Zein-Based Films Containing Monolaurin/Eugenol or Essential Oils with Potential for Bioactive Packaging Application
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2022/006
Internal Grant Agency of Tomas Bata University in Zlin
COST Action CA 19124
COST Action CA 19124 (Rethinking Packaging for Circular and Sustainable Food Supply Chains of the Future)
PubMed
35008810
PubMed Central
PMC8745270
DOI
10.3390/ijms23010384
PII: ijms23010384
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial activity, essential oils, eugenol, film, mechanical properties, monoglyceride, wettability, zein,
- MeSH
- antibakteriální látky farmakologie MeSH
- antifungální látky farmakologie MeSH
- biomechanika účinky léků MeSH
- diferenciální skenovací kalorimetrie MeSH
- Escherichia coli účinky léků MeSH
- eugenol farmakologie MeSH
- laurany farmakologie MeSH
- mikroskopie atomárních sil MeSH
- monoglyceridy farmakologie MeSH
- obaly potravin * MeSH
- oleje prchavé farmakologie MeSH
- pára MeSH
- permeabilita MeSH
- povrchové vlastnosti MeSH
- smáčivost MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- Staphylococcus aureus účinky léků MeSH
- zein farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- antifungální látky MeSH
- eugenol MeSH
- laurany MeSH
- monoglyceridy MeSH
- monolaurin MeSH Prohlížeč
- oleje prchavé MeSH
- pára MeSH
- zein MeSH
Zein is renewable plant protein with valuable film-forming properties that can be used as a packaging material. It is known that the addition of natural cross-linkers can enhance a film's tensile properties. In this study, we aimed to prepare antimicrobial zein-based films enriched with monolaurin, eugenol, oregano, and thyme essential oil. Films were prepared using the solvent casting technique from ethanol solution. Their physicochemical properties were investigated using structural, morphological, and thermal techniques. Polar and dispersive components were analyzed using two models to evaluate the effects on the surface free energy values. The antimicrobial activity was proven using a disk diffusion method and the suppression of bacterial growth was confirmed via a growth kinetics study with the Gompertz function. The films' morphological characteristics led to systems with uniform distribution of essential oils or eugenol droplets combined with a flat-plated structure of monolaurin. A unique combination of polyphenolic eugenol and amphiphilic monoglyceride provided highly stretchable films with enhanced barrier properties and efficiency against Gram-positive and Gram-negative bacteria, yeasts, and molds. The prepared zein-based films with tunable surface properties represent an alternative to non-renewable resources with a potential application as active packaging materials.
Zobrazit více v PubMed
Khalil A.A., Deraz S.F. Enhancement of mechanical properties, microstructure, and antimicrobial activities of zein films cross-linked using succinic anhydride, eugenol, and citric acid. Prep. Biochem. Biotechnol. 2015;45:551–567. doi: 10.1080/10826068.2014.940967. PubMed DOI
Escamilla-Garcia M., Calderon-Dominguez G., Chanona-Perez J.J., Mendoza-Madrigal A.G., Di Pierro P., García-Almendárez B.E., Amaro-Reyes A., Regalado-González C. Physical, structural, barrier and antifungal characterization of chitosan-zein edible films with added essential oils. Int. J. Mol. Sci. 2017;18:2370. doi: 10.3390/ijms18112370. PubMed DOI PMC
Talon E., Vargas M., Chiralt A., Gonzalez-Matinez C. Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. LWT—Food Sci. Technol. 2019;113:108290. doi: 10.1016/j.lwt.2019.108290. DOI
Norn V. Emulsifiers in Food Technology. 2nd ed. Wiley Blackwell Publishing; Ames, IA, USA: 2015.
Sevcikova P., Kasparkova V., Hauerlandova I., Humpolicek P., Kucekova Z., Bunkova L. Formulation, antibacterial activity, and cytotoxicity of 1-monoacylglycerol microemulsions. Eur. J. Lipid Sci. Technol. 2014;116:448–457.
