Emulsion-Based Coatings for Preservation of Meat and Related Products
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
IGA/FT/2023/007
Tomas Bata University in Zlín
PubMed
36832908
PubMed Central
PMC9956104
DOI
10.3390/foods12040832
PII: foods12040832
Knihovny.cz E-resources
- Keywords
- antimicrobial agents, emulsion coatings, meat, phase separation, rheology, thermal analysis,
- Publication type
- Journal Article MeSH
- Review MeSH
One of the biggest challenges faced by the meat industry is maintaining the freshness of meat while extending its shelf life. Advanced packaging systems and food preservation techniques are highly beneficial in this regard. However, the energy crisis and environmental pollution demand an economically feasible and environmentally sustainable preservation method. Emulsion coatings (ECs) are highly trending in the food packaging industry. Efficiently developed coatings can preserve food, increase nutritional composition, and control antioxidants' release simultaneously. However, their construction has many challenges, especially for meat. Therefore, the following review focuses on the essential aspects of developing ECs for meat. The study begins by classifying emulsions based on composition and particle size, followed by a discussion on the physical properties, such as ingredient separation, rheology, and thermal characteristics. Furthermore, it discusses the lipid and protein oxidation and antimicrobial characteristics of ECs, which are necessary for other aspects to be relevant. Lastly, the review presents the limitations of the literature while discussing the future trends. ECs fabricated with antimicrobial/antioxidant properties present promising results in increasing the shelf life of meat while preserving its sensory aspects. In general, ECs are highly sustainable and effective packaging systems for meat industries.
See more in PubMed
Zhou G.H., Xu X.L., Liu Y. Preservation technologies for fresh meat—A review. Meat Sci. 2010;86:119–128. doi: 10.1016/j.meatsci.2010.04.033. PubMed DOI
Heinz G., Hautzinger P. Meat Processing Technology for Small to Medium Scale Producers. FAO; Rome, Italy: 2007.
Sainsbury J., Schönfeldt H.C., Van Heerden S.M. The nutrient composition of South African mutton. J. Food Compos. Anal. 2011;24:720–726. doi: 10.1016/j.jfca.2011.01.001. DOI
Soren N.M., Biswas A.K. Methods for Nutritional Quality Analysis of Meat. Elsevier; Amsterdam, The Netherlands: 2020. pp. 21–36.
Naveena B.M., Kiran M., Reddy K.S., Ramakrishna C., Vaithiyanathan S., Devatkal S.K. Effect of ammonium hydroxide on ultrastructure and tenderness of buffalo meat. Meat Sci. 2011;88:727–732. doi: 10.1016/j.meatsci.2011.03.005. PubMed DOI
Tauro P., Kapoor K.K., Yadav K.S. An Introduction to Microbiology. New Age International; New Delhi, India: 1986. pp. 1–412.
Cheng L.N., Sun D.W., Zhu Z.W., Zhang Z. Emerging techniques for assisting and accelerating food freezing processes: A review of recent research progresses. Crit. Rev. Food Sci. Nutr. 2017;57:769–781. doi: 10.1080/10408398.2015.1004569. PubMed DOI
Chivandi E., Dangarembizi R., Nyakudya T.T., Erlwanger K.H. Chapter 8—Use of Essential Oils as a Preservative of Meat. Academic Press; San Diego, CA, USA: 2016. pp. 85–91. DOI
Murtaja Y., Lapčík L., Lapčíková B., Gautam S., Vašina M., Spanhel L., Vlček J. Intelligent high-tech coating of natural biopolymer layers. Adv.Colloid Interface Sci. 2022;304:102681. doi: 10.1016/j.cis.2022.102681. PubMed DOI
