Zein-Based Films Containing Monolaurin/Eugenol or Essential Oils with Potential for Bioactive Packaging Application

. 2021 Dec 29 ; 23 (1) : . [epub] 20211229

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35008810

Grantová podpora
IGA/FT/2022/006 Internal Grant Agency of Tomas Bata University in Zlin
COST Action CA 19124 COST Action CA 19124 (Rethinking Packaging for Circular and Sustainable Food Supply Chains of the Future)

Zein is renewable plant protein with valuable film-forming properties that can be used as a packaging material. It is known that the addition of natural cross-linkers can enhance a film's tensile properties. In this study, we aimed to prepare antimicrobial zein-based films enriched with monolaurin, eugenol, oregano, and thyme essential oil. Films were prepared using the solvent casting technique from ethanol solution. Their physicochemical properties were investigated using structural, morphological, and thermal techniques. Polar and dispersive components were analyzed using two models to evaluate the effects on the surface free energy values. The antimicrobial activity was proven using a disk diffusion method and the suppression of bacterial growth was confirmed via a growth kinetics study with the Gompertz function. The films' morphological characteristics led to systems with uniform distribution of essential oils or eugenol droplets combined with a flat-plated structure of monolaurin. A unique combination of polyphenolic eugenol and amphiphilic monoglyceride provided highly stretchable films with enhanced barrier properties and efficiency against Gram-positive and Gram-negative bacteria, yeasts, and molds. The prepared zein-based films with tunable surface properties represent an alternative to non-renewable resources with a potential application as active packaging materials.

Zobrazit více v PubMed

Khalil A.A., Deraz S.F. Enhancement of mechanical properties, microstructure, and antimicrobial activities of zein films cross-linked using succinic anhydride, eugenol, and citric acid. Prep. Biochem. Biotechnol. 2015;45:551–567. doi: 10.1080/10826068.2014.940967. PubMed DOI

Escamilla-Garcia M., Calderon-Dominguez G., Chanona-Perez J.J., Mendoza-Madrigal A.G., Di Pierro P., García-Almendárez B.E., Amaro-Reyes A., Regalado-González C. Physical, structural, barrier and antifungal characterization of chitosan-zein edible films with added essential oils. Int. J. Mol. Sci. 2017;18:2370. doi: 10.3390/ijms18112370. PubMed DOI PMC

Talon E., Vargas M., Chiralt A., Gonzalez-Matinez C. Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. LWT—Food Sci. Technol. 2019;113:108290. doi: 10.1016/j.lwt.2019.108290. DOI

Norn V. Emulsifiers in Food Technology. 2nd ed. Wiley Blackwell Publishing; Ames, IA, USA: 2015.

Sevcikova P., Kasparkova V., Hauerlandova I., Humpolicek P., Kucekova Z., Bunkova L. Formulation, antibacterial activity, and cytotoxicity of 1-monoacylglycerol microemulsions. Eur. J. Lipid Sci. Technol. 2014;116:448–457.

Jackman J., Yoon B.K., Li D., Cho N. Nanotechnology formulations for antibacterial free fatty acids and monoglycerides. Molecules. 2016;21:305. doi: 10.3390/molecules21030305. PubMed DOI PMC

Luís A., Domingues F., Ramos A. Production of hydrophobic zein-based films bioinspired by the lotus leaf surface: Characterization and bioactive properties. Microorganisms. 2019;7:267. doi: 10.3390/microorganisms7080267. PubMed DOI PMC

Sedlarikova J., Janalikova M., Rudolf O., Pavlačková J., Egner P., Peer P., Varaďová V., Krejčí J. Chitosan/Thyme Oil Systems as Affected by Stabilizing Agent: Physical and Antimicrobial Properties. Coatings. 2019;9:165. doi: 10.3390/coatings9030165. DOI

Altiok D., Altiok E., Tihminlioglu F. Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. J. Mater. Sci. Mater. Med. 2010;21:2227–2236. doi: 10.1007/s10856-010-4065-x. PubMed DOI

Vahedikia N., Garavand F., Tajeddin B., Cacciotti I., Jafari S.M., Omidi T., Zahedi Z. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids Surf. B Biointerfaces. 2019;177:25–32. doi: 10.1016/j.colsurfb.2019.01.045. PubMed DOI

Boyaci D., Iorio G., Sozbilen G.S., Alkan D., Trabattoni S., Pucillo F., Farrisb S., Yemenicioğlua A. Development of flexible antimicrobial zein coatings with essential oils for the inhibition of critical pathogens on the surface of whole fruits: Test of coatings on inoculated melons. Food Packag. Shelf Life. 2019;20:100316. doi: 10.1016/j.fpsl.2019.100316. DOI