Jackman J., Yoon B.K., Li D., Cho N. Nanotechnology formulations for antibacterial free fatty acids and monoglycerides. Molecules. 2016;21:305. doi: 10.3390/molecules21030305. PubMed DOI PMC
Luís A., Domingues F., Ramos A. Production of hydrophobic zein-based films bioinspired by the lotus leaf surface: Characterization and bioactive properties. Microorganisms. 2019;7:267. doi: 10.3390/microorganisms7080267. PubMed DOI PMC
Sedlarikova J., Janalikova M., Rudolf O., Pavlačková J., Egner P., Peer P., Varaďová V., Krejčí J. Chitosan/Thyme Oil Systems as Affected by Stabilizing Agent: Physical and Antimicrobial Properties. Coatings. 2019;9:165. doi: 10.3390/coatings9030165. DOI
Altiok D., Altiok E., Tihminlioglu F. Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. J. Mater. Sci. Mater. Med. 2010;21:2227–2236. doi: 10.1007/s10856-010-4065-x. PubMed DOI
Vahedikia N., Garavand F., Tajeddin B., Cacciotti I., Jafari S.M., Omidi T., Zahedi Z. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids Surf. B Biointerfaces. 2019;177:25–32. doi: 10.1016/j.colsurfb.2019.01.045. PubMed DOI
Boyaci D., Iorio G., Sozbilen G.S., Alkan D., Trabattoni S., Pucillo F., Farrisb S., Yemenicioğlua A. Development of flexible antimicrobial zein coatings with essential oils for the inhibition of critical pathogens on the surface of whole fruits: Test of coatings on inoculated melons. Food Packag. Shelf Life. 2019;20:100316. doi: 10.1016/j.fpsl.2019.100316. DOI
Ribeiro W.X., Filho J.F.L., Cortes M.S. Characterization of biodegradable film based on zein and oleic acid added with nanocarbonate. Food Technol. 2015;45:1890–1894. doi: 10.1590/0103-8478cr20141391. DOI
Pereira L.A.S., Silva P., Pagnossa J.P., Miranda K.W.E., Medeiros E.S., Piccoli R.H., Oliveira J.E.D. Antimicrobial zein coatings plasticized with garlic and thyme essential oils. Brazilian J. Food Technol. 2019;22 doi: 10.1590/1981-6723.13518. DOI
Aitboulahsen M., El Galiou O., Bakkali M., Zerrouk M.H. Effect of plasticizer type and essential oils on mechanical, physicochemical, and antimicrobial characteristics of gelatin, starch, and pectin-based films. J. Food Process. Preserv. 2020;44:e14480. doi: 10.1111/jfpp.14480. DOI
Nining N., Elfiyani R., Wulandari E. Comparison eugenol and oleic acid as a plasticizer on characteristic of dextromethorphan hydrobromide film by solvent casting method. Pharm. Sci. Asia. 2021;48:139–146. doi: 10.29090/psa.2021.02.20.023. DOI
Vieira M.G.A., da Silva M.A., Beppu M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. 2011;47:254–263. doi: 10.1016/j.eurpolymj.2010.12.011. DOI
Biswas A., Bastos M.S.R., Kuzniar G., Boddu V., Cheng H.N. Evaluation of properties of cellulose ester films that incorporate essential oils. Int. J. Polym. Sci. 2020;2020 doi: 10.1155/2020/4620868. DOI
Sedlarikova J., Dolezalova M., Egner P., Pavlackova J., Krejci J., Rudolf O., Peer P. Effect of oregano and marjoram essential oils on the physical and antimicrobial properties of chitosan based systems. Int. J. Polym. Sci. 2017;2017:2593863. doi: 10.1155/2017/2593863. DOI
Ghasemloua M., Aliheidari N., Fahmi R., Shojaee-Aliabadi S., Keshavarz B., Cran M.J., Khaksar R. Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydr. Polym. 2013;98:1117–1126. doi: 10.1016/j.carbpol.2013.07.026. PubMed DOI
Moradi M., Tajik H., Rohani S.M.R., Oromiehie A.R., Malekinejad H., Aliakbarlu J., Hadian M. Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT—Food Sci. Technol. 2012;46:477–484. doi: 10.1016/j.lwt.2011.11.020. DOI
Pintado C.M.B.S., Ferreira M.A.S.S., Sousa I. Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin. Food Control. 2010;21:240–246. doi: 10.1016/j.foodcont.2009.05.017. DOI
Ghasemi S., Javadi N.H.S., Moradi M., Khosravi-Darani K. Application of zein antimicrobial edible film incorporating Zataria multiflora boiss essential oil for preservation of Iranian ultrafiltered Feta cheese. Afr. J. Biotechnol. 2015;14:2014–2021.