Eroglu E., Torun M., Dincer C., Topuz A. Influence of Pullulan-Based Edible Coating on Some Quality Properties of Strawberry During Cold Storage. Packag. Technol.Sci. 2014;27:831–838. doi: 10.1002/pts.2077. DOI
Gennadios A., Hanna M.A., Kurth L.B. Application of edible coatings on meats, poultry and seafoods: A review. Food Sci. Technol. 1997;30:337–350. doi: 10.1006/fstl.1996.0202. DOI
Dehghani S., Hosseini S.V., Regenstein J.M. Edible films and coatings in seafood preservation: A review. Food Chem. 2018;240:505–513. doi: 10.1016/j.foodchem.2017.07.034. PubMed DOI
Dong J., Kou X., Liu L., Hou L., Li R., Wang S. Effect of water, fat, and salt contents on heating uniformity and color of ground beef subjected to radio frequency thawing process. Innov. Food Sci. Emerg. Technol. 2021;68:102604. doi: 10.1016/j.ifset.2021.102604. DOI
Sanchez-Ortega I., Garica-Almendarez B.E., Santos-Lopez E.M., Amaro-Reyes A., Barboza-Corona J.E., Regalado C. Antimicrobial Edible Films and Coatings for Meat and Meat Products Preservation. Sci. World J. 2014;2014:248935. doi: 10.1155/2014/248935. PubMed DOI PMC
Fernández-Pan I., Carrión-Granda X., Maté J.I. Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets. Food Control. 2014;36:69–75. doi: 10.1016/j.foodcont.2013.07.032. DOI
Catarino M.D., Alves-Silva J.M., Fernandes R.P., Gonçalves M.J., Salgueiro L.R., Henriques M.F., Cardoso S.M. Development and performance of whey protein active coatings with Origanum virens essential oils in the quality and shelf life improvement of processed meat products. Food Control. 2017;80:273–280. doi: 10.1016/j.foodcont.2017.03.054. DOI
Schmid M., Krimmel B., Grupa U., Noller K. Effects of thermally induced denaturation on technological-functional properties of whey protein isolate-based films. J. Dairy Sci. 2014;97:5315–5327. doi: 10.3168/jds.2013-7852. PubMed DOI
Guckian S., Dwyer C., O’Sullivan M., O’Riordan E.D., Monahan F.J. Properties of and mechanisms of protein interactions in films formed from different proportions of heated and unheated whey protein solutions. Eur. Food Res. Technol. 2006;223:91–95. doi: 10.1007/s00217-005-0140-9. DOI
Cutter C.N. Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods. Meat Sci. 2006;74:131–142. doi: 10.1016/j.meatsci.2006.04.023. PubMed DOI
Liu B., Hu X. Hollow Micro-and Nanomaterials: Synthesis and Applications. Elsevier; Amsterdam, The Netherlands: 2020. pp. 1–38.
Lu W., Kelly A.L., Miao S. Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci.Technol. 2016;47:1–9. doi: 10.1016/j.tifs.2015.10.015. DOI
Donsì F., Sessa M., Mediouni H., Mgaidi A., Ferrari G. Encapsulation of bioactive compounds in nanoemulsion-based delivery systems. Procedia Food Sci. 2011;1:1666–1671. doi: 10.1016/j.profoo.2011.09.246. DOI
McClements D.J. Food Emulsions: Principles, Practices, and Techniques. CRC Press; Boca Raton, FL, USA: 2004.
Chanamai R., Horn G., McClements D.J. Influence of oil polarity on droplet growth in oil-in-water emulsions stabilized by a weakly adsorbing biopolymer or a nonionic surfactant. J. Colloid Interface Sci. 2002;247:167–176. doi: 10.1006/jcis.2001.8110. PubMed DOI
Christenson H.K., Per M. Claesson. Direct measurements of the force between hydrophobic surfaces in water. Adv. Colloid Interface Sci. 2001;91:391–436. doi: 10.1016/S0001-8686(00)00036-1. DOI
Norde W. Colloids and Interfaces in Life Sciences and Bionanotechnology. CRC Press; Boca Raton, FL, USA: 2011.
Dickinson E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 2003;17:25–39. doi: 10.1016/S0268-005X(01)00120-5. DOI
Hiemenz P.C., Rajagopalan R. Principles of Colloid and Surface Chemistry, Revised and Expanded. CRC Press; Boca Raton, FL, USA: 2016.