Ribeiro W.X., Filho J.F.L., Cortes M.S. Characterization of biodegradable film based on zein and oleic acid added with nanocarbonate. Food Technol. 2015;45:1890–1894. doi: 10.1590/0103-8478cr20141391. DOI

Pereira L.A.S., Silva P., Pagnossa J.P., Miranda K.W.E., Medeiros E.S., Piccoli R.H., Oliveira J.E.D. Antimicrobial zein coatings plasticized with garlic and thyme essential oils. Brazilian J. Food Technol. 2019;22 doi: 10.1590/1981-6723.13518. DOI

Aitboulahsen M., El Galiou O., Bakkali M., Zerrouk M.H. Effect of plasticizer type and essential oils on mechanical, physicochemical, and antimicrobial characteristics of gelatin, starch, and pectin-based films. J. Food Process. Preserv. 2020;44:e14480. doi: 10.1111/jfpp.14480. DOI

Nining N., Elfiyani R., Wulandari E. Comparison eugenol and oleic acid as a plasticizer on characteristic of dextromethorphan hydrobromide film by solvent casting method. Pharm. Sci. Asia. 2021;48:139–146. doi: 10.29090/psa.2021.02.20.023. DOI

Vieira M.G.A., da Silva M.A., Beppu M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. 2011;47:254–263. doi: 10.1016/j.eurpolymj.2010.12.011. DOI

Biswas A., Bastos M.S.R., Kuzniar G., Boddu V., Cheng H.N. Evaluation of properties of cellulose ester films that incorporate essential oils. Int. J. Polym. Sci. 2020;2020 doi: 10.1155/2020/4620868. DOI

Sedlarikova J., Dolezalova M., Egner P., Pavlackova J., Krejci J., Rudolf O., Peer P. Effect of oregano and marjoram essential oils on the physical and antimicrobial properties of chitosan based systems. Int. J. Polym. Sci. 2017;2017:2593863. doi: 10.1155/2017/2593863. DOI

Ghasemloua M., Aliheidari N., Fahmi R., Shojaee-Aliabadi S., Keshavarz B., Cran M.J., Khaksar R. Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydr. Polym. 2013;98:1117–1126. doi: 10.1016/j.carbpol.2013.07.026. PubMed DOI

Moradi M., Tajik H., Rohani S.M.R., Oromiehie A.R., Malekinejad H., Aliakbarlu J., Hadian M. Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT—Food Sci. Technol. 2012;46:477–484. doi: 10.1016/j.lwt.2011.11.020. DOI

Pintado C.M.B.S., Ferreira M.A.S.S., Sousa I. Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin. Food Control. 2010;21:240–246. doi: 10.1016/j.foodcont.2009.05.017. DOI

Ghasemi S., Javadi N.H.S., Moradi M., Khosravi-Darani K. Application of zein antimicrobial edible film incorporating Zataria multiflora boiss essential oil for preservation of Iranian ultrafiltered Feta cheese. Afr. J. Biotechnol. 2015;14:2014–2021.

Shi K., Kokini J.L., Huang Q. Engineering Zein Films with Controlled Surface Morphology and Hydrophilicity. J. Agric. Food Chem. 2009;57:2186–2192. doi: 10.1021/jf803559v. PubMed DOI

Gu L., Wang M., Zhou J. Effects of protein interactions on properties and microstructure of zein–gliadin composite films. J. Food Eng. 2013;119:288–298. doi: 10.1016/j.jfoodeng.2013.05.022. DOI

Wu L., Wen Q., Yang X., Xu M.S., Yin S.W. Wettability, surface microstructure and mechanical properties of films based on phosphorus oxychloride-treated zein. J. Sci. Food Agric. 2011;941:1222–1229. doi: 10.1002/jsfa.4303. PubMed DOI

Peer P., Sedlariková J., Janalikova M., Kucerova L., Pleva P. Novel Polyvinyl Butyral/Monoacylglycerol Nanofibrous Membrane with Antifouling Activity. Materials. 2020;13:3662. doi: 10.3390/ma13173662. PubMed DOI PMC

Lopez-Garcia J., Cupessala F., Humpolicek P., Lehocky M. Physical and Morphological Changes of Poly(tetrafluoroethylene) after Using Non-Thermal Plasma-Treatments. Materials. 2018;11:2013. doi: 10.3390/ma11102013. PubMed DOI PMC