Shi K., Kokini J.L., Huang Q. Engineering Zein Films with Controlled Surface Morphology and Hydrophilicity. J. Agric. Food Chem. 2009;57:2186–2192. doi: 10.1021/jf803559v. PubMed DOI
Gu L., Wang M., Zhou J. Effects of protein interactions on properties and microstructure of zein–gliadin composite films. J. Food Eng. 2013;119:288–298. doi: 10.1016/j.jfoodeng.2013.05.022. DOI
Wu L., Wen Q., Yang X., Xu M.S., Yin S.W. Wettability, surface microstructure and mechanical properties of films based on phosphorus oxychloride-treated zein. J. Sci. Food Agric. 2011;941:1222–1229. doi: 10.1002/jsfa.4303. PubMed DOI
Peer P., Sedlariková J., Janalikova M., Kucerova L., Pleva P. Novel Polyvinyl Butyral/Monoacylglycerol Nanofibrous Membrane with Antifouling Activity. Materials. 2020;13:3662. doi: 10.3390/ma13173662. PubMed DOI PMC
Lopez-Garcia J., Cupessala F., Humpolicek P., Lehocky M. Physical and Morphological Changes of Poly(tetrafluoroethylene) after Using Non-Thermal Plasma-Treatments. Materials. 2018;11:2013. doi: 10.3390/ma11102013. PubMed DOI PMC
Malm M.J., Narsimhan G., Kokini J.L. Effect of contact surface, plasticized and crosslinked zein films are cast on, on the distribution of dispersive and polar surface energy using the Van Oss method of deconvolution. J. Food Eng. 2019;263:262–271. doi: 10.1016/j.jfoodeng.2019.07.001. DOI
Ali S., Khatri Z., Oh K.W., Kim I.S., Kim S.H. Zein/cellulose acetate hybrid nanofibers: Electrospinning and characterization. Macromol. Res. 2014;22:971–977. doi: 10.1007/s13233-014-2136-4. DOI
Peer P., Janalikova M., Sedlarikova J., Pleva P., Filip P., Zelenkova J., Opalkova Sisikova A. Antibacterial filtration membranes based on PVDF-co-HFP nanofibers with the addition of medium-chain 1-monoacylglycerols. ACS Appl. Mater. Interfaces. 2021;13:41021–41033. doi: 10.1021/acsami.1c07257. PubMed DOI
Chinatangul N., Limmatvapirat C., Nunthanid J., Luangtana-Anan M., Sriamornsak P., Limmatvapirat S. Design and characterization of monolaurin loaded electrospun shellas nanofibers with antimicrobial activity. Asian J. Pharm. Sci. 2018;13:459–471. doi: 10.1016/j.ajps.2017.12.006. PubMed DOI PMC
Kaewmanee P.C., Wongsatayanon B., Durand A. Encapsulation of bioactive compounds (mono-caprin and monolaurin) into polymeric nanoparticles. Mater. Sci. Forum. 2018;916:147–152. doi: 10.4028/www.scientific.net/MSF.916.147. DOI
Bueno J.N.N., Corradini E., Souza P.R., Marques V.D.S., Radovanovic E., Muniz E.C. Films based on mixtures of zein, chitosan, and PVA: Development with perspectives for food packaging application. Polym. Test. 2021;101:107279. doi: 10.1016/j.polymertesting.2021.107279. DOI
Carmagnola I., Nardo T., Gentile P., Tomda-Turo C., Mattu C., Cabodi S., Defilippi P., Chiono V. Poly(Lactic Acid)-Based Blends with Tailored Physicochemical Properties for Tissue Engineering Applications: A Case Study. Int. J. Polym. Mater. Polym. Biomater. 2015;64:90–98. doi: 10.1080/00914037.2014.886247. DOI
Wrzecionko E., Minarik A., Smolka P., Minařík M., Humpolíček P., Rejmontová P., Mráček A., Minaříková M., Gřundělová L. Variations of Polymer Porous Surface Structures via the Time-Sequenced Dosing of Mixed Solvents. ACS Appl. Mater. Interfaces. 2017;9:6472–6481. doi: 10.1021/acsami.6b15774. PubMed DOI
Minarik M., Wrzecionko E., Minarik A., Grulich O., Smolka P., Musilová L., Junkar I., Primc G., Ptošková B., Mozetič M., et al. Preparation of Hierarchically Structured Polystyrene Surfaces with Superhydrophobic Properties by Plasma-Assisted Fluorination. Coatings. 2019;9:201. doi: 10.3390/coatings9030201. DOI
Wenzel R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936;28:988–994. doi: 10.1021/ie50320a024. DOI
Cassie A.B.D., Baxter S. Wettability of porous surfaces. Trans. Faraday Soc. 1944;40:546–551. doi: 10.1039/tf9444000546. DOI
Milne A.J.B., Amirfazli A. The Cassie equation: How it is mean to be used. Adv. Colloid Interface Sci. 2012;170:48–55. doi: 10.1016/j.cis.2011.12.001. PubMed DOI