Keykhosravy K., Khanzadi S., Hashemi M., Azizzadeh M. Chitosan-loaded nanoemulsion containing Zataria Multiflora Boiss and Bunium persicum Boiss essential oils as edible coatings: Its impact on microbial quality of turkey meat and fate of inoculated pathogens. Int. J. Biol. Macromol. 2020;150:904–913. doi: 10.1016/j.ijbiomac.2020.02.092. PubMed DOI
Noori S., Zeynali F., Almasi H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control. 2018;84:312–320. doi: 10.1016/j.foodcont.2017.08.015. DOI
Xiong Y., Li S., Warner R.D., Fang Z. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control. 2020;114:107226. doi: 10.1016/j.foodcont.2020.107226. DOI
Majdinasab M., Niakousari M., Shaghaghian S., Dehghani H. Antimicrobial and antioxidant coating based on basil seed gum incorporated with Shirazi thyme and summer savory essential oils emulsions for shelf-life extension of refrigerated chicken fillets. Food Hydrocoll. 2020;108:106011. doi: 10.1016/j.foodhyd.2020.106011. DOI
Jemil N., Ouerfelli M., Almajano M.P., Elloumi-Mseddi J., Nasri M., Hmidet N. The conservative effects of lipopeptides from Bacillus methylotrophicus DCS1 on sunflower oil-in-water emulsion and raw beef patties quality. Food Chem. 2020;303:125364. doi: 10.1016/j.foodchem.2019.125364. PubMed DOI
Aboutorab M., Ahari H., Allahyaribeik S., Yousefi S., Motalebi A. Nano-emulsion of saffron essential oil by spontaneous emulsification and ultrasonic homogenization extend the shelf life of shrimp (Crocus sativus L.) J. Food Process. Preserv. 2021;45:e15224. doi: 10.1111/jfpp.15224. DOI
Yuan D., Hao X., Liu G., Yue Y., Duan J. A novel composite edible film fabricated by incorporating W/O/W emulsion into a chitosan film to improve the protection of fresh fish meat. Food Chem. 2022;385:132647. doi: 10.1016/j.foodchem.2022.132647. PubMed DOI
Liu W., Mei J., Xie J. Effect of locust bean gum-sodium alginate coatings incorporated with daphnetin emulsions on the quality of Scophthalmus maximus at refrigerated condition. Int. J. Biol. Macromol. 2021;170:129–139. doi: 10.1016/j.ijbiomac.2020.12.089. PubMed DOI
Kowalska M., Babut M., Woźniak M., Żbikowska A. Formulation of oil-in-water emulsions containing enzymatically modified rabbit fat with pumpkin seed oil. J. Food Process. Preserv. 2019;43:e13987. doi: 10.1111/jfpp.13987. DOI
Qiu L., Zhang M., Chitrakar B., Adhikari B., Yang C. Effects of nanoemulsion-based chicken bone gelatin-chitosan coatings with cinnamon essential oil and rosemary extract on the storage quality of ready-to-eat chicken patties. Food Packag. Shelf Life. 2022;34:100933. doi: 10.1016/j.fpsl.2022.100933. DOI
Seekkuarachchi I.N., Tanaka K., Kumazawa H. Formation and charaterization of submicrometer oil-in-water (O/W) emulsions, using high-energy emulsification. Ind. Eng. Chem. Res. 2006;45:372–390. doi: 10.1021/ie050323+. DOI
Walstra P. Principles of emulsion formation. Chem. Eng. Sci. 1993;48:333–349. doi: 10.1016/0009-2509(93)80021-H. DOI
Fischer P., Erni P. Emulsion drops in external flow fields—The role of liquid interfaces. Current Opin. Colloid Interface Sci. 2007;12:196–205. doi: 10.1016/j.cocis.2007.07.014. DOI
Williams A., Janssen J., Prins A. Behaviour of droplets in simple shear flow in the presence of a protein emulsifier. Colloids Surf. Physicochem. Eng. Aspects. 1997;125:189–200. doi: 10.1016/S0927-7757(96)03972-6. DOI
Huang M., Wang H., Xu X., Lu X., Song X., Zhou G. Effects of nanoemulsion-based edible coatings with composite mixture of rosemary extract and ε-poly-L-lysine on the shelf life of ready-to-eat carbonado chicken. Food Hydrocoll. 2020;102:105576. doi: 10.1016/j.foodhyd.2019.105576. DOI
Sun R., Song G., Zhang H., Zhang H., Chi Y., Ma Y., Li H., Bai S., Zhang X. Effect of basil essential oil and beeswax incorporation on the physical, structural, and antibacterial properties of chitosan emulsion based coating for eggs preservation. LWT. 2021;150:112020. doi: 10.1016/j.lwt.2021.112020. DOI
