Investigating the Effect of an Anti-Inflammatory Drug in Determining NURR1 Expression and Thus Exploring the Progression of Parkinson's Disease
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
38466012
PubMed Central
PMC11019624
DOI
10.33549/physiolres.935168
PII: 935168
Knihovny.cz E-zdroje
- MeSH
- 1-methyl-4-fenyl-1,2,3,6-tetrahydropyridin metabolismus farmakologie terapeutické užití MeSH
- antiflogistika nesteroidní farmakologie terapeutické užití metabolismus MeSH
- antiflogistika farmakologie MeSH
- dopaminergní neurony metabolismus patologie MeSH
- ibuprofen farmakologie terapeutické užití MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neuroprotektivní látky * farmakologie terapeutické užití MeSH
- Parkinsonova nemoc * metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1-methyl-4-fenyl-1,2,3,6-tetrahydropyridin MeSH
- antiflogistika nesteroidní MeSH
- antiflogistika MeSH
- ibuprofen MeSH
- neuroprotektivní látky * MeSH
Nonsteroidal anti-inflammatory drugs are the most widely used drugs for Parkinson's disease (PD), of which ibuprofen shows positive effects in suppressing symptoms; however, the associated risk needs to be addressed in different pathological stages. Initially, we developed an initial and advanced stage of the Parkinson disease mouse model by intraperitoneal injection of MPTP (20 mg/kg; 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine) for 10 and 20 days, respectively. Subsequently, ibuprofen treatment was administered for 2 months, and a pole test, rotarod test, histology, immunohistochemistry, and western blotting were performed to determine neuronal motor function. Histological analysis for 10 days after mice were injected with MPTP showed the onset of neurodegeneration and cell aggregation, indicating the initial stages of Parkinson's disease. Advanced Parkinson's disease was marked by Lewy body formation after another 10 days of MPTP injection. Neurodegeneration reverted after ibuprofen therapy in initial Parkinson's disease but not in advanced Parkinson's disease. The pole and rotarod tests confirmed that motor activity in the initial Parkinson disease with ibuprofen treatment recovered (p<0.01). However, no improvement was observed in the ibuprofen-treated mice with advanced disease mice. Interestingly, ibuprofen treatment resulted in a significant improvement (p<0.01) in NURR1 (Nuclear receptor-related 1) expression in mice with early PD, but no substantial improvement was observed in its expression in mice with advanced PD. Our findings indicate that NURR1 exerts anti-inflammatory and neuroprotective effects. Overall, NURR1 contributed to the effects of ibuprofen on PD at different pathological stages.
Zobrazit více v PubMed
Cankaya S, Cankaya B, Kilic U, Kilic E, Yulug B. The therapeutic role of minocycline in Parkinson’s disease. Drugs Context. 2019;8:212553. doi: 10.7573/dic.212553. PubMed DOI PMC
Alexi T, Borlongan CV, Faull RL, Williams CE, Clark RG, Gluckman PD, Hughes PE. Neuroprotective strategies for basal ganglia degeneration: Parkinson’s and Huntington’s diseases. Prog Neurobiol. 2000;60:409–470. doi: 10.1016/S0301-0082(99)00032-5. PubMed DOI
Salari S, Bagheri M. In vivo, in vitro and pharmacologic models of Parkinson’s disease. Physiol Res. 2019;68:17–24. doi: 10.33549/physiolres.933895. PubMed DOI
Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68:384–386. doi: 10.1212/01.wnl.0000247740.47667.03. PubMed DOI
Whitehouse PJ, Moody HR. Mild cognitive impairment: A ‘hardening of the categories’? Dementia. 2006;5:11–25. doi: 10.1177/1471301206059752. DOI
Sokouti H, Mohajeri D, Nourazar MA. 6-Hydroxydopamine-Induced Neurotoxicity in Rat Model of Parkinson’s Disease: Is Reversed via Anti-Oxidative Activities of Curcumin and Aerobic Exercise Therapy. Physiol Res. 2022;71:551–560. doi: 10.33549/physiolres.934929. PubMed DOI PMC
Rizek P, Kumar N, Jog MS. An update on the diagnosis and treatment of Parkinson disease. CMAJ. 2016;188:1157–1165. doi: 10.1503/cmaj.151179. PubMed DOI PMC
Ren L, Yi J, Yang J, Li P, Cheng X, Mao P. Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease: A dose-response meta-analysis. Medicine (Baltimore) 2018;97:e12172. doi: 10.1097/MD.0000000000012172. PubMed DOI PMC
Jia C, Qi H, Cheng C, Wu X, Yang Z, Cai H, Chen S, Le W. α-Synuclein Negatively Regulates Nurr1 Expression Through NF-κB-Related Mechanism. Front Mol Neurosci. 2020;13:64. doi: 10.3389/fnmol.2020.00064. PubMed DOI PMC
Ji R, Sanchez C, Chou C, Chen X, Woodward D, Regan J. Prostanoid EP1 receptors mediate up-regulation of the orphan nuclear receptor Nurr1 by cAMP-independent activation of protein kinase A, CREB and NF-κB: EP1 receptor up-regulation of Nurr1. Br J Pharmacol. 2012;166:1033–1046. doi: 10.1111/j.1476-5381.2011.01817.x. PubMed DOI PMC
Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, Björklund A. α-Synuclein-Induced Down-Regulation of Nurr1 Disrupts GDNF Signaling in Nigral Dopamine Neurons. Sci Transl Med. 2012;4:163ra156. doi: 10.1126/scitranslmed.3004676. PubMed DOI
Bruning JM, Wang Y, Oltrabella F, Tian B, Kholodar SA, Liu H, Bhattacharya P, et al. Covalent Modification and Regulation of the Nuclear Receptor Nurr1 by a Dopamine Metabolite. Cell Chem Biol. 2019;26:674–685.e6. doi: 10.1016/j.chembiol.2019.02.002. PubMed DOI PMC
Lin X, Parisiadou L, Sgobio C, Liu G, Yu J, Sun L, Shim H, et al. Conditional Expression of Parkinson’s Disease-Related Mutant -Synuclein in the Midbrain Dopaminergic Neurons Causes Progressive Neurodegeneration and Degradation of Transcription Factor Nuclear Receptor Related 1. J Neurosci. 2012;32:9248–9264. doi: 10.1523/JNEUROSCI.1731-12.2012. PubMed DOI PMC
Dong J, Li S, Mo JL, Cai HB, Le WD. Nurr1-Based Therapies for Parkinson’s Disease. CNS Neurosci Ther. 2016;22:351–359. doi: 10.1111/cns.12536. PubMed DOI PMC
Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. 2016;15:1257–1272. doi: 10.1016/S1474-4422(16)30230-7. PubMed DOI
Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8:382–397. doi: 10.1016/S1474-4422(09)70062-6. PubMed DOI
Hunot S, Hirsch EC. Neuroinflammatory processes in Parkinson’s disease. Ann Neurol. 2003;53(Suppl 3):S49–S58. doi: 10.1002/ana.10481. discussion S58–S60. PubMed DOI
Miguel-Álvarez M, Santos-Lozano A, Sanchis-Gomar F, Fiuza-Luces C, Pareja-Galeano H, Garatachea N, Lucia A. Non-steroidal anti-inflammatory drugs as a treatment for Alzheimer’s disease: a systematic review and meta-analysis of treatment effect. Drugs Aging. 2015;32:139–147. doi: 10.1007/s40266-015-0239-z. PubMed DOI
Chen H, Jacobs E, Schwarzschild MA, McCullough ML, Calle EE, Thun MJ, Ascherio A. Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann Neurol. 2005;58:963–967. doi: 10.1002/ana.20682. PubMed DOI