Malm M.J., Narsimhan G., Kokini J.L. Effect of contact surface, plasticized and crosslinked zein films are cast on, on the distribution of dispersive and polar surface energy using the Van Oss method of deconvolution. J. Food Eng. 2019;263:262–271. doi: 10.1016/j.jfoodeng.2019.07.001. DOI

Ali S., Khatri Z., Oh K.W., Kim I.S., Kim S.H. Zein/cellulose acetate hybrid nanofibers: Electrospinning and characterization. Macromol. Res. 2014;22:971–977. doi: 10.1007/s13233-014-2136-4. DOI

Peer P., Janalikova M., Sedlarikova J., Pleva P., Filip P., Zelenkova J., Opalkova Sisikova A. Antibacterial filtration membranes based on PVDF-co-HFP nanofibers with the addition of medium-chain 1-monoacylglycerols. ACS Appl. Mater. Interfaces. 2021;13:41021–41033. doi: 10.1021/acsami.1c07257. PubMed DOI

Chinatangul N., Limmatvapirat C., Nunthanid J., Luangtana-Anan M., Sriamornsak P., Limmatvapirat S. Design and characterization of monolaurin loaded electrospun shellas nanofibers with antimicrobial activity. Asian J. Pharm. Sci. 2018;13:459–471. doi: 10.1016/j.ajps.2017.12.006. PubMed DOI PMC

Kaewmanee P.C., Wongsatayanon B., Durand A. Encapsulation of bioactive compounds (mono-caprin and monolaurin) into polymeric nanoparticles. Mater. Sci. Forum. 2018;916:147–152. doi: 10.4028/www.scientific.net/MSF.916.147. DOI

Bueno J.N.N., Corradini E., Souza P.R., Marques V.D.S., Radovanovic E., Muniz E.C. Films based on mixtures of zein, chitosan, and PVA: Development with perspectives for food packaging application. Polym. Test. 2021;101:107279. doi: 10.1016/j.polymertesting.2021.107279. DOI

Carmagnola I., Nardo T., Gentile P., Tomda-Turo C., Mattu C., Cabodi S., Defilippi P., Chiono V. Poly(Lactic Acid)-Based Blends with Tailored Physicochemical Properties for Tissue Engineering Applications: A Case Study. Int. J. Polym. Mater. Polym. Biomater. 2015;64:90–98. doi: 10.1080/00914037.2014.886247. DOI

Wrzecionko E., Minarik A., Smolka P., Minařík M., Humpolíček P., Rejmontová P., Mráček A., Minaříková M., Gřundělová L. Variations of Polymer Porous Surface Structures via the Time-Sequenced Dosing of Mixed Solvents. ACS Appl. Mater. Interfaces. 2017;9:6472–6481. doi: 10.1021/acsami.6b15774. PubMed DOI

Minarik M., Wrzecionko E., Minarik A., Grulich O., Smolka P., Musilová L., Junkar I., Primc G., Ptošková B., Mozetič M., et al. Preparation of Hierarchically Structured Polystyrene Surfaces with Superhydrophobic Properties by Plasma-Assisted Fluorination. Coatings. 2019;9:201. doi: 10.3390/coatings9030201. DOI

Wenzel R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936;28:988–994. doi: 10.1021/ie50320a024. DOI

Cassie A.B.D., Baxter S. Wettability of porous surfaces. Trans. Faraday Soc. 1944;40:546–551. doi: 10.1039/tf9444000546. DOI

Milne A.J.B., Amirfazli A. The Cassie equation: How it is mean to be used. Adv. Colloid Interface Sci. 2012;170:48–55. doi: 10.1016/j.cis.2011.12.001. PubMed DOI

Bormashenko E. Progress in understanding wetting transitions on rough surfaces. Adv. Colloid Interface Sci. 2015;222:92–103. doi: 10.1016/j.cis.2014.02.009. PubMed DOI

Kashiri M., Cerisuelo J.P., Dominguez I., López-Carballo G., Hernández-Muñoz P., Gavara R. Novel antimicrobial zein film for controlled release of lauroyl arginate (LAE) Food Hydrocoll. 2016;61:547–554. doi: 10.1016/j.foodhyd.2016.06.012. DOI

Luo C., Zeng Z., Gong D., Zhao C., Liang Q., Zeng C. Evaluation of monolaurin from camphor tree seeds for controlling food spoilage fungi. Food Control. 2014;46:488–494. doi: 10.1016/j.foodcont.2014.06.017. DOI