Syed I., Banerjee P., Sarkar P. Oil-in-water emulsions of geraniol and carvacrol improve the antibacterial activity of these compounds on raw goat meat surface during extended storage at 4 C. Food Control. 2020;107:106757. doi: 10.1016/j.foodcont.2019.106757. DOI
Santana R.C., Perrechil F.A., Cunha R.L. High-and low-energy emulsifications for food applications: A focus on process parameters. Food Eng. Rev. 2013;5:107–122. doi: 10.1007/s12393-013-9065-4. DOI
Saberi A.H., Fang Y., McClements D.J. Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification. J.Colloid Interface Sci. 2013;411:105–113. doi: 10.1016/j.jcis.2013.08.041. PubMed DOI
Cai L., Wang Y., Cao A. The physiochemical and preservation properties of fish sarcoplasmic protein/chitosan composite films containing ginger essential oil emulsions. J. Food Process. Eng. 2020;43:e13495. doi: 10.1111/jfpe.13495. DOI
Wan J., Pei Y., Hu Y., Ai T., Sheng F., Li J., Li B. Microencapsulation of eugenol through gelatin-based emulgel for preservation of refrigerated meat. Food Bioprocess Technol. 2020;13:1621–1632. doi: 10.1007/s11947-020-02502-0. DOI
Zhou X., Zong X., Zhang M., Ge Q., Qi J., Liang J., Xu X., Xiong G. Effect of konjac glucomannan/carrageenan-based edible emulsion coatings with camellia oil on quality and shelf-life of chicken meat. Int. J. Biol. Macromol. 2021;183:331–339. doi: 10.1016/j.ijbiomac.2021.04.165. PubMed DOI
Kazemeini H., Azizian A., Adib H. Inhibition of Listeria monocytogenes growth in turkey fillets by alginate edible coating with Trachyspermum ammi essential oil nano-emulsion. Int. J. Food Microbiol. 2021;344:109104. doi: 10.1016/j.ijfoodmicro.2021.109104. PubMed DOI
Gedikoğlu A. The effect of Thymus vulgaris and Thymbra spicata essential oils and/or extracts in pectin edible coating on the preservation of sliced bolognas. Meat Sci. 2022;184:108697. doi: 10.1016/j.meatsci.2021.108697. PubMed DOI
Wang L., Liu T., Liu L., Liu Y., Wu X. Impacts of chitosan nanoemulsions with thymol or thyme essential oil on volatile compounds and microbial diversity of refrigerated pork meat. Meat Sci. 2022;185:108706. doi: 10.1016/j.meatsci.2021.108706. PubMed DOI
Çoban M.Z. Effectiveness of chitosan/propolis extract emulsion coating on refrigerated storage quality of crayfish meat (Astacus leptodactylus) CyTA-J. Food. 2021;19:212–219. doi: 10.1080/19476337.2021.1882580. DOI
Shin D., Kim Y.-J., Yune J.-H., Kim D.H., Kwon H.C., Sohn H., Han S.G., Han J.H., Lim S.J., Han S.G. Effects of Chitosan and Duck Fat-Based Emulsion Coatings on the Quality Characteristics of Chicken Meat during Storage. Foods. 2022;11:245. doi: 10.3390/foods11020245. PubMed DOI PMC
Zhang H., Li X., Kang H., Peng X. Antimicrobial and antioxidant effects of edible nanoemulsion coating based on chitosan and Schizonepeta tenuifolia essential oil in fresh pork. J. Food Process. Preserv. 2021;45:e15909. doi: 10.1111/jfpp.15909. DOI
Zhao R., Zhang Y., Chen H., Song R., Li Y. Performance of eugenol emulsion/chitosan edible coating and application in fresh meat preservation. J. Food Process. Preserv. 2022;46:e16407. doi: 10.1111/jfpp.16407. DOI
Alirezalu K., Moazami-Goodarzi A.H., Roufegarinejad L., Yaghoubi M., Lorenzo J.M. Combined effects of calcium-alginate coating and Artemisia fragrance essential oil on chicken breast meat quality. Food Sci. Nutr. 2022;10:2505–2515. doi: 10.1002/fsn3.2856. PubMed DOI PMC
Rezaei F., Shahbazi Y. Shelf-life extension and quality attributes of sauced silver carp fillet: A comparison among direct addition, edible coating and biodegradable film. LWT. 2018;87:122–133. doi: 10.1016/j.lwt.2017.08.068. DOI
Bazargani-Gilani B., Aliakbarlu J., Tajik H. Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2015;29:280–287. doi: 10.1016/j.ifset.2015.04.007. DOI
