:233–341. PubMed

Lorenzo J.M., Vargas F.C., Strozzi I., Pateiro M., Furtado M.M., Sant’Ana A.S., Rocchetti G., Barba F.J., Dominguez R., Lucini L., et al. Influence of pitanga leaf extracts on lipid and protein oxidation of pork burger during shelf-life. Food Res. Int. 2018;114:47–54. doi: 10.1016/j.foodres.2018.07.046. PubMed DOI

Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010;4:118. doi: 10.4103/0973-7847.70902. PubMed DOI PMC

Gómez-Estaca J., López-de-Dicastillo C., Hernández-Muñoz P., Catalá R., Gavara R. Advances in antioxidant active food packaging. Trends Food Sci.Technol. 2014;35:42–51. doi: 10.1016/j.tifs.2013.10.008. DOI

Jayasena D.D., Jo C. Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends Food Sci. Technol. 2013;34:96–108. doi: 10.1016/j.tifs.2013.09.002. DOI

Liu G., Xiong Y.L. Electrophoretic pattern, thermal denaturation, and in vitro digestibility of oxidized myosin. J. Agric. Food Chem. 2000;48:624–630. doi: 10.1021/jf990520h. PubMed DOI

Sante-Lhoutellier V., Aubry L., Gatellier P. Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins. J. Agric. Food Chem. 2007;55:5343–5348. doi: 10.1021/jf070252k. PubMed DOI

Labuza T.P. Sorption phenomena in foods. Food Technol. 1968;22:15–19.

Damodaran S., Parkin K.L. Química de Alimentos de Fennema. Artmed editora; Guelph, ON, Canada: 2018.

Stadtman E.R. Protein oxidation and aging. Free Radic. Res. 2006;40:1250–1258. doi: 10.1080/10715760600918142. PubMed DOI

Lund M.N., Luxford C., Skibsted L.H., Davies M.J. Oxidation of myosin by haem proteins generates myosin radicals and protein cross-links. Biochem. J. 2008;410:565–574. doi: 10.1042/BJ20071107. PubMed DOI

Abdou E.S., Galhoum G.F., Mohamed E.N. Curcumin loaded nanoemulsions/pectin coatings for refrigerated chicken fillets. Food Hydrocoll. 2018;83:445–453. doi: 10.1016/j.foodhyd.2018.05.026. DOI

Al-Hashimi A.G., Ammar A.B., Lakshmanan G., Cacciola F., Lakhssassi N. Development of a Millet Starch Edible Film Containing Clove Essential Oil. Foods. 2020;9:184. doi: 10.3390/foods9020184. PubMed DOI PMC

Sanchez-Gonzalez L., Chafer M., Chiralt A., Gonzalez-Martinez C. Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydr. Polym. 2010;82:277–283. doi: 10.1016/j.carbpol.2010.04.047. DOI

Winther J.R., Thorpe C. Quantification of thiols and disulfides. Biochim. Biophys. Acta (BBA) 2014;1840:838–846. doi: 10.1016/j.bbagen.2013.03.031. PubMed DOI PMC

Ojagh S.M., Rezaei M., Razavi S.H., Hosseini S.M.H. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem. 2010;120:193–198. doi: 10.1016/j.foodchem.2009.10.006. DOI

Serra A.T., Matias A.A., Nunes A.V.M., Leitão M.C., Brito D., Bronze R., Silva S., Pires A., Crespo M.T., San Romão M.V., et al. In vitro evaluation of olive-and grape-based natural extracts as potential preservatives for food. Innov. Food Sci. Emerg. Technol. 2008;9:311–319. doi: 10.1016/j.ifset.2007.07.011. DOI

Puupponen-Pimiä R., Nohynek L., Meier C., Kähkönen M., Heinonen M., Hopia A., Oksman-Caldentey K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001;90:494–507. doi: 10.1046/j.1365-2672.2001.01271.x. PubMed DOI

Efenberger-Szmechtyk M., Nowak A., Czyzowska A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2021;61:149–178. doi: 10.1080/10408398.2020.1722060. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...