Mansour N., Yousef A.E., Kim J. Inhibition of surface growth of toxigenic and nontoxigenic Aspergilli and Penicillia by eugenol, isoeugenol and monolaurin. J. Food Saf. 1996 doi: 10.1111/j.1745-4565.1996.tb00162.x. DOI

Krishnamurthi V.R., Niyonshuti I.I., Chen J., Wang Y., Barnwal R.P. A new analysis method for evaluating bacterial growth with microplate readers. PLoS ONE. 2021;16:1–19. doi: 10.1371/journal.pone.0245205. PubMed DOI PMC

Perni S., Andrew P.W., Shama G. Estimating the maximum growth rate from microbial growth curves: Definition is everything. Food Microbiol. 2005;22:491–495. doi: 10.1016/j.fm.2004.11.014. DOI

Sakkas H., Papadopoulou C. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils. J. Microbiol. Biotechnol. 2017;27:429–438. doi: 10.4014/jmb.1608.08024. PubMed DOI

Xu H., Chai Y., Zhang G. Synergistic effect of oleic acid and glycerol on zein film plasticization. J. Agric. Food. Chem. 2012;60:10075–10081. doi: 10.1021/jf302940j. PubMed DOI

Qu L., Chen G., Dong S., Huo Y., Yin Z., Li S., Chen Y. Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2. Ind. Crops Prod. 2019;130:450–458. doi: 10.1016/j.indcrop.2018.12.093. DOI

Zhou L., Wang Y. Physical and antimicrobial properties of zein and methyl cellulose composite films with plasticizers of oleic acid and polyethylene glycol. LWT. 2021;140:110811. doi: 10.1016/j.lwt.2020.110811. DOI

Xuan W., Odelius K., Hakkarainen M. Dual-functioning antibacterial eugenol-derived plasticizers for polylactide. Biomolecules. 2020;10:1077. doi: 10.3390/biom10071077. PubMed DOI PMC

Ghanbarzadeh B., Oromiehie A., Rezaei K.E., Razmi E., Milani J., Ouroumiehei A.A. Investigation of water vapour permeability, hydrophobicity and morphology of zein films plasticized by polyols. Iran. Polym. J. 2006;15:691–700.

Ordon M., Zdanowicz M., Nawrotek P. Stachurska, X.; Mizielinska, M. Polyethylene films containing plant extracts in the polymer matrix as antibacterial and antiviral materials. Int. J. Mol. Sci. 2021;22:13438. doi: 10.3390/ijms222413438. PubMed DOI PMC

Blaszyk M., Holley R.A. Interaction of monolaurin, eugenol and sodium citrate on growth of common meat spoilage and pathogenic organisms. Int. J. Food Microbiol. 1998;39:175–183. doi: 10.1016/S0168-1605(97)00134-7. PubMed DOI

Moradi M., Tajik H., Rohani S.M.R., Mahmoudian A. Antioxidant and antimicrobial effects of zein edible film impregnated with Zataria multiflora Boiss. essential oil and monolaurin. LWT-Food Sci. Technol. 2016;72:37–43. doi: 10.1016/j.lwt.2016.04.026. DOI

Standard Test Methods for Water Vapor Transmission of Materials. ASTM International; West Conshohocken, PA, USA: 1995.

Cech V., Lichovnikova S., Sova J., Studynka J. Silanes and Other Coupling Agents. Volume 5. CRC PRESS; Boca Raton, FL, USA: 2009. Surface-Free Energy of Silicon Based Plasma Polymer Films; pp. 333–348. DOI

Ferrer C., Ramón D., Muguerza B., Marco A., Martinez A. Effect of olive powder on the growth and inhibition of Bacillus cereus. Foodborne Pathog. Dis. 2009;6 doi: 10.1089/fpd.2008.0133. PubMed DOI

Zabihi E., Babaei A., Arab-Bafrani Z., Mirshahidi K.S., Majidi H.J. Facile and rapid in-situ synthesis of chitosan-ZnO nano-hybrids applicable in medical purposes; a novel combination of biomineralization, ultrasound, and bio-safe morphology-conducting agent. Int. J. Biol. Macromol. 2019;131:107–116. doi: 10.1016/j.ijbiomac.2019.01.224. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Poloxamer-Based Mixed Micelles Loaded with Thymol or Eugenol for Topical Applications

. 2024 Jun 04 ; 9 (22) : 23209-23219. [epub] 20240520

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...