Shahbazi Y., Shavisi N. Chitosan coatings containing Mentha spicata essential oil and zinc oxide nanoparticle for shelf life extension of rainbow trout fillets. J. Aquat. Food Prod. Technol. 2018;27:986–997. doi: 10.1080/10498850.2018.1518945. DOI
Ariaii P., Tavakolipour H., Rezaei M., Rad A.H.E., Bahram S. Effect of methylcellulose coating enriched with Pimpinella affinis oil on the quality of silver carp fillet during refrigerator storage condition. J. Food Process. Preserv. 2015;39:1647–1655. doi: 10.1111/jfpp.12394. DOI
Heydari R., Bavandi S., Javadian S.R. Effect of sodium alginate coating enriched with horsemint (Mentha longifolia) essential oil on the quality of bighead carp fillets during storage at 4 °C. Food Sci. Nutr. 2015;3:188–194. doi: 10.1002/fsn3.202. PubMed DOI PMC
Hosseini S.F., Rezaei M., Zandi M., Ghavi F.F. Effect of fish gelatin coating enriched with oregano essential oil on the quality of refrigerated rainbow trout fillet. J. Aquat. Food Prod. Technol. 2016;25:835–842. doi: 10.1080/10498850.2014.943917. DOI
Aşik E., Candoğan K. Effects of chitosan coatings incorporated with garlic oil on quality characteristics of shrimp. J. Food Qual. 2014;37:237–246. doi: 10.1111/jfq.12088. DOI
Pabast M., Shariatifar N., Beikzadeh S., Jahed G. Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control. 2018;91:185–192. doi: 10.1016/j.foodcont.2018.03.047. DOI
Raeisi M., Tajik H., Aliakbarlu J., Mirhosseini S.H., Hosseini S.M.H. Effect of carboxymethyl cellulose-based coatings incorporated with Zataria multiflora Boiss. essential oil and grape seed extract on the shelf life of rainbow trout fillets. LWT-Food Sci. Technol. 2015;64:898–904. doi: 10.1016/j.lwt.2015.06.010. DOI
Song Y., Liu L., Shen H., You J., Luo Y. Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala) Food Control. 2011;22:608–615. doi: 10.1016/j.foodcont.2010.10.012. DOI
Volpe M.G., Siano F., Paolucci M., Sacco A., Sorrentino A., Malinconico M., Varricchio E. Active edible coating effectiveness in shelf-life enhancement of trout (Oncorhynchusmykiss) fillets. LWT-Food Sci. Technol. 2015;60:615–622. doi: 10.1016/j.lwt.2014.08.048. DOI
Clausse D. Differential thermal analysis, differential scanning calorimetry, and emulsions. J. Therm. Anal. Calorim. 2010;101:1071–1077. doi: 10.1007/s10973-010-0712-1. DOI
Derkach S.R. Rheology of emulsions. Adv.Colloid Interface Sci. 2009;151:1–23. doi: 10.1016/j.cis.2009.07.001. PubMed DOI
Karbaschi M., Lotfi M., Krägel J., Javadi A., Bastani D., Miller R. Rheology of interfacial layers. Current Opin. Colloid Interface Sci. 2014;19:514–519. doi: 10.1016/j.cocis.2014.08.003. DOI
Murray B.S., Dickinson E. Interfacial rheology and the dynamic properties of adsorbed films of food proteins and surfactants. Food Sci. Technol. Int. Tokyo. 1996;2:131–145. doi: 10.3136/fsti9596t9798.2.131. DOI
Bos M.A., Van Vliet T. Interfacial rheological properties of adsorbed protein layers and surfactants: A review. Adv.Colloid Interface Sci. 2001;91:437–471. doi: 10.1016/S0001-8686(00)00077-4. PubMed DOI
Benjamins J., Lucassen-Reynders E.H. In: Interfacial Rheology of Adsorbed Protein Layers. Miller R., Liggieri L., editors. Brill; Leiden, The Netherlands: 2009. pp. 253–302.
Javadi A., Mucic N., Karbaschi M., Won J.Y., Lotfi M., Dan A., Ulaganathan V., Gochev G., Makievski A.V., Kovalchuk V.I., et al. Characterization methods for liquid interfacial layers. Eur. Phys. J. Special Topics. 2013;222:7–29. doi: 10.1140/epjst/e2013-01822-3. DOI
Sagis L.M., Scholten E. Complex interfaces in food: Structure and mechanical properties. Trends Food Sci. Technol. 2014;37:59–71. doi: 10.1016/j.tifs.2014.02.009. DOI
Atkins P., Atkins P.W., de Paula J. Atkins’ Physical Chemistry. Oxford University Press; Oxford, UK: 2014.