Bormashenko E. Progress in understanding wetting transitions on rough surfaces. Adv. Colloid Interface Sci. 2015;222:92–103. doi: 10.1016/j.cis.2014.02.009. PubMed DOI
Kashiri M., Cerisuelo J.P., Dominguez I., López-Carballo G., Hernández-Muñoz P., Gavara R. Novel antimicrobial zein film for controlled release of lauroyl arginate (LAE) Food Hydrocoll. 2016;61:547–554. doi: 10.1016/j.foodhyd.2016.06.012. DOI
Luo C., Zeng Z., Gong D., Zhao C., Liang Q., Zeng C. Evaluation of monolaurin from camphor tree seeds for controlling food spoilage fungi. Food Control. 2014;46:488–494. doi: 10.1016/j.foodcont.2014.06.017. DOI
Mansour N., Yousef A.E., Kim J. Inhibition of surface growth of toxigenic and nontoxigenic Aspergilli and Penicillia by eugenol, isoeugenol and monolaurin. J. Food Saf. 1996 doi: 10.1111/j.1745-4565.1996.tb00162.x. DOI
Krishnamurthi V.R., Niyonshuti I.I., Chen J., Wang Y., Barnwal R.P. A new analysis method for evaluating bacterial growth with microplate readers. PLoS ONE. 2021;16:1–19. doi: 10.1371/journal.pone.0245205. PubMed DOI PMC
Perni S., Andrew P.W., Shama G. Estimating the maximum growth rate from microbial growth curves: Definition is everything. Food Microbiol. 2005;22:491–495. doi: 10.1016/j.fm.2004.11.014. DOI
Sakkas H., Papadopoulou C. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils. J. Microbiol. Biotechnol. 2017;27:429–438. doi: 10.4014/jmb.1608.08024. PubMed DOI
Xu H., Chai Y., Zhang G. Synergistic effect of oleic acid and glycerol on zein film plasticization. J. Agric. Food. Chem. 2012;60:10075–10081. doi: 10.1021/jf302940j. PubMed DOI
Qu L., Chen G., Dong S., Huo Y., Yin Z., Li S., Chen Y. Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2. Ind. Crops Prod. 2019;130:450–458. doi: 10.1016/j.indcrop.2018.12.093. DOI
Zhou L., Wang Y. Physical and antimicrobial properties of zein and methyl cellulose composite films with plasticizers of oleic acid and polyethylene glycol. LWT. 2021;140:110811. doi: 10.1016/j.lwt.2020.110811. DOI
Xuan W., Odelius K., Hakkarainen M. Dual-functioning antibacterial eugenol-derived plasticizers for polylactide. Biomolecules. 2020;10:1077. doi: 10.3390/biom10071077. PubMed DOI PMC
Ghanbarzadeh B., Oromiehie A., Rezaei K.E., Razmi E., Milani J., Ouroumiehei A.A. Investigation of water vapour permeability, hydrophobicity and morphology of zein films plasticized by polyols. Iran. Polym. J. 2006;15:691–700.
Ordon M., Zdanowicz M., Nawrotek P. Stachurska, X.; Mizielinska, M. Polyethylene films containing plant extracts in the polymer matrix as antibacterial and antiviral materials. Int. J. Mol. Sci. 2021;22:13438. doi: 10.3390/ijms222413438. PubMed DOI PMC
Blaszyk M., Holley R.A. Interaction of monolaurin, eugenol and sodium citrate on growth of common meat spoilage and pathogenic organisms. Int. J. Food Microbiol. 1998;39:175–183. doi: 10.1016/S0168-1605(97)00134-7. PubMed DOI
Moradi M., Tajik H., Rohani S.M.R., Mahmoudian A. Antioxidant and antimicrobial effects of zein edible film impregnated with Zataria multiflora Boiss. essential oil and monolaurin. LWT-Food Sci. Technol. 2016;72:37–43. doi: 10.1016/j.lwt.2016.04.026. DOI
Standard Test Methods for Water Vapor Transmission of Materials. ASTM International; West Conshohocken, PA, USA: 1995.
Cech V., Lichovnikova S., Sova J., Studynka J. Silanes and Other Coupling Agents. Volume 5. CRC PRESS; Boca Raton, FL, USA: 2009. Surface-Free Energy of Silicon Based Plasma Polymer Films; pp. 333–348. DOI
Ferrer C., Ramón D., Muguerza B., Marco A., Martinez A. Effect of olive powder on the growth and inhibition of Bacillus cereus. Foodborne Pathog. Dis. 2009;6 doi: 10.1089/fpd.2008.0133. PubMed DOI
Zabihi E., Babaei A., Arab-Bafrani Z., Mirshahidi K.S., Majidi H.J. Facile and rapid in-situ synthesis of chitosan-ZnO nano-hybrids applicable in medical purposes; a novel combination of biomineralization, ultrasound, and bio-safe morphology-conducting agent. Int. J. Biol. Macromol. 2019;131:107–116. doi: 10.1016/j.ijbiomac.2019.01.224. PubMed DOI