Gao X, Chen H, Schwarzschild MA, Ascherio A. Use of ibuprofen and risk of Parkinson disease. Neurology. 2011;76:863–869. doi: 10.1212/WNL.0b013e31820f2d79. PubMed DOI PMC
Andrgie AT, Darge HF, Mekonnen TW, Birhan YS, Hanurry EY, Chou H-Y, Wang C-F, et al. Ibuprofen-Loaded Heparin Modified Thermosensitive Hydrogel for Inhibiting Excessive Inflammation and Promoting Wound Healing. Polymers. 2020;12:2619. doi: 10.3390/polym12112619. PubMed DOI PMC
Grotemeyer A, McFleder RL, Wu J, Wischhusen J, Ip CW. Neuroinflammation in Parkinson’s Disease - Putative Pathomechanisms and Targets for Disease-Modification. Front Immunol. 2022;13:878771. doi: 10.3389/fimmu.2022.878771. PubMed DOI PMC
Sathiya S, Ranju V, Kalaivani P, Priya RJ, Sumathy H, Sunil AG, Babu CS. Telmisartan attenuates MPTP induced dopaminergic degeneration and motor dysfunction through regulation of α-synuclein and neurotrophic factors (BDNF and GDNF) expression in C57BL/6J mice. Neuropharmacology. 2013;73:98–110. doi: 10.1016/j.neuropharm.2013.05.025. PubMed DOI
Oh S, Chang M, Song J, Rhee Y-H, Joe E-H, Lee H-S, Yi S-H, Lee S-H. Combined Nurr1 and Foxa2 roles in the therapy of Parkinson’s disease. EMBO Mol Med. 2015;7:510–525. doi: 10.15252/emmm.201404610. PubMed DOI PMC
Salama RAM, El Gayar NH, Georgy SS, Hamza M. Equivalent intraperitoneal doses of ibuprofen supplemented in drinking water or in diet: a behavioral and biochemical assay using antinociceptive and thromboxane inhibitory dose-response curves in mice. PeerJ. 2016;4:e2239. doi: 10.7717/peerj.2239. PubMed DOI PMC
Nair A, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7:27–31. doi: 10.4103/0976-0105.177703. PubMed DOI PMC
Świątkiewicz M, Zaremba M, Joniec I, Członkowski A, Kurkowska-Jastrzębska I. Potential neuroprotective effect of ibuprofen, insights from the mice model of Parkinson’s disease. Pharmacol Rep. 2013;65:1227–1236. doi: 10.1016/S1734-1140(13)71480-4. PubMed DOI
Chae IC, Jang JH, Seol IC, Kim YS, Park G, Yoo HR. Ukgansan Protects Dopaminergic Neurons against MPTP-Induced Neurotoxicity via the Nurr1 Signaling Pathway. Evid Based Complement Alternat Med. 2022;2022:7393557. doi: 10.1155/2022/7393557. PubMed DOI PMC
Dunnett SB, Brooks SP. Motor Assessment in Huntington’s Disease Mice. Methods Mol Biol. 2018;1780:121–141. doi: 10.1007/978-1-4939-7825-0_7. PubMed DOI
Schmidt ERE, Morello F, Pasterkamp RJ. Dissection and culture of mouse dopaminergic and striatal explants in three-dimensional collagen matrix assays. J Vis Exp. 2012;(61):3691. doi: 10.3791/3691. PubMed DOI PMC
McEvoy AN, Murphy EA, Ponnio T, Conneely OM, Bresnihan B, FitzGerald O, Murphy EP. Activation of Nuclear Orphan Receptor NURR1 Transcription by NF-κB and Cyclic Adenosine 5′-Monophosphate Response Element-Binding Protein in Rheumatoid Arthritis Synovial Tissue. J Immunol. 2002;168:2979–2987. doi: 10.4049/jimmunol.168.6.2979. PubMed DOI
Schlossmacher MG, Tomlinson JJ, Santos G, Shutinoski B, Brown EG, Manuel D, Mestre T. Modelling idiopathic Parkinson disease as a complex illness can inform incidence rate in healthy adults: the PR EDIGT score. Eur J Neurosci. 2017;45:175–191. doi: 10.1111/ejn.13476. PubMed DOI PMC
Lallier SW, Graf AE, Waidyarante GR, Rogers LK. Nurr1 expression is modified by inflammation in microglia. Neuroreport. 2016;27:1120–1127. doi: 10.1097/WNR.0000000000000665. PubMed DOI PMC
Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–381. doi: 10.1146/annurev.ne.09.030186.002041. PubMed DOI
Meade RM, Fairlie DP, Mason JM. Alpha-synuclein structure and Parkinson’s disease - lessons and emerging principles. Mol Neurodegener. 2019;14:29. doi: 10.1186/s13024-019-0329-1. PubMed DOI PMC
Aarsland D, Creese B, Politis M, Ray Chaudhuri K, Ffytche DH, Weintraub D, Ballard C. Cognitive decline in Parkinson disease. Nat Rev Neurol. 2017;13:217–231. doi: 10.1038/nrneurol.2017.27. PubMed DOI PMC
Willems S, Kilu W, Ni X, Chaikuad A, Knapp S, Heering J, Merk D. The orphan nuclear receptor Nurr1 is responsive to non-steroidal anti-inflammatory drugs. Commun Chem. 2020;3:85. doi: 10.1038/s42004-020-0331-0. PubMed DOI PMC
Paul G, Zachrisson O, Varrone A, Almqvist P, Jerling M, Lind G, Rehncrona S, et al. Safety and tolerability of intracerebroventricular PDGF-BB in Parkinson’s disease patients. J Clin Invest. 2015;125:1339–1346. doi: 10.1172/JCI79635. PubMed DOI PMC
Manthripragada AD, Schernhammer ES, Qiu J, Friis S, Wermuth L, Olsen JH, Ritz B. Non-steroidal anti-inflammatory drug use and the risk of Parkinson’s disease. Neuroepidemiology. 2011;36:155–161. doi: 10.1159/000325653. PubMed DOI PMC
Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T. Dopamine neuron agenesis in Nurr1-deficient mice. Science. 1997;276:248–250. doi: 10.1126/science.276.5310.248. PubMed DOI
Hanna RN, Shaked I, Hubbeling HG, Punt JA, Wu R, Herrley E, Zaugg C, et al. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ Res. 2012;110:416–427. doi: 10.1161/CIRCRESAHA.111.253377. PubMed DOI PMC
Buervenich S, Carmine A, Arvidsson M, Xiang F, Zhang Z, Sydow O, Jönsson EG, et al. NURR1 mutations in cases of schizophrenia and manic-depressive disorder. Am J Med Genet. 2000;96:808–813. doi: 10.1002/1096-8628(20001204)96:6<808::AID-AJMG23>3.0.CO;2-E. PubMed DOI
Ke N, Claassen G, Yu D-H, Albers A, Fan W, Tan T, Grifman M, et al. Nuclear hormone receptor NR4A2 is involved in cell transformation and apoptosis. Cancer Res. 2004;64:8208–8212. doi: 10.1158/0008-5472.CAN-04-2134. PubMed DOI
Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CK. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 2009;137:47–59. doi: 10.1016/j.cell.2009.01.038. PubMed DOI PMC
Wang X, Zhuang W, Fu W, Wang X, Lv E, Li F, Zhou S, et al. The lentiviral-mediated Nurr1 genetic engineering mesenchymal stem cells protect dopaminergic neurons in a rat model of Parkinson’s disease. Am J Transl Res. 2018;10:1583–1599. PubMed PMC
Jacobsen KX, MacDonald H, Lemonde S, Daigle M, Grimes DA, Bulman DE, Albert PR. A Nurr1 point mutant, implicated in Parkinson’s disease, uncouples ERK1/2-dependent regulation of tyrosine hydroxylase transcription. Neurobiol Dis. 2008;29:117–122. doi: 10.1016/j.nbd.2007.08.003. PubMed DOI
Siracusa R, Paterniti I, Cordaro M, Crupi R, Bruschetta G, Campolo M, Cuzzocrea S, Esposito E. Neuroprotective Effects of Temsirolimus in Animal Models of Parkinson’s Disease. Mol Neurobiol. 2018;55:2403–2419. doi: 10.1007/s12035-017-0496-4. PubMed DOI
Devine MJ. Proteasomal Inhibition as a Treatment Strategy for Parkinson’s Disease: The Impact of α-Synuclein on Nurr1. J Neurosci. 2012;32:16071–16073. doi: 10.1523/JNEUROSCI.4224-12.2012. PubMed DOI PMC