Kousksou T., Jamil A., Gibout S., Zeraouli Y. Thermal analysis of phase change emulsion. J. Therm. Anal. Calorim. 2009;96:841–852. doi: 10.1007/s10973-009-0058-8. DOI
López-de-Dicastillo C., Gómez-Estaca J., Catalá R., Gavara R., Hernández-Muñoz P. Active antioxidant packaging films: Development and effect on lipid stability of brined sardines. Food Chem. 2012;131:1376–1384. doi: 10.1016/j.foodchem.2011.10.002. DOI
Hsieh R.J., Kinsella J.E. Oxidation of polyunsaturated fatty acids: Mechanisms, products, and inhibition with emphasis on fish. Adv. Food Nutr. Res. 1989;33:233–341. PubMed
Lorenzo J.M., Vargas F.C., Strozzi I., Pateiro M., Furtado M.M., Sant’Ana A.S., Rocchetti G., Barba F.J., Dominguez R., Lucini L., et al. Influence of pitanga leaf extracts on lipid and protein oxidation of pork burger during shelf-life. Food Res. Int. 2018;114:47–54. doi: 10.1016/j.foodres.2018.07.046. PubMed DOI
Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010;4:118. doi: 10.4103/0973-7847.70902. PubMed DOI PMC
Gómez-Estaca J., López-de-Dicastillo C., Hernández-Muñoz P., Catalá R., Gavara R. Advances in antioxidant active food packaging. Trends Food Sci.Technol. 2014;35:42–51. doi: 10.1016/j.tifs.2013.10.008. DOI
Jayasena D.D., Jo C. Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends Food Sci. Technol. 2013;34:96–108. doi: 10.1016/j.tifs.2013.09.002. DOI
Liu G., Xiong Y.L. Electrophoretic pattern, thermal denaturation, and in vitro digestibility of oxidized myosin. J. Agric. Food Chem. 2000;48:624–630. doi: 10.1021/jf990520h. PubMed DOI
Sante-Lhoutellier V., Aubry L., Gatellier P. Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins. J. Agric. Food Chem. 2007;55:5343–5348. doi: 10.1021/jf070252k. PubMed DOI
Labuza T.P. Sorption phenomena in foods. Food Technol. 1968;22:15–19.
Damodaran S., Parkin K.L. Química de Alimentos de Fennema. Artmed editora; Guelph, ON, Canada: 2018.
Stadtman E.R. Protein oxidation and aging. Free Radic. Res. 2006;40:1250–1258. doi: 10.1080/10715760600918142. PubMed DOI
Lund M.N., Luxford C., Skibsted L.H., Davies M.J. Oxidation of myosin by haem proteins generates myosin radicals and protein cross-links. Biochem. J. 2008;410:565–574. doi: 10.1042/BJ20071107. PubMed DOI
Abdou E.S., Galhoum G.F., Mohamed E.N. Curcumin loaded nanoemulsions/pectin coatings for refrigerated chicken fillets. Food Hydrocoll. 2018;83:445–453. doi: 10.1016/j.foodhyd.2018.05.026. DOI
Al-Hashimi A.G., Ammar A.B., Lakshmanan G., Cacciola F., Lakhssassi N. Development of a Millet Starch Edible Film Containing Clove Essential Oil. Foods. 2020;9:184. doi: 10.3390/foods9020184. PubMed DOI PMC
Sanchez-Gonzalez L., Chafer M., Chiralt A., Gonzalez-Martinez C. Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydr. Polym. 2010;82:277–283. doi: 10.1016/j.carbpol.2010.04.047. DOI
Winther J.R., Thorpe C. Quantification of thiols and disulfides. Biochim. Biophys. Acta (BBA) 2014;1840:838–846. doi: 10.1016/j.bbagen.2013.03.031. PubMed DOI PMC
Ojagh S.M., Rezaei M., Razavi S.H., Hosseini S.M.H. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem. 2010;120:193–198. doi: 10.1016/j.foodchem.2009.10.006. DOI
Serra A.T., Matias A.A., Nunes A.V.M., Leitão M.C., Brito D., Bronze R., Silva S., Pires A., Crespo M.T., San Romão M.V., et al. In vitro evaluation of olive-and grape-based natural extracts as potential preservatives for food. Innov. Food Sci. Emerg. Technol. 2008;9:311–319. doi: 10.1016/j.ifset.2007.07.011. DOI
Puupponen-Pimiä R., Nohynek L., Meier C., Kähkönen M., Heinonen M., Hopia A., Oksman-Caldentey K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001;90:494–507. doi: 10.1046/j.1365-2672.2001.01271.x. PubMed DOI
Efenberger-Szmechtyk M., Nowak A., Czyzowska A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2021;61:149–178. doi: 10.1080/10408398.2020.1722060. PubMed DOI